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The Nature of the Quaternion
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�I regard it as an inelegance, or imperfection, in quaternions, or rather

in the state to which it has been hitherto unfolded, whenever it becomes

or seems to become necessary to have recourse to x, y, z, etc.�

William Rowan Hamilton (quoted in a letter from Tait to Cayley)

�Quaternions came from Hamilton after his really good work had been

done; and, though beautifully ingenious, have been an unmixed evil to

those who have touched them in any way, including Clerk Maxwell.�

William Thomson, �rst baron Kelvin, 1892

�. . . quaternions appear to exude an air of nineteenth century decay, as

a rather unsuccessful species in the struggle-for-life of mathematical ideas.

Mathematicians, admittedly, still keep a warm place in their hearts for the

remarkable algebraic properties of quaternions but, alas, such enthusiasm

means little to the harder-headed physical scientist.�

Simon L. Altmann, 1986 [ 1 ]

Abstract

Some of the confusions concerning quaternions as they are employed in spacecraft

attitude work are discussed. The order of quaternion multiplication is discussed in terms

of its historical development and its consequences for the quaternion imaginaries. The

di�erent formulations for the quaternions are also contrasted. It is shown that the

three Hamilton imaginaries cannot be interpreted as the basis of the vector space of

physical vectors but only as constant numerical column vectors, the autorepresentation

of a physical basis.

Introduction

The quaternion [ 2 ] is one of the most important representations of the

attitude in spacecraft attitude estimation and control. Under the various guises

of the Euler symmetric parameters, the Rodrigues symmetric parameters, the

Euler-Rodrigues symmetric parameters, the Cayley-Klein parameters, and of

course, the quaternion, quaternions have been in existence for nearly two-and-

a-half centuries, longer, in fact, than the direction-cosine matrix. For a brief
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historical discussion of the quaternion and other attitude representations with

references, see reference [ 2 ], pp. 495�498. After such a long passage of time,

the quaternion should be well understood and free of ambiguities. Surprisingly,

the truth is di�erent, and one of the most important inconsistencies has arisen

during the past 30 years. The two most important confusions concern the order

of quaternion multiplication and the nature of the quaternion �imaginaries,�

both of which are the subject of this article.

Very little is derived in this article. A complete, detailed and consistent

formulation of the quaternion as a 4×1 matrix appeared in reference [ 2 ]. That

work has been cited very frequently within the astrodynamics community over

the past �fteen years, and its formulation seems to have become standard there.

The traditional presentation of the quaternion can be found in great detail and in

great extent in reference [ 3 ]. The notation of this article is that of references [ 2 ].

The literature on quaternions is plentiful. A chapter on quaternions can be

found in nearly every advanced textbook which treats rotational mechanics. For

convenience, we limit ourselves to citations of reference [ 2 ] whenever possible.

An Historical Perspective

The Euler symmetric parameters appeared �rst in publication in 1770 [ 4 ],

�ve years before Euler's formula for the direction-cosine matrix [ 5 ]. However,

the Euler symmetric parameters weren't developed as a parameterization of

rotations. Euler (1707�1783) was interested simply in �nding a parameterization

of any orthogonal matrix, and examined speci�cally square matrices of dimension

3, 4 and 5. His published results in 1770 for the 3 × 3 orthogonal matrix were

only for improper orthogonal matrices. Euler was hardly interested in rotations

at the time.

The quaternion as a static attitude representation was more fully developed

by Rodrigues (1795�1851) in 1840 [ 6 ]. Rodrigues discovered the connection

(the Rodrigues symmetric parameters) to the attitude matrix, a geometrical

multiplication rule for quaternions, and the Rodrigues vector, often called the

Gibbs vector, after J. Willard Gibbs, who popularized its use some 60 years

later [ 7 ].

Hamilton (1805�1865) enters the picture in 1843, only a few years after

Rodrigues. While Rodrigues was interested in attitude, Hamilton's primary

interest was in developing a theory of hypercomplex numbers, that is, in extending

the complex-number system. Rodrigues' interest was in Geometry, Hamilton's

in Algebra. For a long time, Hamilton struggled with a system with only

two imaginary numbers, i an j, but ran into problems when trying to �nd

an expression for ij as the linear combination of 1, i and j, a task in which

he never succeeded. He arrived �nally at the idea that ij must be a separate

imaginary k, and the quaternion algebra with its three imaginaries was born [ 8 ].

