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. . .My grief shall be with speed redressed.
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King Henry IV, Part II, Act IV, scene ii

Abstract

The speed of solutions of the Wahba problem, in particular, QUEST, FOAM, ESOQ,

ESOQ2, Davenport's original q-method, and Markley's SVD algorithm, are examined.

The algorithms are tested for the number of MATLAB
r


oating-pont operations (
ops),

MATLAB
r

execution times, MATLAB
r

C-mex �le execution times, and the execution

times of stand-alone compiled C programs. Any of the six algorithms examined here would

be excellent candidates (on the basis of speed) for implementation in real missions. A

careful account is presented of the problems besetting tests of 
op counts and execution

times, especially within MATLAB
r

. The 
oating-point operation requirements and

execution times of all algorithms are given careful scrutiny.

Introduction

The speed of attitude estimation algorithms has been a topic of interest

for many years. The need for ever greater speed for attitude computation,

even for ground-based computations, became critical in the late 1970s and even

the early 1980s and was the reason for the creation of the QUEST algorithm

[2�4]. Algorithm speed has remained a topic of interest for on-board attitude

determination systems, although it has been becoming less so as the speed and

the number of microprocessors onboard continues to increase, and the attitude

estimation algorithm becomes a smaller portion of the on-board software. In
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the present work, we examine a wide variety of tests: (1) the number of

MATLAB
r


oating-point operations (
ops), more properly called �e�ciency�

rather than �speed,� (2) the execution times of MATLAB
r

implementations, (3)

the execution times of MATLAB
r

C-mex �les; and �nally, (4) the execution

times of stand-alone precompiled programs in the C language. We will discuss

the characteristics of each test and the di�culties inherent in them.

We will test the fastest attitude estimation algorithms. These are all solutions

of the Wahba problem [5], proposed in 1965. All of these algorithms seek the

attitude which minimizes the cost function

JA(A) =
1
2

n
∑

k=1

ak | 
Wk − A
Vk|
2

Here, A is the attitude
3

matrix (direction-cosine matrix), 
Wk, k = 1, . . . , N ,

are the measured directions as observed in the spacecraft body frame, and 
Vk,

k = 1, . . . , N , are the corresponding reference directions in the primary reference

frame, assumed to be noise-free.
4

The weights, ak, k = 1, . . . , n, are inversely

proportional to the typical variances of the measurements and make the Wahba

problem a maximum-likelihood estimation problem [7].

The algorithms of our study are QUEST, FOAM, ESOQ, ESOQ2, Davenport's

original q-algorithm, and Markley's SVD algorithm,
5

The Solutions to the Wahba Problem

Solutions to the Wahba problem fall into two classes. First, there are solutions

which solve for the optimal attitude by applying one of the standard algorithms of

Numerical Linear Algebra [8] to the attitude pro�le matrix B or the Davenport

matrix K. These algorithms are described in detail in references [9] and [10]

and their description need not be repeated here.
6

Examples of such methods are

the polar-decomposition method of Farrell and Stuelpnagel [10, 12], the matrix

square-root algorithms of Wessner [10, 13] and Brock [10, 14], the original q-

method of Davenport [2, 3, 10, 15, 16], and Markley's SVD algorithm [10, 17],

which last is very closely related to Farrell and Stuelpnagel's polar-decomposition

algorithm in concept. We call these the non-iterative solutions , a misnomer since,

for example, the algorithms of Numerical Linear Algebra used in Davenport's

3
Unless otherwise noted, attitude in this work will always mean three-axis attitude.

4
We have used bold sans-serif characters to represent the actual measurement values, since we

shall not need to describe random variables in this work. Our notation follows generally that of

reference [6].

5
When Markley's name does not qualify the name of his algorithm, it will be cited as M-SVD, to avoid

confusion with the general SVD method of Numerical Linear Algebra [8]. Likewise, Davenport's

original implementation of the q-method using Householder's method will be cited as q-Davenport,

since QUEST and the Mortari algorithms (ESOQ, ESOQ2) of the many algorithms based on the

Wahba problem, all of which we shall show to be excellent candidates for mission software. We shall

compare our results with those of two earlier studies [9, 10].

