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Introduction

In 1989, the author published a implementation of the Wahba Problem

[1] for dynamical systems as a sequential �lter and smoother [2], These were

called Filter QUEST and Smoother QUEST. The implementations of the �lter

and smoother were based on the Rauch-Tung-Striebel formulation [3] of the

Kalman �lter as a maximum-likelihood estimator assuming Gaussian noise.

Smoother QUEST, naturally, was a Rauch-Tung-Striebel smoother. Filter

QUEST was a candidate algorithm for the onboard attitude determination

system of the Midcourse Space Experiment (MSX) [4], in planning in the

late 1980s. Unfortunately, it failed to meet the accuracy speci�cation by a

factor of 2 and was removed from consideration. In the end that mission

adopted the QUEST Filter algorithm
1
[5, 6], which was the standard attitude

Kalman �lter [7] but used the single-frame star-tracker attitude quaternion

(computed using QUEST [8]) as an e�ective attitude measurement, rather

than processing individual measurements of star directions. The QUEST

Filter has since become the attitude Kalman �lter implementation of choice

for near-Earth and deep-space missions employing star trackers [9].

In 1996, the REQUEST algorithm [10], closely related to Filter QUEST,

was published. The publication of the REQUEST smoother [11], equally

closely related to Smoother QUEST, occurred in the following year. The

present work examines the similarities of these later algorithms with Filter

QUEST and Smoother QUEST.
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1
Not to be confused with the Filter QUEST algorithm [2].
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The Wahba Problem and QUEST

Both Filter QUEST and REQUEST are based on the QUEST solution

of the Wahba Problem. We shall review only the most important aspects of

the Wahba problem and QUEST needed for an understanding of the present

work.

The Wahba problem posed e�ectively as optimization criterion the mini-

mization of a least-square cost function of the form

J (A) =
1
2

n
∑

k=1

1

σ2
k

|Ŵk − AV̂k|
2 (1)

Here A is the attitude matrix, that is, the direction-cosine matrix, Ŵk, k =
1, . . . , n, are the observation vectors, the measured vectors observed with

respect to the spacecraft body frame, V̂k, k = 1, . . . , n, are the reference

vectors, the same vectors but with components given with respect to the

inertial reference frame, and σk, k = 1, . . . , n, are the variance parameters of

the QUEST measurement model [8, 12]. Reference [12] showed also that the

Wahba cost function was the data-dependent part or the negative-log-likelihood

function [13] for the QUEST measurement model.

The Wahba cost function can be written also as

J (A) = const − g(A) (2)

where g(A) is the gain function

g(A) = tr

(

BTA
)

(3)

with B, the attitude pro�le matrix, given by

B =
n
∑

k=1

1

σ2
k

ŴkV̂T
k (4)

The value of A which minimizes J (A) maximizes g(A). All solutions of the

Wahba problem begin by constructing B. The many solution methods of the

Wahba problem have been reviewed by Markley and Mortari [14].
2

QUEST [8] is a special case of the Davenport q-algorithm. Davenport

[8, 14, 17] showed that the gain function could be rewritten in terms of the

quaternion q̄ as

g(q̄) ≡ g(A(q̄)) = q̄TKq̄ (5)

where the Davenport matrix K is given by

K =
[

S − sI3×3 Z

ZT s

]

(6)

2
On the simulation results of reference [14], note references [15] and [16].
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with

S ≡ B + BT , s ≡ trB and Z ≡ [B23 − B32, B31 − B13, B12 − B21]T (7abc)

As a result, the minimization of JA(A) or, equivalently, the maximization of

gA(A), could be accomplished by �nding the solution of the characteristic-value

problem

Kq̄∗ = λmaxq̄
∗ (8)

subject to the constraint q̄Tq̄ = 1. Here, λmax is the largest characteristic value

of the 4 × 4 real-symmetric matrix K and is also the maximum value of gq̄(q̄)
and gA(A). The QUEST algorithm is distinguished by a very fast method

for computing q̄∗ from K. The details of the QUEST calculation are not

interesting for the present work. Of particular interest, however, is the fact

that K is a linear homogeneous function of B, that is

K(B1 + B2) = K(B1) +K(B2) (9)

Filter QUEST

The Filter QUEST algorithm takes advantage of the form of B given by

equation (4). If the measurements are accumulated sequentially, then de�ning

the �current� Bk as

Bk =
k
∑

i=1

1

σ2
i

ŴiV̂
T
i (10)