The principal interest of algebraists today in Hamilton's discovery was that the

�eld generated by the set {1, i, j, k}, together with the binary operations of

hypercomplex addition and multiplication, was the �rst example of a skew �eld,

a �eld in which multiplication is not commutative. With the advent of matrices

and matrix multiplication, skew �elds became a commonplace. It is Hamilton

who coined the word quaternion. (For a linguistic discussion of �quaternion,�
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see footnote 4 of reference [ 9 ].) For us, the interest in quaternions comes

from the identi�cation of the Hamiltonian imaginaries with coordinate axes and

their utility in describing rotations.

Hamilton never acknowledged the work of Rodrigues, and his use of quater-

nions as a description of rotations was very wrong [ 2 ]. He believed that the

expression for a rotated vector was linear in the quaternion rather than quadratic.

It is Cayley (1821�1895) whom we must thank for the further development of

quaternions as a representation of attitude. It is Cayley who is responsible for

the familiar kinematic equation for the quaternion [ 10 ],

d

dt
η̄(t) = Ξ(η̄(t)) à(t) (1)

where à is the angular-velocity column vector, and Ξ(η̄) is the matrix

Ξ(η̄) =







η4 −η3 η2
η3 η4 −η1
−η2 η1 η4
−η1 −η2 −η3






(2)

It was Cayley, in fact, who invented matrix algebra in 1855 [ 11, 12 ]. The

formula for matrix multiplication

Cij =
n
∑

k=1

Aik Bkj (3)

appears �rst in Cayley's work.

Hamilton's error concerning rotations arose from the analogy of the Argand

diagram for complex numbers with the geometrical plane. In the Argand

diagram, multiplication of a complex number by i is equivalent to a �rotation�

of the complex number in the Argand diagram by π/2. Hamilton then concluded

that rotation using quaternions must be a operation linear in the quaternion

in general, although both he and Cayley had showed that the operation was

necessarily bilinear [ 13 ]. In fact, �rotation by i� in the Argand diagram was more

akin to rotation by a rotation matrix. Despite this, Hamilton persisted in his

error, and the statement is to be found even in his �nal great (posthumous) work

on quaternions [ 14 ]. Hamilton's quaternion ideas became something of a cult

after his death, with the r
ole of high priest �lled by the Scottish mathematician

Peter Guthrie Tait (1831�1901), one of many mathematicians whose name has

been attached to the antisymmetric Euler angles [ 2 ]. Hamilton's mistaken

ideas concerning quaternions and rotations could not, of course, survive the

need for useful applications and are now forgotten, except by historians of

science. Today, Hamilton's approach to rotations belongs with phlogiston, the

luminiferous ether, the Dean drive and cold fusion.

Quaternions had largely disappeared from view by the beginning of the

twentieth century, having been replaced by the simpler and more transparent

vectors, which �rst appeared in the works of J. Willard Gibbs (1839�1903)

[ 15 ] and Oliver Heaviside (1850�1925) [ 16 ]. About the time, matrices were

beginning to receive wide application in Engineering, particularly in studies of
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elasticity, and in Physics, especially with the advent of Matrix Mechanics, an

early formulation of Quantum Mechanics, in 1925. This fading of interest in

quaternions is responsible for one of the inconsistencies that occurs in the two

current presentations of quaternions.

The quotation of Hamilton's at the beginning of this article is revealing about

quaternions. When Hamilton invented his quaternion in terms of imaginaries,

it was the �rst time, perhaps, that a single symbol substituted itself generally

for a group of components. One might today have made the same comment

about vectors. One of the great advances of Hamilton's work on quaternions

was the use of a single symbol to denote a vector as a quaternion which is a

linear combination only of the imaginaries. Hamilton's displeasure expressed

in the opening quotation of this article is similar to our own when we look at

works in Physics from 150 years ago, in which every component of a vector and

every entry in a matrix is expressed by a di�erent letter of the alphabet.