6
Reference [10] provides a masterful overview of the Wahba problem. A brief summary of our

criticisms of the numerical results of references [9] and [10] can be found in the section �Alternatives

to QUEST,� appearing on pages 678�679 of reference [4]. A discussion of the robustness of QUEST

can be found in reference [11].
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orignal q-method and Markley's SVD algorithms are also iterative, but they are

not called iteratively within the attitude determination algorithm.

The other solution methods �rst determine λmax, the maximum achievable

weighted overlap of the measured directions and the rotated reference direc-

tions, which is the maximum characteristic value of the Davenport matrix K
[2, 3, 10, 15, 16], by some method especially tailored to the Wahba problem

and then, knowing λmax, solve the simpler problem of constructing the optimal

quaternion q̄∗ or the optimal direction-cosine matrix A∗ from K or B. These are

the fast iterative solutions to the Wahba problem. The �rst of these was QUEST

[2, 3, 10], followed a decade later by FOAM [10, 18] and �nally by Mortari's

many Euler and ESOQ algorithms [9, 10, 19�23].
7

Of the Mortari algorithms,

the top-of-the-line algorithm is supposedly ESOQ2 [10, 22, 23]. The algorithms

of this second group solve for λmax either by using a zero-th-order approximation

λo, easily calculated from the measurement weights, or by applying the Newton-

Raphson method to the overlap characteristic polynomial, using λo as an initial

value.
8

This procedure was introduced in reference [2] and has been copied

by all later fast iterative algorithms. The QUEST algorithm uses the QUEST

form of the characteristic polynomial;
9
the other algorithms now use the FOAM

form.
10

In in�nitely precise arithmetic the two forms are exactly equivalent.

The two classes of algorithms have di�erent numerical qualities. The non-

iterative algorithms, which rely on general-purpose numerically stable library

routines, are extremely stable, because every conceivable special case has already

been treated in the standard library routine. This means, however, that they carry

for us a lot of excess baggage which is not needed for the problem at hand (the

Wahba problem). As a result they are slower than an algorithm speci�cally tailored

to the needs of the Wahba problem. Davenport's original implementation of the

q-method, which employed a library routine for Householder's method for �nding

the characteristic vectors and characteristic values of a real-symmetric matrix, was

burdened with an algorithm of extreme complexity, whose computational burden

may vary from library to library. For example, there are 16 di�erent code

paths underlying the MATLAB
r

(LAPACK [24]) eig function, depending on

the nature of the arguments [25]. A customized implementation that directly

calls the appropriate low-level routine beneath the MATLAB
r

eig interface would

improve the execution time of Davenport original q-method, because the K matrix

is always real-symmetric and 4×4. Likewise, the execution time would be smaller

if one could design the program to �nd only the largest characteristic value and

associated characteristic vector. Similar arguments hold for the implementation

of a general all purpose SVD algorithm (MATLAB
r

svd [26]) in Markley's SVD

7
ESOQ1.1 and ESOQ2.1, which were examined in reference [1], are actually the invention of Markley

and appear for the �rst time in references [9] and [10].

8
As noted frequently since 1978 [2], The zero-th approximation λo of the maximum overlap provides

all the useable accuracy needed for the attitude estimate. For attitude data of accuracy 10 arcsec/axis

or better, a single Newton-Raphson iteration of the characteristic polynomial for the overlap will yield

a value for λmax whose precision exhausts that of an IEEE double-precision 
oating-point number

(64 bits or approximately 16 signi�cant digits [2, 3].

9
In this work, the QUEST characteristic polynomial will always be in the traditional expanded form

[11], which does not a�ect the speed.

10
At one point, the ESOQ algorithm used essentially the QUEST form of the characteristic equation

[9].
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method. The iterative algorithms, because they use custom-tailored numerical

algorithms, are faster.

The construction of the B or K matrix is the same for all algorithms.
11

Di�erences in e�ciency or in execution times of the various fast algorithms

depend on the computational requirements for computing the coe�cients of the

characteristic polynomial and the construction of the optimal attitude from λmax
and B (equivalently, from λmax and K). The computation of the coe�cients for the

QUEST characteristic polynomial requires more 
oating-point operations than

that of the corresponding coe�cients of the FOAM characteristic polynomial. At

the same time, the construction of the QUEST quaternion is made more e�cient

by using intermediate quantities computed for the construction of the QUEST

characteristic polynomial. As a result, in terms of 
op counts, we anticipate

QUEST to have the advantage if the Newton-Raphson sequence of λmax must be

computed, but possibly not so if only the zero-th-order λo is used. This fact has

been known for a very long time. This relative disadvantage for QUEST using

λo, as we shall see, appears only for MATLAB
r


op counts.

