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The Maximum-Error Test

Douglas C. Freesland,' Yang Cheng,” and Malcolm D. Shuster*

O hateful error, melancholy’s child,
Why dost thou show to the apt thoughts of men
The things that are not?

William Shakespeare (1564-1616)
Julius Caesar, Act'V, scene iii

Abstract

The maximum-error test is given a rigorous statistical analysis. It is shown that the test is
a poor figure of merit for judging the quality of performance of an attitude estimation algo-
rithm. Two illustrative examples are presented.

Introduction

The maximum-error test (or, better, maximum-absolute-error test) is simply the
largest absolute value of the (scalar) error observed in a sequence of simulation
trials. This test is found very seldom in the journal literature. In attitude estimation
the maximume-error test is encountered more frequently in mission development
during the mission software validation and verification process, although it is more
common to encounter the three-sigma error. In one of the few journal occurrences
in the literature on spacecraft attitude estimation, Markley and Mortari [1] present
the maximum error alongside a more transparent figure of merit, the sampled
standard deviation of the error. Examples exist in the non-archival literature in which
the maximum error is the sole figure of merit presented. The most important charac-
teristic of the maximum observed error is that it is ambiguous as a figure of merit.
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This is because the behavior of this figure of merit turns out to be dominated by its
dependence on the number of samples in a simulation test, and because it has a
large standard deviation.

The maximum-error test certainly predates the space age and the advent of prob-
ability theory. The Gaussian distribution, the basis for modern error analysis, did
not come into popular use until the nineteenth century. That distribution, in fact, is
not attributable to Gauss but to the Frenchman Abraham de Moivre, a contempo-
rary and close friend of Newton in the eighteenth century (see Appendix A). It is
Gauss, however, who is probably most responsible for the promulgation of the nor-
mal distribution. It cannot have been long after the publication of Gauss’ work on
least-squares that the use of the three-sigma confidence interval became popular as
containing 99.74 percent of the data (in practice frequently only 99 percent), even
if that data were not normally distributed.* The maximum error, the least upper
bound of all the observed absolute errors, might seem to be an equally descriptive
measure of quality. However, it is a very different beast from the three-sigma error
bound, even if it seems close, as we shall soon see.

The maximume-error test has never been subjected to a serious quantitative eval-
uation, at least not within the framework of Astronautics. The present work seeks
to remove that lacuna. The presentation below is not specific to attitude parameters,
and is almost entirely devoted to simple scalar examples.

The Maximum Observed Error

Consider first an extremely simple example. Let x™ be a non-negative (scalar)
random variable and let its probability density function (pdf) be denoted by p.(x").
If we are interested in applying the maximum-error test to a variable which can have
both non-negative and negative values, then we can consider equivalently the pdf

pix') = {pX(x’) + p(=x")  for x' >0

p(0) for x’ =0 M

for non-negative values of x'. Assuming that the domain of x is always restricted to
the non-negative axis, the probability function P,(x") is defined in the usual way

P.(x") = Prob({x < x'}) = fo x’px(t) dr (2)

If p.(x’) has finite support with least upper bound «, and is uniformly piecewise
continuous on [0, a), then

P.(0)=0 and P.(a) =1 (3ab)

Otherwise, we say that p,(x") has infinite support and, if it is uniformly piecewise
continuous on [0, ©),

P.(0) =0 and P.() = lim P.(x") = 1 (4ab)

Consider n independent identically-distributed random variables x;", i = 1,..., n,
with pdf p.(x’), random variables which represent the n simulation test samples,
and define’

“In contrast, working engineers when they speak of the “sigma” of a data set, generally mean the sampled
standard deviation. Hence “sigma” and “three-sigma” in general usage in mission support by working engi-
neers not interested in research or rigorous probability theory may not be related by a factor of three.
°Naturally, the random variable xix(n) is that which has the realization X}y (7).
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Xmax (1) = max xf* 5)

1=i=n

For any probability distribution

Prob({xman(n) < y}) = [P(y)]" (6)
For a pdf with finite support, since 0 = P(y) < 1 for y < q, it must be that
lim Prob({xmx(n) < y}) = 0 for y<a @)

It follows for a pdf with finite support that
lim xi¥x(n) = Lu.b. x w.p. 1 (8)

where “l.u.b.” is an abbreviation for “least upper bound,” and “w.p. 1” for “with
probability 1.” Thus, for an infinite number of samples the maximum observed
error will converge to the least upper bound of the support of the pdf, no matter
what the quality of the results (barring, of course, mistakes in the simulation). In a
similar way, for a pdf with infinite support, one can show that

lim xh¥x(n) = o« w.p. 1 9)

As a result, the maximum error when # is large may not be able to say much about
the behavior of x.