For greater detail on the history of vectors and quaternions the reader is

referred to references [ 1 ], [ 17 ] and [ 18 ].

The Problem of Quaternion Multiplication

Beginning with Hamilton, quaternions have been multiplied in the opposite

order than rotation matrices are today. Thus, in the traditional formulation of

quaternions, one writes

R(η̄′) R(η̄) = R(η̄ ◦ η̄′) (4)

Here, R denotes the rotation matrix (attitude matrix, direction-cosine matrix),

η̄ the quaternion, and �◦� the multiplication operation for quaternions.
2
As in

reference [ 2 ], we use η̄ to denote an element of the multiplication group

of quaternions with unit norm (the quaternions of rotation) and q̄ to denote

an element of the quaternion algebra, in which the quaternion may have any

norm. We refer to the order of quaternion multiplication in equation (4) as

the traditional order. This is the order found in reference [ 3 ].

More recently, in spacecraft work, the order of quaternion multiplication has

been chosen to satisfy

R(η̄′) R(η̄) = R(η̄′ ◦ η̄) (5)

which we call the natural order in this article, because the order of quaternion

multiplication is the same as that of matrix multiplication. This is the order of

reference [ 2 ]. The �natural� order for quaternion multiplication seems more

reasonable within the framework of spacecraft attitude studies, where both the

rotation matrix and the quaternion receive frequent use. We shall refer to the

two formulations of the the quaternion as the traditional formulation and the

�more recent formulation.

Had the quaternion still been of great interest in the early twentieth century,

the natural order might have been adopted for quaternions a century ago, but

Tait, the great champion of quaternions after Hamilton, was gone by then, and

quaternions remained stagnant.

2
R is a proper direction-cosine matrix, that is, a direction-cosine of positive determinant. We

sometimes call R the attitude matrix and denote it by A.
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The confusion in quaternion multiplication is most apparent in the presenta-

tions of quaternion multiplication in the book, Spacecraft Attitude Determination

and Control [ 19 ], which appeared in 1978, and which was an important land-

mark in the development of spacecraft attitude estimation [ 20 ]. Reference [ 19 ]

bestrides the transition from traditional order to natural order in quaternion

multiplication. In the appendix of reference [ 19 ] on �Quaternions� [ 21 ], the

quaternions are presented in a manner consistent with equation (4), the tra-

ditional order, while in the section within the main text of reference [ 19 ] on

�Parameterization of the Attitude� [ 22 ], quaternion multiplication is presented

in a manner consistent with equation (5), the natural order.
3

Due to the brevity

of references [ 21 ] and [ 22 ] and the non-identical selection of material, the two

presentations are not trivially comparable, so it has not been necessarily evident

to readers that they are mutually inconsistent.
4

Reference [ 2 ] is consistent with

with equation (5). Of the more recent texts, four [ 23�26 ] follow the conven-

tions of reference [ 2 ] and cite it, and one [ 3 ] follows the traditional approach

typi�ed by equation (4). The material on the quaternion in reference [ 27 ]

is insu�cient to determine which formulation was employed. Not all of these

works state equation (4) or (5) explicitly, and the nature of their approach to

quaternion multiplication must be inferred from other equations in those works,

in some cases from only one equation.

Thus, one dilemma of the quaternion. Many authors, especially �rst authors

on spacecraft attitude, take equations from both parts of Spacecraft Attitude

Determination and Control [ 19 ] and from other works, unaware of the in-

consistency. One purpose of the present work is to retrace the steps of the

traditional formulation of quaternions critically, and then to present the more

recent approach, which is more in tune with the more modern needs of attitude

studies created by the application to spacecraft. There are several rami�cations

of the di�erence between equations (4) and (5), particularly in the nature of

the fundamental relationship of traditional quaternion multiplication ij = k,

discovered by Hamilton in 1843.

The second dilemma concerns the very nature of i, j, and k in quaternion

theory. Are these the directions of real coordinate axes or something else?

The connection of the multiplication rule for Hamilton's three imaginaries and

the multiplication rule for rotations will be carefully explored in this work.