In all of the counts of 
oating-point operations (
op counts) or timing tests

presented here, only minimal versions of the attitude estimation algorithms were

tested, as in references [9] and [10]. Missing from the tests, as in references [9]

and [10], are the examination of the computational burden due to low-level

data checking, data adjustment, data validity tests (in QUEST, for example,

the TASTE test [27, 28]), observability tests, the computation of the attitude

covariance matrix, or the method of sequential rotations [2, 3, 10], none of

which need be the same for each algorithm. The timing tests of references [9]

and [10] and this work are, thus, somewhat unrealistic in nature and might

never have been studied by the present authors, had references [9] and [10] not

established a precedent. In every case, we have insisted that the �nal output be

the quaternion, thus placing a small extra burden on the M-SVD and FOAM

algorithms. These algorithms, however, are somewhat slower than the others

in any event. Since it is hard to imagine an attitude determination system in

which the direction-cosine matrix will not also be needed, and the quaternion

will always be needed for archiving results, perhaps, it would have been more

democratic to insist that all algorithms output both representations. However,

we have not done this.

The E�ciency and Speed Tests

In the present work we have performed four di�erent speed tests :

• MATLAB
r


op counts

• MATLAB
r

execution times

• execution times of MATLAB
r

C-mex �les

• execution times of stand-alone C-language compilations

11
M-SVD and FOAM do not calculate K, which, however, requires no 
oating-point multiplications

or divisions to be calculated from B.
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Of these, only the last is pertinent to execution times of mission software. The

�rst three are presented largely, because references [9] and [10] relied solely on

MATLAB
r


op counts for the computations. As we shall see, MATLAB
r


op

counts and even MATLAB
r

execution times are poor criteria for judging the

speed for the Wahba algorithms.

The computer platform in all tests was a Dell Precision PWS 380 desktop

personal computer embodying an Intel
r

Pentium
r

D CPU with clock frequency

3 GHz and with 2 GB of random access memory. The operating system was

Microsoft Windows
r

XP Professional, version 2002, with service pack 2.

We have generated test data consisting of one thousand randomly generated

frames of data, each consisting of 2, 4, and 25 measurements, and tested the

algorithms for up to three Newton-Raphson iterations in the computation of

λmax.
12

The test samples for 2 and 4 measurements were obvious subsets of

the 25-measurement samples. We have made certain that in each frame, at

least two observation vectors were separated by an angle of at least 0.1 rad

and that the angle of rotation of the attitude used to generate the reference

vectors from the observation vectors lay between 0.1 rad and π − 0.1 rad, so that

there would be no need to perform the method of sequential rotations [2, 3, 10],

In order that the values of the directions measurements be the same for our

analysis, measurement noise was applied to the reference directions by adding a

Gaussian random error of mean zero and standard deviation σ = 6 arcsec to each

component of the reference direction and then renormalizing the vector. These

noisy reference vectors were then transformed to the body frame to create the

observation vectors. In all tests for n measurements, the inputs were two data

matrices (one for the observed directions and one for the reference directions),

each of dimension 3× 1000 n, where n = 2, 4, or 25. When determining execution

times, these 1000 samples have been repeated 5,000 times to reduce round-o�

errors. (One assumes by a factor 1/
√

5000 ≈ 1/70.)

The MATLAB
r

m-�les were written in the MATLAB
r

script language and

executed in MATLAB
r
. The MATLAB

r
C-mex �les were written in C, compiled

into dynamically-linked library �les, and executed in MATLAB
r
. The stand-

alone C executables were written in C and executed independently of MATLAB
r

as a Windows console program. MATLAB
r

6.5, which incorporates LAPACK

and the JIT-accelerator, is used for most of the MATLAB
r
-related experiments.

MATLAB
r

5.3, an earlier version, is used for 
op counting. The C source

code for the C-mex �les and for the stand-alone executables was compiled using

Microsoft Visual Studio .Net 2003 (known also as Visual C++ 7.1). More

extensive tests were performed in Reference [1].