Iustrative Examples
Uniform Probability Density Function

As an example of a pdf with finite support, consider the uniform distribution on
the interval [0, 1], so that P.(x") = x’. Then

and the pdf of X%, Pryaon(Y), is just ny”~', whence one obtains straightforwardly

. d Var{ei) = ————0
n+1 " Ay = G 1) + 2)

E{xix(n)} = (11ab)

with E{-} denoting the expectation and Var{-} the variance. As n — o we have
that o, the standard deviation of xj(n), approaches 1/n — 0. Thus, as n — o,
X (n) — 1 with probability 1.

For this example of a pdf with finite support, we see explicitly that the maximum-
error will be a poor criterion for judging the appropriateness of a simulation,
because for sufficiently large n the value of the maximum error tends to a universal

limit which will be the least upper bound of the support of the pdf.
Gaussian Probability Density Function

As an example of a pdf with infinite support consider a Gaussian random vari-
able with zero mean and unit variance. For a zero-mean Gaussian random variable
with standard deviation o, this is equivalent to studying x/o. Since we restrict the
random variable to non-negative values®

2 ,
pix') = A [—e ™2 0=x <o (12)
ar

To be consistent with our earlier remarks, we should really write not p.(x") but p; (x’).
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and
P.(x') = erf(x'/V2), 0=x <o (13)
with erf(z) the error function defined as
1) = —— [ e ar (14)
erf(z) =—= | e
Vo
Thus, erf (0) = 0, and erf () = 1.
For the Gaussian distribution, it follows that
Prob ({xma(n) < y}) = [erf(y/V2)]" (15)

with the resulting pdf

Prnan(y) = n[Pu(N]'pu(y) = n \/%e”“[erf(y/\fz)]"“ (16)

The expectation of xx(n) in this case cannot be calculated in closed form. However,
we can calculate easily the mode of px,,. (), i.e., the value of y at which p.,, ()
is a maximum. In the asymptotic limit we anticipate that the expectation of xjx (1)
will approach this value. From Fig. 1, we see that for n large, p.,,..(») is sharply
peaked, and, therefore, the expectation of xnu(72) will be close to the mode of the
pdf. Denoting the mode of P, x(Y) bY Ymod(n), this quantity satisfies’

Px ( Ymode (n))

17
PX(ymode (I’l)) an

ymnde(n) = (I’l - 1)

2.5

15¢F 1

0.5F .

0 1 1 1 1
0 1 2 3 4 5 6 7 8

FIG. 1. Probability Density Function for xja () for n = 10, 100, 10,000 and 100,000,000.
The location of the peak increases with increasing n. The single-sample random variable is
assumed to be Gaussian with mean zero and unit variance. The abscissa of this graph
is the non-random variable y, and the ordinate is Py, @ ().

"We WIite Yimoae(17) and not Xmes(n), because there is no random variable xfue(n). The quantity ymod(n) is
simply a characteristic of the function p (1) (y); it is not related to the realization of any random variable.
We could have written this quantity as Xme.(n), but we chose not to do so.
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hence,

m 2
L+ \/; Ymode (n)e V1% Derf (v 40 (n) /N 2) = 1 (18)

For n large, equation (18) can be solved crudely as
Ymode(72) = V2 1Inn (19)

showing that ymese(n) — ©, and Ayme(n)/An — 0, as n — .

v

We can write the variance of xu(n) in the asymptotic limit as® [2]

d? -
Var{x:ﬁ\éllk(n)} = - |:d_y2 ln[pxmax(ﬂ)(y)]]
Y=Ymode

-1
= [1 + = 1 y,%ode(n)] forn > 1 (20)
" —

Thus, for n = 20 the standard deviation of xux(n) is approximately

1
Oxpax(n) = \/—72
1 + ymode(n)

I.v.

Clearly, Var {xfmi(n)} — 0asn — o0, and xsi(n) — o with probability 1 in that limit.