Hamilton's approach to quaternions leads to equation (4), seemingly in

universal use until the publication of reference [ 22 ], and still in almost universal

use until the publication of reference [ 2 ], which, probably, more than any other

work, has been responsible for the change to the natural order of quaternion

multiplication in spacecraft attitude estimation and control. This was, in fact,

an avowed purpose of the author of reference [ 2 ]. But although nearly every

writer on spacecraft attitude is aware now of reference [ 2 ], which is cited

3
Markley claims that he �rst encountered the natural order of quaternion multiplication in the

technical report of a prime contractor.

4
The author of the present work may be partly responsible for the simultaneous appearance of the

two inconsistent treatments in reference [ 19 ], since he was an o�cial proofreader for Spacecraft
Attitude Determination and Control in 1977 and 1978. However, his proofreading took place during his

very �rst year in Engineering, and while he was able to �nd many typographical errors, fundamental

inconsistencies obviously eluded him.
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frequently, he or she may not be aware of the inconsistency of reference [ 2 ]

with many other works on quaternions.

The impetus, at least for the present writer, to change to the natural order for

quaternion multiplication came not only from aesthetic considerations but also

from the needs of real mission support in spacecraft attitude determination and

control, especially, in spacecraft attitude determination. In purely theoretical

studies of spacecraft attitude dynamics and control, one seldom has more than

one quaternion, because one seldom has more than two reference frames, inertial

and body. In theoretical studies of spacecraft attitude estimation, which includes

also the study of sensor alignment estimation, the number of reference frames

is increased by the number of sensor reference frames, which can be large. This

cannot compare, however, with the number of reference frames needed in real

spacecraft attitude mission support, which may be several dozen. A large part

of the functional-speci�cation document for spacecraft attitude mission support

software consists of the speci�cation of the very large number of reference

frames and the transformations connecting them. System development will be

less prone to error if the multiplication rule for quaternions has the same order

as that for the corresponding rotation matrices.

Vectors and Attitude

As in reference [ 2 ], we distinguish between physical vectors, their column-

vector representations, and numerical column vectors, which have a constant

value independent of the choice of basis.

A physical vector, as de�ned in this article, is coordinate-free. It is not

composed of three components and is speci�ed by some physical property (for

example, as the position vector of a particle) or in terms of other physical

vectors. If we assume that the vector space V of physical vectors has a scalar

product (inner product, dot product), that is, that V is an inner-product space,

then it also possess a right-handed orthonormal basis [ 2 ], which we denote by

E = {
e1, 
e2, 
e3}.
We de�ne the components of a physical vector u with respect to the basis E

as

Euk ≡ 
ek · u , k = 1, 2, 3 (6)

where � · � denotes the scalar product operation. The column vector represen-

tation of u with respect to E is then

E
u ≡





Eu1
Eu2
Eu3



 (7)

For a given E , there is an isomorphism between V and
EV , the vector space of

column-vector representations with respect to E [ 2 ].
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Of particular importance is the autorepresentation of a basis, that is, the

representation of a basis with respect to itself. Clearly,

E

e1 =





1

0

0



 ≡ 1̂ , E

e2 =





0

1

0



 ≡ 2̂ , E

e3 =





0

0

1



 ≡ 3̂ , (8abc)

The autorepresentation of a basis is the same for every basis, even for bases

which are not orthonormal. The numerical column vector is a column vector

which is speci�ed entirely by the speci�c values of its entries. The vectors 1̂, 2̂

and 3̂ are the only numerical column vectors that appear in this work.

The transformation of a physical vector a into a physical vector b of equal

magnitude under the in
uence of a (counterclockwise) rotation about a physical

axis vector 
n through an angle θ is given by [ 2 ]

b = (cos θ) a + (1 − cos θ) (
n · a) 
n + (sin θ) 
n × a

= a + (sin θ) 
n × a + (1 − cos θ) 
n × (
n × a) . (9)

This is Euler's formula [ 5 ].