In our e�ciency and speed tests, we have examined the iterative algorithms:

QUEST, FOAM, ESOQ, and ESOQ2. The QUEST software has been the same

as used in references [9] and [10]. The non-iterative algorithms examined are

Davenport's original q-method and Markley's SVD algorithm.
13

12
Reference [1] presents also the case of three measurements and up to �ve iterations in the

computation of λmax.
13
Reference [1] examined a wider variety of algorithms, some of them hybrid algorithms developed

for those tests. These are not presented here, and the reader should refer to Reference [1] for

those results. The additional algorithms included ESOQ1.1 and ESOQ2.1, which are not of equal

interest, because these algorithms are only �rst-order approximations, that is, equivalent to one

Newton-Raphson iteration. Reference [1] examined also an alternate version of QUEST (called
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MATLAB
r


ops!

The MATLAB
r


ops function has been obsolete since the incorporation of

LAPACK (Linear Algebra PACKage), the modern replacement for LINPACK

and EISPACK, in MATLAB
r

6, because most of the 
oating-point operations

are now performed in optimized BLAS (Basic Linear Algebra Subprograms) that

do not record 
op counts [25]. Also, not only may 
ops not have been counted

consistently in previous MATLAB
r

releases, but non-
oating-point operations,

such as logical expressions, are ignored obviously in 
op counting. More im-

portantly, for modern computer architectures, 
oating-point operations may not

be the dominating factor in execution time. Memory reference and cache usage

may be more important [25]. Flop counts for this work have been obtained using

MATLAB
r

version 5.3.

MATLAB
r

often does not count 
ops realistically for calls to precompiled

utilities (like those for the singular-value decomposition and the spectral de-

composition used here). In these cases, not all 
oating-point operations may

be counted. Furthermore, MATLAB
r

counts additions, subtractions, multiplica-

tions and divisions as equal 
oating-point operations, although for IEEE double-

precision numbers a multiplication or division requires more than 50 times as

many binary operations as do an addition or subtraction. Hand-counting may

be more reliable, but this may be di�cult for non-iterative algorithms such as

q-Davenport and M-SVD, in which the number of 
ops will depend on the values

of the inputs. Calls to special functions of a single variable generally require

eight multiplications, because such calculations are usually performed using an

optimized eighth-order polynomial [29].

As an example of the discrepancies in 
op counts in MATLAB
r
, we note that

MATLAB
r

function det computes the determinant from the triangular factors

of a matrix obtained by Gaussian elimination (the LU decomposition) [30]. This

factorization based approach is generally more robust and more accurate than

the naive calculation of the determinant using the usual expansion expression.

The naive computation of the determinant of a 3 × 3 matrix requires 12 
ops

while, according to the MATLAB
r


ops function, an external call to det requires

13. The MATLAB
r

det function, however, because it calculates the determinant

by performing an LU factorization, requires many more 
ops than 13. Thus, the

discrepancy in the number of 
ops is greatly underestimated by MATLAB
r
. In

fact, we �nd that the MATLAB
r


op count for the determinant is always equal

to that for the LU decomposition of the same matrix. Because the MATLAB
r

simply QUEST there) which di�ered from QUEST here by the fact that it computed a determinant

explicitly rather than by a call to a determinant function. This is, in fact, the method of the 1979

NASA code. The di�erences between the NASA QUEST and the and QUEST of references [9]

and [10] are small and do not e�ect the speed comparisons of the algorithms. OSOQ1 and OSOQ2

in reference [1] were our optimized versions of ESOQ and ESOQ2, which were faster than the

ESOQ and ESOQ2 of references [9] and [10], and sometimes faster than QUEST. QUESTOQ1 and

QUESTOQ2 are variations of ESOQ and ESOQ2 in which the QUEST characteristic polynomial is

used for the computation of the maximum overlap. Their speed tended to be intermediate between

the corresponding ESOQ and OSOQ algorithms. We will not report the results here for any of these

variant or hybrid algorithms. The reader, once more, is directed to reference [1]. We point out that

the speed di�erences between minor variants in reference [1] do not always appear to be consistent

or intuitive.
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TABLE 1 MATLAB
r

Floating-Point Operation Counts (Flops)

Iterations FOAM QUEST ESOQ ESOQ2 q-Davenport M-SVD

2 Measurements

exact 276 179 246 238

0 257 146 116 114 715 523

1 292 183 257 254

2 303 194 269 265

3 314 205 281 276

4 Measurements

0 299 188 158 156 771 853

1 334 225 299 296

2 345 236 311 307

3 356 247 323 318

25 Measurements

0 740 629 599 597 1189 1347

1 775 666 740 737

2 786 677 752 748

3 797 688 764 759

det function has been precompiled, however, the complexity of det is hidden

somewhat by its high speed in timing tests.