We can calculate Bk, k = 1, . . . , n, sequentially as

Bo = 0 (11a)

Bk = Bk−1 + ∆Bk , k = 1, . . . , n (11b)

with

∆Bk =
1

σ2
k

ŴkV̂T
k , k = 1, . . . , n (12)

If the attitude is dynamic and changing according to

Ak = Φk−1Ak−1 , k = 1, . . . , n (13)

then it follows from the invariance of equation (3) under a proper orthogonal

transformation of the body coordinate axes that B must be changing in a

corresponding fashion. In this case, we may obtain (non-static) A∗k,k−1, A
∗
k,k

and their associated covariance matrices as a function of k by the application

of the QUEST algorithm to the sequence of attitude pro�le matrices
3

Bo,o = 0 (14a)

Bk,k−1 = Φk−1 Bk−1,k−1 , k = 1, . . . , n (14b)

Bk,k = Bk,k−1 + ∆Bk , k = 1, . . . , n (14c)

3
It is not necessary to calculate these quantities for every Bk,k−1 and Bk,k .
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If there is a priori knowledge of the attitude consisting of an initial estimate

A∗(−) and associated attitude estimate error covariance matrix Pθθ(−), then

the sequence of attitude pro�le matrices is initialized as [12]

Bo,o ≡ B(−) =
[

1
2
tr

(

P−1
θθ (−)

)

I3×3 − P
−1
θθ (−)

]

A∗(−) (15)

For the de�nition of Pθθ(−), see reference [12]. There is no straightfor-

ward way to include process noise in the Wahba problem. Reference [2]

approximated process noise by replacing equation (14b) with

Bk,k−1 = αΦk−1 Bk−1,k−1 , k = 1, . . . , n (16)

where α, 0 < α ≤ 1 is a fading-memory factor. Equations (14) through (16)

constitute the Filter QUEST algorithm. Reference [2] gave an algorithm

for calculating α heuristically from the steady-state predicted and updated

covariance matrices of the standard Kalman �lter. For a simple model Filter

QUEST performed almost as well as the standard attitude Kalman �lter. For

more realistic data, however, the estimate error levels (in standard deviation)

for Filter QUEST were about twice those of the standard attitude Kalman

�lter and outside mission requirements, and so Filter QUEST was abandoned

for practical mission support.

REQUEST

In the REQUEST algorithm [10] was published seven years after Filter

QUEST. Reference [10] remarks that the update step for the attitude pro�le

matrix B can be written equivalently in terms of the Davenport matrix K as
4

Kk,k = Kk,k−1 + ∆Kk , k = 1, . . . , n (17)

with

∆Kk =
1

σ2
k

[

∆Sk − ∆skI3×3 ∆Zk

∆ZT
k ∆sk

]

(18)

which is obvious from equation (9). Since the gain function of equation (5)

is invariant under a proper orthogonal transformation of the spacecraft-body

coordinate axes, one has for the prediction step for the sequential construction

of K
Kk,k−1 = α {ϕ̄k−1}LKk−1,k−1{ϕ̄k−1}

T
L , k = 1, . . . , n (19)

where ϕ̄k is the quaternion [18] corresponding to Φk. Here, the 4× 4 proper

orthogonal matrix {p̄}L is de�ned by [18]

p̄ ◦ q̄ = {p̄}L q̄ (20)

4
Reference [10] presents REQUEST in more cumbersome form than this.
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and �◦� is the binary operation of quaternion composition (multiplication),

and quarternion multiplication satis�es [18]

A(p̄)A(q̄) = A(p̄ ◦ q̄) (21)

where A is the attituee matrix. Explicitly [18],

{ p̄ }L ≡







p4 p3 −p2 p1
−p3 p4 p1 p2
p2 −p1 p4 p3
−p1 −p2 −p3 p4






(22)

Equation (18) does not, in fact, present REQUEST exactly as in reference [10].

Reference [10] prefers to use unit-sum weights ak, k = 1, . . . , n, rather than

inverse-variances, with the result that REQUEST must give an additional

non-linear recursion relation for the ak. Beyond this, reference [10] simply

repeats the derivation of Filter QUEST in reference [2] in terms of K and

presents a less informative simulation than did reference [2].