The attitude matrix A
E ′/E

transforming a right-handed orthonormal basis E
into a right-handed orthonormal basis E ′ is de�ned as the direction-cosine matrix

A
E ′/E
ij ≡ 
e

′
i · 
ej (10)

It follows that


e
′
i =

3
∑

j=1

A
E ′/E
ij 
ej , i = 1, 2, 3 (11)

The transformation of column-vector representations under the same rotation

is given by [ 2 ]

E ′
u = A

E ′/E E
u (12)

Note also

E

e
′
i =

3
∑

j=1

A
E ′/E
ij

E

ej , i = 1, 2, 3 (13)

E ′

ei = A

E ′/E E
ei , i = 1, 2, 3 (14)

E ′

e
′
i =

E

ei , i = 1, 2, 3 (15)

In a lax notation one might wish to call all the left members of equations (13)

through (15) 
e
′
i, i = 1, 2, 3. It is important always to denote the basis of

representation in the symbol for a column-vector representation. Note that the

operation in the right member of equation (13) is the multiplication of a matrix

by a scalar, the operation in equation (14) is matrix multiplication.
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From equation (9) with a replaced by 
ek and b replaced by 
ek, successively

for k = 1, 2, 3, it follows that for a rotation through an angle θ counterclockwise

about a physical rotation vector 
n, the attitude matrix is given by [ 2 ]

A = (cos θ) I3×3 + (1 − cos θ) 
n
n
T − (sin θ) [
n×]

= I3×3 − (sin θ) [
n×] + (1 − cos θ) [
n×]2 (16)

where I3×3 is the 3 × 3 identity matrix, given by

I3×3 =





1 0 0

0 1 0

0 0 1



 (17)

and the antisymmetric matrix [
n×] is de�ned by

[u×] ≡





0 −u3 u2

u3 0 −u1

−u2 u1 0



 (18)

for any column vector u. In terms of individual entries, equation (15) can be

written as

A =





c + n2
1 (1 − c) n1 n2 (1 − c) + n3 s n1 n3 (1 − c) − n2 s

n2 n1 (1 − c) − n3 s c + n2
2 (1 − c) n2 n3 (1 − c) + n1 s

n3 n1 (1 − c) + n2 s n3 n2 (1 − c) − n1 s c + n2
3 (1 − c)



 (19)

where c ≡ cos θ and s ≡ sin θ. We have not written the basis of representation

on 
n, because

E

n = E ′


n (20)

since

A(
n, θ) 
n = 
n (21)

See reference [ 2 ] for further details.

Note that

u = Eu1 
e1 +
Eu2 
e2 +

Eu3 
e3 , (22a)

E
u = Eu1

E

e1 +

Eu2
E

e2 +

Eu3
E

e3 , (22b)

= Eu1 1̂ + Eu2 2̂ + Eu3 3̂ (22c)

Despite the similarities of equations (22a) and (22b) in appearance, they are

very di�erent in nature.

The Traditional Formulation of Quaternions

Quaternion Algebra

Since Hamilton, the quaternions have consisted of the �eld generated by the

real numbers and the three imaginaries i, j and k. The multiplication rule for

the imaginaries, as proposed by Hamilton, is

ij = −ji = k, jk = −kj = i, ki = −ik = j (23abc)
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ii = jj = kk = ijk = −1 (24)

and naturally,

1 i = i 1 = i , 1 j = j 1 = j , 1 k = k 1 = k (25abc)

0 i = i 0 = 0 , 0 j = j 0 = 0 , 0 k = k 0 = 0 (26abc)

Equations (23) bear a striking resemblance to those for the vector product. The

most general quaternion has the form

q̄ = q1 i + q2 j + q3 k + q4 (27)

The conjugate quaternion q̄∗ is de�ned as

q̄∗ ≡ −q1 i − q2 j − q3 k + q4 (28)

and

q̄∗q̄ = q2
1 + q

2
2 + q

2
3 + q

2
4 ≡ |q̄|

2 (29)

The quantity |q̄| is the length of the quaternion. The identity element of the

quaternion (skew) �eld is 1 and the inverse quaternion is given by

q̄ −1 = |q̄|−2 q̄∗ (30)

The imaginaries i, j and k are interpreted generally also as the basis vectors

of a right-handed orthogonal physical vector space. Thus, we have also

i · i = j · j = k · k = 1 (31)

i · j = j · i = 0 , j · k = k · j = 0 , k · i = i · k = 0 (32abc)

and

i × j = −j × i = k , j × k = −k × j = i , k × i = −i × k = j (33abc)

The quaternion space in the traditional formulation contains the real numbers

(scalars) q4 and V , the physical vector space in three dimensions, with elements

q = q1 i + q2 j + q3 k (34)

The general quaternion may be written

q̄ = q + q4 (35)

In the traditional formulation of quaternions, the binary multiplicative operation

does not have a special symbol but is simply written by juxtaposing the two

quaternions, as is done for matrices.