Numerical Results: MATLAB
r

Flop Counts

Table 1 shows our results for 
op counts. �Exact� refers to the computation of

λmax from an exact algebraic formula [3], which exists for the two-measurement

case. References [9] and [10] found that for zero iterations, the ESOQ and

ESOQ2 algorithms were most e�cient, which is borne out also by our results

here. We note also that in all other cases, it is QUEST which is the most

e�cient. In missions where star trackers are the principal attitude sensor, one

will wish to execute exactly one Newton-Raphson iteration in order to exhaust

the resolution of IEEE double precision 
oating-point numbers. Thus, QUEST

will be more e�cient with even greater frequency.

Table 1 shows also the results for the non-iterative algorithms.
14

It is interesting

to note that the number of 
ops required for q-Davenport and M-SVD di�ers less

from that for the iterative algorithms as the number of measurements increases,

indicating that for a very large number of measurements the 
ops devoted to

computing B and K overwhelm the other operations, as one would expect.

However, as we have said, MATLAB
r

does not count 
ops realistically for

14
Because Householder's method and the SVD algorithm, although iterative internally, are not called

iteratively within the q-Davenport and M-SVD attitude estimation algorithms, we have placed then

on the line of zero iterations in the tables.
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TABLE 2 MATLAB
r

Execution Times (µs) (JIT-Accelerator o�)

Iterations FOAM QUEST ESOQ ESOQ2 q-Davenport M-SVD

2 Measurements

exact 241 222 353 343

0 219 175 230 195 143 208

1 255 230 371 359

2 264 241 380 368

3 273 253 389 378

4 Measurements

0 221 177 231 196 142 213

1 261 235 376 364

2 270 248 386 373

3 278 259 395 382

25 Measurements

0 229 187 240 207 151 223

1 271 244 385 373

2 280 256 394 383

3 289 269 403 392

library functions such as eig and svd, which, naturally, �gure prominently in the

MATLAB
r

implementations of q-Davenport and M-SVD.

Numerical Results: MATLAB
r

Execution Times

Beginning with version 6.5, MATLAB
r

has incorporated the JIT (just-in-

time) accelerator [31] in its system. This greatly lessens the execution time

of MATLAB
r

programs but not necessarily consistently. Therefore, all tests

of MATLAB
r

execution times have been performed with the JIT accelerator

turned o�. The exact origin of the inconsistencies in timing tests may be very

complex.

There are two timing functions in MATLAB
r
, cputime and tic/toc. The �rst

records only actual CPU time, while the second measures actual time elapsed

(�wall-clock� time) and is, therefore, more sensitive to properties speci�c to

the platform. The results reported here for MATLAB
r

execution times were

all determined using cputime (with the JIT accelerator o�). This was also the

con�guration for measuring execution time for C-mex �les (see below).

The MATLAB
r

JIT-accelerator reduces interpreter and data-handling over-

head [31] by converting many p-code
15

instructions into native machine in-

structions. The native machine instructions su�er no interpreter overhead and,

therefore, run very quickly. By default, the state of the JIT-accelerator is on.

The action of the JIT-accelerator is rather complicated and sometimes seemingly

15
The p-code was the linear stream of instructions converted from the MATLAB

r
code and executed

by the MATLAB
r

interpreter in earlier versions.
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counter-intuitive. For example, when the JIT-accelerator is on, the function

call for the determinant function is slower than the explicit calculation of the

determinant, at least in MATLAB
r

6.5. When the JIT-accelerator is o�, the

opposite is true. We have executed our tests with the JIT-accelerator o� in order

to better simulate the performance of the compiled programs more likely to be

used in mission support. Di�erences in MATLAB
r

overhead may also play a

role.

Table 2 shows the timing results for the execution of the MATLAB
r

m-�les.

We note immediately that QUEST is the fastest iterative algorithm in all cases.

The di�erences in speed among the di�erent iterative algorithms were not great,

just as the di�erences in 
op counts were not great. Particularly noteworthy is

that the speed of the q-Davenport and often M-SVD algorithms exceeds that of

QUEST, which shows the unreliability of MATLAB
r

as a laboratory for speed

tests, since these last two algorithms impose a signi�cantly greater computational

burden. The greater speed of q-Davenport and M-SVD in this circumstance is

due to the fact that much of the code of the MATLAB
r eig and svd m-�les has

been precompiled from C code.