Thus, the value of the maximum error is really not significant for judging a sim-
ulation for the cases of a pdf with infinite support, since the maximum error can
attain any value provided that a sufficient number of samples are included in the
test.” In addition, the standard deviation of the maximum error is quite large com-
pared to other statistical measures (e.g., the mean and the variance) and decreases
extraordinarily slowly with increasing n. Furthermore, we examined above only the
example of a single random Gaussian random variable. In general, attitude systems
contain many (vectorial) error sources all characterized by different variances and
covariances. The simple formula of equation (18) will certainly not apply in general,
and the specific nature of the increase of the expectation value of xii(n) will be
more complex and, perhaps, not even Gaussian. What will not change is the fact that
by taking a sufficient number of samples, xax () can be made to exceed any value.

In Table 1, we show the values of n corresponding to different values of ymoqe (1)
rather than the converse, which would have been much more difficult to calculate. We
note from the table and from equation (19) that yme(n), although it must become
infinite in the limit that n — %, grows very slowly with increasing n. For n very large,
the value of ymeae(7) is not a very useful figure of merit. In the table the number
a X 10”is denoted by “a E b.” All entries have been rounded to two significant figures.

Figure 2 shows a histogram of 100 samples of xnux () for n = 1,700,000, chosen
s0 that ymed.(n) would be close to 5.0. Our sample showed a sampled mean of the
hundred values of x}..x () of 5.09 and a sampled standard deviation of 0.19 com-
pared with a theoretical mean of 5.0 and a theoretical standard deviation of 0.19.

21

81t cannot have escaped the reader’s notice that the techniques applied here are very similar to those of
maximum-likelihood estimation.

Extremely large or small values of x}y (1), of course, will indicate catastrophic problems with the analysis,
software, or mission geometry associated with the simulation, even if the “resolution” of xmax (1) is not fine
enough for detailed evaluation. If one has 100 samples of a test variable x ~ IN(0, 1), and one finds values
of xhax (1) of 1000. or 0.001, one knows that something is very wrong.
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TABLE 1. Number of Samples versus Modal Maximum Error for a Zero-Mean
Gaussian Random Variable with Unit Variance

ymodc(n) n
1 3
2 20
3. 340
4. 15,000
5 1,700,000
7. 3.8E+11
10. 6.5 E+22
15. 1.4 E+50
20. 1.8 E+88
25. 1.6 E+137
30. 1.0E+197
35. 4.4 E+267
40. 1.4 E+349
45. 3.0 E+441
50. 4.6 E+544

This should be compared with the mean of the sampled standard deviation of the
example (as the square root of the sampled variance) of 1.000. The standard
deviation of the sampled standard deviation of the xk, £k = 1,..., 1,700,000 was
0.00055, showing that the standard deviation of the 1.7 million x’ is a much more
sensitive statistic than the maximum error, which was to be expected, and which is

T.

surely also demonstrated by Table 1. The highest sampled value of xfx(n) corre-
sponds to a 3.6-sigma event (for xfux(n)). Two sampled values were beyond the
three-sigma boundary. These correspond to more than 5.6-sigma events for x, at
which point the quality of the simulation of the normal distribution begins to
become suspect. Frequently, a normal distribution is simulated by averaging only
12 samples of a uniform distribution [3].

That only two values of x}.x () in our experiment lie beyond the three-sigma

boundary was not unexpected. A three-sigma event has a probability of approximately

40 T T T T T T T
35f 1

30F .
25¢ 7

20 .

15F .
10 1

5 L 4

0 ' ' I I
42 44 46 48 5 52 54 56 58

FIG. 2. Distribution of maximum error for 100 tests with 1.7 million samples in each test. The abscissa
is the value of the sample xm.x (1), and the ordinate is the number of samples.
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0.25 percent. Thus, with 100 samples from a Gaussian distribution, we would expect
on the average that 1/4 of a sample will be three-sigma events. That we obtain
slightly more than that may be attributed to the non-Gaussian nature of the distri-
bution of xfy(n), illustrated also by the lack of symmetry about the mean, or to a
chance occurrence. For 1.7 million tests, we would expect the largest sampled value
of xfu(n) to be a 4.7-sigma event. (Note that the value for sigma depends on r, but
the maximum maximum-error sample as a multiple of sigma observed in N simu-
lations of n samples of x depends more on the number of samples of xmu(n) than

on the underlying random variable x"™.)
Alternative Figures of Merit

A much more informative test is the comparison of the sampled mean and
covariance matrix of the simulation compared with its predicted' value, assuming
this can be known separately from the simulation. Such figures of merit are not
totally dependent on the value of outliers.