Rotations

For a rotation, one has

η = 
n sin(θ/2) = η1 i + η2 j + η3 k (36a)
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η4 = cos(θ/2) (36b)

η̄ = η + η4 (36c)

with 
n and θ the axis and angle of rotation.


n = n1 i + n2 j + n3 k (37)

n2
1 + n

2
2 + n

2
3 = 1 (38)

Thus, |η̄| = 1. Rotation by quaternions in the traditional formulation is e�ected

by the quaternion as in references [ 3 ] and [ 21 ]

η̄∗ u η̄ = u
′ (39)

If, following equation (22b), we write the vector u as

u = Eu1 i +
Eu2 j +

Eu3 k (40)

where E is the prior basis, E = {i, j, k} and
Eu1,

Eu2 and
Eu3 denote the components

of u with respect to the basis vectors i, j and k, respectively, then evaluation of

equation (39) leads to

u
′ = E ′u1 i +

E ′u2 j +
E ′u3 k (41)

where E ′ is the posterior basis, which satis�es equation (11). The result given

by equation (41) does not correspond to the transformation of of a physical

vector, as given by equation (22a). If it did, one would have

E
u
′ = E ′

u , (42)

which is not true generally. However, if we interpret i, j. and k as the numerical

column vectors 1̂, 2̂ and 3̂, respectively, then we can rewrite equations (40)

and (41) as

u = Eu1 1̂ + Eu2 2̂ + Eu3 3̂ (43a)

u
′ ≡ E

′
u = E ′u1 1̂ + E

′
u2 2̂ + E

′
u3 3̂ (43b)

which make perfect sense, because

E ′

e
′
1 = E


e1 = 1̂ , E ′

e
′
2 = E


e2 = 2̂ , E ′

e
′
3 = E


e3 = 3̂ (44)

Thus, we are forced to interpret the three Hamilton imaginaries, i, j and k, not

as physical basis vectors but as the autorepresentation of a physical basis.

If we consider the action of two successive quaternions on a vector u (which

we should write more correctly now as u, but we will retain the traditional

notation for the few remaining equations of this section), then

u
′′ = η̄′∗ u′ η̄′ = η̄′∗(η̄∗ u η̄) η̄′ = (η̄ η̄′)∗ u (η̄ η̄′) (45)

so that

η̄′′ = η̄ η̄′ (46)
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which is equivalent to equation (4).

The traditional formulation of quaternions presents many di�culties for mod-

ern applications in Engineering. First is the fact that the Hamilton imaginaries

must be interpreted as column vectors rather than as physical vectors within a

formulation that distinguishes between the two. This makes the addition of a

scalar and a vector in the quaternion system impossible, because the addition

of a scalar and a column vector is not allowed in matrix algebra. Secondly,

the multiplication of quaternions is necessarily in the opposite order to that of

rotation matrices, which is, at least, a nuisance. Thirdly, if we wish to adapt

the traditional quaternion to computations and write

q̄ =







q1
q2
q3
q4






(47)

then one has

1 =







0
0
0
1






(48)

which equates a scalar to a 4×1 column vector. There is a certain enchantment

to adding things that normally are not supposed to be added together, like

scalars and vectors, but the system it leads to is simply wrong.

Hamilton would not have been bothered by the di�culties raised above,

since matrix algebra was invented only after the publication of his Lectures on

Quaternions [ 28 ]. In fact, we know from Tait (in his discussion on quaternions

with Cayley in 1894 [ 29, 30 ]) that Hamilton had considered abandoning the

imaginaries in favor of what must have been the ordered-list representation of

quaternions, namely, the notation q̄ = (q1, q2, q3, q4), but was unable in the end

to abandon his beloved imaginaries.