Numerical Results: MATLAB
r

C-mex Files

For the C-mex �les and stand-alone executable programs have been examined

for execution times in the C environment of Microsoft Visual Studio .Net 2003

using the LAPACK routines for characteristic value decomposition and singular-

value decomposition taken from the MATLAB
r

mathematics library (labeled

there eig and svd).

It is obvious from the relatively small di�erence in the execution times of

Table 3 that these execution times are dominated by the MATLAB
r

overhead.

The execution times for the C-mex �les are approximately an order of magnitude

smaller than those for the m-�les. QUEST is seen to be the faster algorithm

only for about half of the cases. The di�erence between the execution times

for the iterative and non-iterative algorithms is small, but only because of the

excessive overhead of MATLAB
r

involved in the C-mex �les.
16

Numerical Results: Stand-alone Executable Programs

For stand-alone executables, as shown in Table 4, the timing function (Win-

dows application programming interface, API) timeGetTime was used to measure

elapsed time under Windows XP. We see that QUEST is fastest in almost ev-

ery case.
17

As one gets closer to real mission software, the di�erences in the

execution times becomes less important.
18

16
Execution times for the C-mex �les created using the GNU Compiler Collection are somewhat

faster than those created using Microsoft Visual C++.

17
In reference [1] we found that Microsoft Visual C ++ favored OSOQ1, our optimized ESOQ,

while the GNU Compiler Collection favored QUEST.

18
We have not tested stand-alone compiled C programs for ESOQ1.1 and ESOQ2.1. In terms of

MATLAB
r

execution times, these two algorithms were slower than QUEST. We anticipate that as

stand-alone compiled C programs, they will be closely comparable to the other fast algorithms, but,

there is no real need for these algorithms, because they are only limited versions of ESOQ and

ESOQ2, even if the limitations are not practical limitations.
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TABLE 3. Execution Times (µµµs) for C-mex Files of the Fast Optimal Attitude

Estimators within MATLAB
r

Iterations FOAM QUEST ESOQ ESOQ2 q-Davenport M-SVD

2 Measurements

exact 32.720 31.500 32.686 31.092

0 31.186 31.220 31.812 31.406 72.97 69.38

1 33.218 32.374 33.030 33.844

2 30.156 32.218 32.968 33.156

3 32.032 32.186 33.218 33.250

4 Measurements

0 30.844 31.968 30.250 31.124 71.88 75.47

1 33.438 33.686 32.064 31.406

2 32.812 33.532 32.688 31.156

3 32.750 33.342 32.374 31.032

25 Measurements

0 35.562 34.438 34.250 34.438 75.00 78.43

1 35.094 34.594 35.688 34.562

2 34.968 35.188 35.436 34.686

3 35.406 35.092 35.500 34.688

Note that in the most realistic situations, ESOQ, the Mortari algorithm which

is closest to QUEST, is faster than ESOQ2. It is noteworthy that q-Davenport

is only about 30 times slower than QUEST for large amounts of data.
19

Comparison with the Results of Markley and Mortari

References [9] and [10] are very similar. They di�er in that: (1) the ESOQ

algorithm of reference [9] uses essentially the QUEST form of the characteristic

polynomial, while that of reference [10] uses the FOAM form; and (2) refer-

ence [10] reports the data di�erently from reference [9]. Reference [9] executed

the same three test scenarios as reference [10] and contained three tables and

�ve �gures analogous to those in reference [10]. Figures 4 and 5 of references [9]

and [10] are concerned with speed and are examined here.
20

Figures 4 and 5 of references [9] and [10] display test results for the algorithm

for the case where there are three measurements with equal accuracies of 1

arcsec and are modeled correctly. The geometry of the measurements is similar

to that of scenario 2 of references [9] and [10], in which the three direction

measurements are coplanar with angular separations of about 175.7 deg between

the central and outer vectors.