In the case where the subject of the study is three-axis attitude estimation, the
preferred attitude error parameterization is A¢", the Cartesian attitude error incre-
ment defined [4] as A& where

A" = SA(AE)A™ (22)

with A the direction-cosine matrix, A" its estimator, and SA(A§) the direction-cosine
matrix parameterized by the rotation vector A¢ [3], in this case infinitesimal. As
usual, the asterisk indicates the estimator, a random variable whose realization is
the estimate.

For spin-axis attitude estimation [5, 6] the obvious choice is Af*, the error in the
spin-axis vector

AR" = A" — A™ (23)

The covariance matrix Pg has the good quality of being covariant under a change
of basis of the spacecraft body coordinates. The covariance matrix Pi; has this
same quality under a change of basis of the space coordinate system, but the dis-
advantage of being singular, since the spin-axis attitude can only be of rank 2.
Reference [6] has studied two possibilities for a two-dimensional error, one of
which, the incren}ental vector, is similar to A¢ in concept. This latter error, &, relies
on a basis {a™, b"™, 1"}, where 0" is the true spin-axis vector and the remain-
ing two vectors, which span the plane of the spin-axis estimation errors, may be
chosen to be fixed in the spacecraft body, since the spin-axis is always assumed to
be fixed in the spacecraft body. (If it is not, then there is little reason to estimate the
spin-axis attitude.) The 2 X 2 body-referenced covariance matrix is then, barring
problems of observability, full rank.

In orbit determination, the spacecraft position and velocity, being Cartesian
vectors, require no special attention in the definition of errors.

If a single scalar figure of merit is desired, then the obvious choice is the root-
mean-square error.'’ If a practical model for the covariance matrix of the estimate

'"The word “predicted” here does not mean predicted in the sense of the Kalman filter but only predicted by
the mathematics. This work makes no specific reference to the Kalman filter.

""The mean absolute error is the sampled value corresponding to E{|Ax]} and has the disadvantage of not
being easily relatable to the model covariance matrix.
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error is available, then Ax'Py Ax for Py full rank, provides a figure of merit
whose statistics are already known. If Ax has dimension n, then this variable should
have a y’ distribution with n degrees of freedom.

Two Examples from Attitude Estimation
A Semi-Quantitative Example

Let us consider an illustrative thought experiment. Suppose that we are using the
maximum-error test to compare the QUEST and TRIAD algorithms [7] to deter-
mine which is better. Let the single-sample error be defined as the largest of the
absolute values of the three components of the attitude error vector. The TRIAD
algorithm truncates the data, effectively discarding one component of the second
observation vector. The effect of this deletion on the statistics of the TRIAD algo-
rithm has been studied in detail [8]. Suppose, that in the entire test data set, say,
1.7 million frames of data, each consisting of two observed directions, there was one
bad frame with one bad vector with one bad component, ten-sigma bad, which just
happened to have been in the component discarded by the TRIAD algorithm. Then,
on the basis of the maximume-error test of, say, the magnitude of the attitude error,
for 1.7 million (!) frames of simulated data, one would conclude that the TRIAD
algorithm performed well and that the QUEST algorithm was simply horrible. This
is obviously a worst case. A much less improbable event (or events) of this nature
can still make the TRIAD algorithm seem superior to the QUEST algorithm. Our
example might seem far-fetched, but it is not so. If we really created 1.7 million
frames of simulated data, then from Table 1, we anticipate that we will have many
data which are around 5-o events. If it is only one component of the attitude error
vector that is bad, then the probability that the worst of six components will be the
one discarded by the TRIAD algorithm is 1/6. This is not a microscopically small
probability. It is the reliance on only the six components of the worst measurement
pair which is the Achilles’ heel of the maximume-error test as an analysis tool.

On the other hand, we would never make such a claim based on a comparison of
the sampled attitude-error covariance matrices for the two algorithms for the same
test data, in which the bad frame would have been weighted out by 16,999,999
other frames and would change the sampled QUEST covariance matrix by quanti-
ties of order 10~ "¢?, a truly negligible amount. Q.E.D.

A More Quantitative Example

Even without such treacherous outliers the maximum-error is still a figure of
merit of limited usefulness. In a second thought experiment, suppose again that we
are trying to make a relative evaluation of the TRIAD and QUEST algorithms by
examining &, the square of the attitude estimation error for each frame & of data for
the two algorithms, and the data consists of 1.7 million frames of data with each
frame consisting of two perpendicular unit-vector measurements corrupted by
noise of mean zero and variance o 2. Then the &;,

&, k=1,...,1,700,000 (24)

each has mean and variance'?