The More Recent Formulation of Quaternions

Reference [ 2 ] take the easy way out of the problem of the limitations and

confusions of the traditional formulation of quaternions and simply dispenses

with i, j and k either as imaginaries or as basis vectors of physical space and

instead considers the quaternion simply as a column vector in a four-dimensional

quaternion column-vector space Q. There is no need for the �vectors� of the

quaternion space to be also vectors in physical space. It is su�cient that there

be an isomorphism, as there is between physical vectors and their column-

vector representations. As shown in the previous section, the quaternion acts

on column-vector representations, not on physical vectors, and the axes of the

space of column-vector representations are not the axes of the real physical

vector space.

The four basis vectors of the quaternion vector space are

1̄ =
[

1̂

0

]

, 2̄ =
[

2̂

0

]

, 3̄ =
[

3̂

0

]

, Ī =
[

0

1

]

(49abc)
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where 1̂, 2̂ and 3̂ are the familiar 3 × 1 matrices of equations (8). and

0 =

[ 0
0
0

]

(50)

We may write these four quaternion basis vectors also as ē1, ē2, ē3 and ē4. Any

quaternion may be written then as

q̄ = q1 1̄ + q2 2̄ + q3 3̄ + q4 Ī

=
4
∑

k−1

qk ēk =









q1

q2

q3

q4









=
[

q

q4

]

(51)

There is no longer any mystical mystery of adding scalars and vectors. All

elements of the quaternion space are 4 × 1 column vectors.

The quaternion multiplication rule has not yet been speci�ed. Reference [ 2 ]

determines that multiplication rule for quaternions by specifying the conditions

that must be satis�ed: (a) The quaternion of rotation must have the form

η = 
n sin(θ/2) , η4 = cos(θ/2) (52ab)

where 
n (more exactly,
E

n
E ′/E

) is the representation with respect to the prior

basis E of the axis of rotation for a rotation of the prior basis E into the

posterior basis E ′, and θ (more exactly θE
′/E

) is the angle of rotation; (b) the

multiplication of quaternions must satisfy equation (5); and (c) Ī must be the

identity element for quaternion multiplication. (Both Ī and −Ī correspond to

the identity rotation matrix, but only one of these can be the identity element

of the quaternion multiplication group.) These three conditions are su�cient

to specify the multiplication rule for quaternions completely. The result [ 2 ] is

η̄′ ◦ η̄ =
[

η4η
′ + η′4η − η

′ × η
η′4η4 − η′ · η

]

, (53)

which may be written as

η̄′ ◦ η̄ = { η̄′ }L η̄ = { η̄ }R η̄
′ . (54)

Explicitly,

{ η̄ }L ≡







η4 η3 −η2 η1
−η3 η4 η1 η2
η2 −η1 η4 η3
−η1 −η2 −η3 η4






, { η̄ }R ≡







η4 −η3 η2 η1
η3 η4 −η1 η2
−η2 η1 η4 η3
−η1 −η2 −η3 η4






. (55ab)

From the above, it follows that the multiplication rule for the the basis vectors

of the 4 × 1 quaternion space Q is

1̄ ◦ 2̄ = −2̄ ◦ 1̄ = −3̄ , 2̄ ◦ 3̄ = −3̄ ◦ 2̄ = −1̄ , 3̄ ◦ 1̄ = −1̄ ◦ 3̄ = −2̄ (56abc)
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and also

1̄ ◦ 1̄ = 2̄ ◦ 2̄ = 3̄ ◦ 3̄ = 3̄ ◦ 2̄ ◦ 1̄ = −Ī (57)

Instead of ij = k, etc., for the traditional development of the quaternion we have

instead for the more recent formulation 1̄◦2̄ = −3̄, or equivalently, 2̄◦1̄ = 3̄. Not

surprisingly, since 1̄, 2̄ and 3̄, as unit quaternions, are quaternions of rotation,

a change in the order of quaternion multiplication must entail a change in the

order of multiplication for the �imaginaries.�

The quaternion representation of a 3 × 1 column vector is given by

v̄ ≡
[

v

0

]

(58)

whence,

η̄ ◦ v̄ ◦ η̄∗ =
[

R(η̄) v

0

]

(59)

or equivalently,

η̄ ◦ Ev̄ ◦ η̄∗ =
[ E ′

v

0

]

= E ′
v̄ (60)

in analogy with equation (25) above. Note the di�erence in order between

equations (60) and (39). Explicitly, the rotation matrix as a function of the

quaternion is given by

R(η̄) = (η2
4 − |η|

2) I3×3 + 2ηηT + 2 η4 [η×] (61)

Generally, the computational burden for the transformation of column vectors

is less if R(η̄) is �rst calculated using equation (61) and applied to the column

vector than if equation (60) is used. The temporal evolution of the quaternion

is described by equations (1) and (2).