A Closer Look at Filter QUEST and REQUEST

The similarity of the Filter QUEST and REQUEST algorithm is closer

than presented in the previous section. In order to investigate the similarity,

we must consider in each case where the �lter ends and QUEST begins.

Let us examine QUEST alone. We may divide the operations in QUEST

into three broad steps: (1) the computation of B from the vector data; (2) the

computation of K from B; and (3) the computation of the attitude quaternion

from K. Thus, we may summarize QUEST as

{Ŵk, V̂k, σ
2
k | k = 1, . . . , n} → B → K → q̄∗ (23)

The steps in Filter QUEST and REQUEST may each be separated into two

groups of operations: B-�lter and B-QUEST for Filter QUEST and K-�lter

and K-QUEST for REQUEST. With these distinctions, one may analyze the

steps of Filter QUEST and REQUEST as follows (we present only the update

steps for clarity). For k, k = 1, . . . , n,

Filter QUEST

B-�lter; {Ŵk, V̂k, σ
2
k, Bk−1}→ ∆Bk, Bk−1 → Bk (24a)

B-QUEST: Bk → Kk → q̄∗k (24b)

REQUEST

K-�lter; {Ŵk, V̂k, σ
2
k, Kk−1} → ∆Bk, Kk−1 → ∆Kk, Kk−1 → Kk

(25a)

K-QUEST: Kk → q̄∗k (25b)
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The sequence of steps in Filter QUEST and REQUEST is identical except

for the simple substitution (part of the middle rightarrow in equation (25a))

K(Bk,k−1 + ∆Bk) → K(Bk,k−1) +K(∆Bk) (26)

in REQUEST. The substitution is justi�ed by equation (9). The right mem-

ber of equation (9), however, imposes a larger computational burden than

the left. In addition, the single multiplication of 3 × 3 matrices (27 scalar

multiplications) in the prediction step of Filter QUEST (equation (16)) is

replaced by two multiplications of 4× 4 matrices (128 scalar multiplication) in

the prediction step of REQUEST (equation (19)). Otherwise, the operations

in the two algorithms are not only mathematical equivalent but identical. The

principal di�erence between Filter QUEST and REQUEST is the imaginary

boundary where one stops calling the mathematical operations ��lter steps�

and begins calling them �QUEST steps.�

The REQUEST Smoother [11] was published in 1997 and bears the same

relation to Smoother QUEST as REQUEST does to Filter QUEST.

Summary and Discussion

The relationship of Filter QUEST and REQUEST has been examined in

detail. The REQUEST algorithm has been shown to be not only mathe-

matically equivalent to the Filter QUEST algorithm but, apart from trivial

di�erences, which make REQUEST slower, the two algorithms are essen-

tially identical, analytically and computationally. A similar assertion can be

made for the Smoother QUEST algorithm and the corresponding REQUEST

Smoother algorithm. A recent survey article on sequential attitude estimation

[19] remarks that Filter QUEST and REQUEST are mathematically equiv-
alent. It is not uncommon for algorithms to be mathematically equivalent.

There are, for example, several dozen non-sequential implementations of the

Wahba problem [14], all of which are mathematically equivalent. What does

not seem to be widely recognized, however, is that the two algorithms are

essentially mathematically and computationally identical, the point revealed

by the present work.

References [10] and [11] claim the superiority of REQUEST and REQUEST

Smoother on the grounds that the Davenport matrix K is more important

to QUEST than is the attitude pro�le matrix B. This is hardly true. Both

matrices are indispensable to QUEST, and the attitude pro�le matrix is not

less important. In particular, the attitude covariance matrix can be computed

directly from A∗ and B and only clumsily from A∗ and K (via A∗ and B(K)).
The sequentialization of QUEST is also simpler in terms of B than in terms of

K and requires far far fewer oating-point operations as well. We note also,

that references [10] and [11], although claiming that the Davenport matrix K
is more basic, begin their developments with the attitude pro�le matrix B.

Again, the implementation of the Wahba problem in QUEST has two

parts: (1) the computation of the attitude pro�le matrix B from the input

direction data, and (2) the computation of the attitude quaternion from B.
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The only real di�erence between Filter QUEST and REQUEST consists of

the transposition by REQUEST of those operations which compute Kk from

Bk from the second part of the Filter QUEST program to the �rst.
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