19
In other tests in reference [1], but not reported here, the factor was as large as 70.

20
Again, a brief summary of our criticisms of references [9] and [10] can be found in the section

�Alternatives to QUEST,� appearing on pages 678�679 of reference [4].
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TABLE 4. Execution Times (µµµs) for Stand-Alone Executable Versions

Iterations FOAM QUEST ESOQ ESOQ2 q-Davenport M-SVD

2 Measurements

exact 0.447 0.350 0.414 0.472

0 0.382 0.263 0.250 0.303 34.64 30.51

1 0.429 0.337 0.426 0.479

2 0.465 0.369 0.459 0.510

3 0.500 0.403 0.496 0.552

4 Measurements

0 0.419 0.306 0.295 0.349 35.08 37.29

1 0.478 0.373 0.471 0.548

2 0.514 0.404 0.503 0.561

3 0.549 0.437 0.548 0.593

25 Measurements

0 1.144 1.021 1.003 1.072 35.68 39.10

1 1.209 1.099 1.168 1.266

2 1.246 1.131 1.204 1.280

3 1.285 1.158 1.246 1.315

Figure 4 of reference [9] presents the number of 
ops required for each algo-

rithm to exhaust double-precision numerical accuracy of the attitude estimate as

a function of the number of measurements.
21

For these data, this means univer-

sally one Newton-Raphson iteration for FOAM, ESOQ, ESOQ2, and QUEST. In

Figure 4 of reference [9], we see that the QUEST requires the smallest number of


ops, as found in the present work. The identical numerical results are depicted

in reference [10], but the QUEST results are on a di�erent graph. As a result,

it is less obvious in reference [10] that the QUEST algorithm is more e�cient

than the other fast algorithms.

Figure 5 of reference [9] shows the 
op counts for each algorithm as a function

of the number of measurements for zero and one iteration of the Newton-Raphson

method. These are shown for FOAM, ESOQ, ESOQ2 and QUEST. The number

in parentheses in Figure 5 is the number of Newton-Raphson iterations performed.

As expected from Table 1 of this work, the 
op counts for QUEST(0) are larger

than those for ESOQ(0) and ESOQ2(0), but the 
op counts for QUEST(1) are

smaller than those for all the other iterated algorithms. The curves for FOAM(0)

and FOAM(1) are higher than any other curves, also in agreement with Table 1

of the present work. In reference [10], however, the curves for FOAM(0),

FOAM(1), ESOQ(1), and ESOQ2(1) have been omitted, with the result that

21
On the e�ect of the di�erent choices of the characteristic polynomial on the timing tests of the

ESOQ algorithm, see our comments for the QUEST algorithm in the penultimate paragraph of the

section �The Solutions of the Wahba Problem.�



XII JAS 1294 � Rev 5q1 Cheng and Shuster

QUEST(1) appears from Figure 5 of reference [10] to be the slowest algorithm,

although generally, as we have seen in our Table 1 and from reference [9],

QUEST is the most e�cient algorithm of the six algorithms examined in this

article for one or more iterations. The separation in reference [10] of the QUEST

results from those of the other fast algorithms makes this greater e�ciency of

QUEST di�cult to see.

Discussion and Conclusions

In e�ciency and speed, the subject of the present work, we have seen that

MATLAB
r

greatly exaggerates the di�erences between the algorithms. QUEST,

as we have seen, is most frequently the most e�cient algorithm and always the

fastest algorithm in MATLAB
r
. The large overhead of the C-mex �les, in general,

make the speed di�erences between the iterative algorithms unimportant. For

stand-alone implementations in C on an IBM-compatible PC running Windows

XP, the closest we can come to testing the various algorithms in a realistic mission

environment, we see that the di�erences in execution times become very small.
22

The di�erence is dependent also on the choice of platform, the operating system,

and what other programs are being executed simultaneously. From the standpoint

of implementation in a real mission, there is no signi�cant advantage in speed

of one fast implementation of a solution to the Wahba problem over another.

Whatever the �speed� di�erences in the algorithm, and whatever petty advantage

one algorithm may have over another in a given context, the di�erences are small

to the point of unimportance. As stated in reference [4] the best thing to say is

that QUEST, FOAM, ESOQ, and ESOQ2 are all in the same speed class.