The more recent formulation of quaternions avoids the pitfalls signalled by

Lord Kelvin in an opening quote and those in the discussion of Tait and Cayley

[ 29, 30 ], which dealt in part with the nature of the Hamilton imaginaries as

coordinate axes.

Discussion

For the study of spacecraft attitude estimation and control and for spacecraft

mission support, it is clear that the more recent formulation of the quaternion

is the more apt. Writing a quaternion as a 4 × 1 column vector is not new and

can be found in reference [ 21 ], which adheres to the traditional approach to

quaternions. What the formulation of quaternions in reference [ 2 ] did was to

make the multiplication rule the starting point of the formulation.

The biggest di�erence of the recent approach to quaternions in spacecraft

attitude work and the traditional approach is not the use of 4×1 column vectors

but the elimination of the Hamilton imaginaries altogether, and the modi�cation

of the quaternion multiplication rule so that quaternion multiplication and the

corresponding matrix multiplication are performed in the same order. As we
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have seen, this meant abandoning the traditional order for the multiplication of

the Hamilton imaginaries, with i j = k being replaced by ē2 ◦ ē1 = ē3.

The appearance of the quaternion basis vectors ē1, ē2, ē3 and ē4 are remi-

niscent of the autorepresentation of a basis in physical three-space. Thus, we

might regard them as the autorepresentation of a �physical� quaternion basis

ēk, k = 1, 2, 3, 4, in some kind of �physical� quaternion space, and these might

bear a connection to the attitude dyadic [ 2 ] similar to that of the quater-

nion column-vector to the attitude matrix. One can indeed construct such a

�physical� space of quaternions, but they serve no practical value.

It might seem from the perspective of this article that the traditional formu-

lation of the quaternion is a rather ramshackle a�air with scalars and vectors

participating in some sort of clumsy and unholy marriage. That opinion would

be very unfair. While the formulation of reference [ 2 ] is certainly better

attuned to engineering and the needs of automatic computation, the place

and purpose of quaternions in pure mathematics is rather di�erent. The tra-

ditional formulation of quaternions is very much alive in books on Algebra

as the �rst example of a skew �eld. The concern of pure mathematics is

not in representing physical reality e�ciently but in exploring mathematical

structures. The deep concern of the present article with the representation

of physical processes and the duality of physical vectors and column-vectors

might seem to be a needless distraction in pure mathematics. The recent

formulation for the quaternion seeks only to make the quaternion a more

pedestrian object, a worthy goal, but not the only possible goal. As engi-

neers, our interest is in �impure� mathematics, contaminated by the needs of

practical application.

The need to abandon the traditional formulation of quaternions is revealed, as

we have seen, in the traditional formulation itself. The Hamiltonian imaginaries

cannot be interpreted as physical vectors but, at best, only as column vectors.

Thus, they cannot label coordinate axes. That internal inconsistency, however,

would not be apparent in a formulation that does not distinguish between physical

vectors and column vector, but without that distinction, attitude estimation would

be confused.

Interest in the quaternion has been renewed during the past two decades

under the rubric of Geometric Algebra, in which quaternions and Grassman's

algebra play a fundamental r
ole in the description of physical processes. These

ideas have gained only a small foothold in Physics and Mathematics. The great

champion of Geometric Algebra is David Hestenes (b. 1933), who is also the

author of the most extensive work on that subject [ 31 ].

Some of the information in this article and the opening quotations have

been gleaned from the Wikipedia articles on �Arthur Cayley,�William Rowan

Hamilton,� and �Quaternions� (http://en.wikipedia.org).
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