The reason for the separation of the speed results for QUEST in reference [10]

from those of the other fast algorithms in this study is the claim in reference [10]

that QUEST is not robust or accurate unlike the fast algorithms developed by

the authors of references [9] and [10]. Reference [11] has showed that, by

a simple rearrangement of terms in the QUEST characteristic polynomial, the

claim of diminished robustness for QUEST is not true, not even for the extreme

test scenario 2 of references [9] and [10]. At the same time it should be noted

that the scenario used for this robustness test leads to estimation errors so

large for any attitude estimation algorithm that the attitude solutions might create

a danger for attitude control and be useless for the annotation of scienti�c

data. It is hard to imagine a mission in which one would require arc-second

attitude estimation accuracy for the direction of one axis but tolerate three-

sigma attitude estimation errors about that axis of ±30 deg. A well-designed

attitude determination system would have tests to detect such extreme cases and

suppress operations based on them.
23

Furthermore, there is no requirement for

QUEST to perform any Newton-Raphson iterations to calculate the maximum

overlap eigenvalue λmax [2, 3, 11], and, in fact, the computation of λmax will be

su�ciently accurate in scenario 2 of references [9] and [10] if no Newton-Raphson

iterations are performed at all, as shown even by those references. The unstated

22
The greatest dependence, as shown in reference [1], was on the choice of compiler and mathematics

library.

23
The original QUEST software, in fact, had an internal test to detect pernicious cases like that of

the extreme test scenario of references [9] and [10]. That test was not documented in reference [2]

or [3]. The QUEST validation tests will be presented in an article currently in preparation [32].
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purpose of including the Newton-Raphson iterations in QUEST originally was

not to calculate λmax but a test parameter TASTE. Last but not least, the poor

performance reported in references [9] and [10] is only for a version of the

QUEST algorithms especially created for the tests of those references.

In 1978 using the EISPACK [26] library function EIGRS for Householder's

method written in FORTRAN IV and executed using the G compiler on an IBM-

360 Model-75 mainframe computer running under IBM OS 360, Davenport's

q-Method was 1000 times longer in execution time than QUEST.
24

Today, for

stand-alone executable C compilations of q-Davenport and QUEST running under

the Microsoft Windows XP operating system on a Pentium D processor, that

ratio has dropped to only about 30.

While a factor of 30 in speed between QUEST and q-Davenport may seem

large, it must be recalled that the q-Davenport algorithm is much more stable and

robust than QUEST or any of the other algorithms (except for M-SVD) because

of the degree of development of library software for computing the spectral

decomposition of a real-symmetric matrix. Also, for the q-Davenport algorithm

there is no need to exercise the method of sequential rotations [2�4, 10], which

can increase overall execution time. Thus, for mission-ready implementations

of QUEST and Davenport's original q-algorithm, the relative speed may di�er

by a factor much less than 30, as we shall show in a later publication in

progress. The computation of the attitude-error covariance matrix or the TASTE

test [4, 10, 27, 28] is no more burdensome in conjunction with the q-Davenport

algorithm than with QUEST. The number of lines of code in on-board mission

software devoted to the attitude computation is probably less than one percent

except for the most primitive spacecraft. For implementation in the dedicated

microprocessor of a star tracker, the speed of attitude computation may be

more important. Still, one expects even in that case that data conversion, data

adjustment, and conversion for telemetry will be much more time-consuming. In

the great scheme of things, the burden of attitude computation is unimportant.

Now may even be the time to abandon QUEST in favor of standardizing on the

much slower q-Davenport algorithm in its original form.

An interesting result of our speed comparisons is that it is ESOQ, the Mor-

tari algorithm least di�erent from QUEST,
25

not the presumptive top-of-the-line

Mortari algorithm ESOQ2, which is the better performer in realistic software

implementations. ESOQ2 is the better performer only in the MATLAB
r

envi-

ronment.
26

In any event, this work has shown that for speed, any of the six algorithms

examined here (in chronological order of creation: q-Davenport, QUEST, M-

SVD, FOAM, ESOQ and ESOQ2) is an excellent candidate for mission support.

QUEST has the longest record (nearly three decades) of reliable service, but

that need not be the deciding criterion.

24
Myron Shear, Computer Sciences Corporation, System Sciences Division, Silver Spring, Maryland,

1978 (private communication).

25
It di�ers chie
y now in the use of the FOAM characteristic polynomial and the speci�c formal

manner by which it solves the equation (K − λmaxI4×4)q̄∗ = 0. The �nal solution, however, is virtually

identical, especially computationally.

26
Neither ESOQ or ESOQ2, however, is superior to OSOQ1, our slightly �souped-up� ESOQ, in

reference [1] in any computer environment. Occasionally, OSOQ1 is even minutely faster than

QUEST.
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