Er =

”Note that &{""*P ~ ¢-?x2(3), but the same is not true for 2", because the three (independent) components
of ¢UT in our example do not all have the same variance [7]. Hence, the factor in equation (25d) is V'9/2
rather than V5.
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uIRAD = 3 2, oTRAD = \/6 g% = 2.45 ¢ (25ab)
T = (5/2) 0%, o@T =\9/2¢7 =2.120 (25¢cd)

We have chosen the square of the absolute value of the attitude-estimation error
rather than the absolute value because of the simplicity of equations (25).

For the TRIAD algorithm, noting equation (21) and Table 1, the maximum error
£IRIAD will have an error level of roughly o ®4%/5 = (V/6/5) 0> = 0.49 >, and
that for the maximum error ey for the QUEST algorithm will be roughly
oQUBST/5 = (\/ 9/2/ 5) 02 = 0.42 0. The discriminator for the relative evaluation
of the QUEST and TRIAD algorithms will be s> — 2065, which will have an

error level of

V21/20?/5 = 0.650%, for the £™ uncorrelated
\V/3/20%/5 =024 0% for the ™ correlated
The presence or lack of correlation will depend on whether &% and £2U*5" attain
their maximum value for the same frame or different frames of data. With such a
discriminator we must be able to detect the positivity of

o JRIAD _ QUEST — () 33 (52 227

(26)

O max-err-discriminator — {

The discriminator has an error level which is comparable to the quantity it is
supposed to detect. To this we must compare the discriminator based on the differ-
ence of the sampled means of the errors i°*? and 25", which has an error level

on the order of
Csampled-mean = o2V2/1700000 = 0.001 o> (28)

Clearly, if one wishes to detect the sign of a quantity of magnitude 0.33 0% a
measurement with an error level on the order of 0.001 o2 is superior to a measure-
ment with an error level of 0.24 % or 0.65 2. Q.E.D.

Discussion and Conclusions

The maximum error has been shown to be a poor indicator of the quality of
performance of an estimator, since its value has as much to do with the number of
samples in the simulation as with the performance of the estimator. Perhaps, the
most unfortunate characteristic of the maximum-error test is that its result becomes
less indicative of algorithm performance as the amount of data increases. Clearly,
for very large samples, the maximum error will be a very unusual and unrepresen-
tative value of the error. If one has 10,000 samples, does it makes sense to examine
only the single least representative sample and pay no attention to the other 9,999?
A reasonable test would examine the majority of results. Mission designers with
good reason specify an attitude system by giving the three-sigma value of the allow-
able error, by which they usually mean the largest error attained by 99 percent of
the cases, and not by the elusive maximum error. They do not specify mission
requirements in terms of the most unusual values of the error.

Although the maximum error is both less sensitive and more noisy than other
statistics (for example, the sampled mean and the sampled variance), nonetheless,
engineers taking a first look at a print-out of the results of a simulation test are most
likely (and with good reason) to look first for the largest simulated error, because it
is easier to find this number than to compute the sampled mean and covariance of
the results. The maximume-error test is thus not without value. Our message is not
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that one must always shun the maximume-error test, but rather that its value is at best
semi-quantitative. It is useful, because it is quick. It is a first-look tool. However, it
is also dirty, and for serious analysis it is not sufficient.

In order that the maximum error be meaningful quantitatively, a predicted max-
imum error is needed to which the sampled maximum error can be compared.
In general, for a real system there are many error sources and the system is multi-
dimensional and nonlinear. Since maximum error is dependent only on the tails of
the probability density functions, a Gaussian approximation may not be adequate
even if the input errors are Gaussian, because the error sources will not all have the
same variance."? Furthermore, the simulation of a Gaussian random variable by
the computer may not be adequate for 5-sigma events.'* From a practical point of
view, the only way to predict the maximum error is by simulation of the errors
themselves, which makes no sense at all, because the need for a predicted value for
the maximum error is to test this very simulation. The idea is even more ridiculous,
because the likely non-Gaussian nature of the tails of the probability density func-
tions generally are not even known. Thus, at best one can compare the sampled
maximum error only with vague intuition, which may be unreliable. This inade-
quacy is in addition to that of the high error level.

As an example of a quantitative comparison by proponents of the maximum-error
test, we should examine Table 3 of reference [1]. The next to the last column gives
the sampled and maximum boresight error (estimate to truth). It is obvious that the
variation of the maximum error is much greater than the root-sum-square error.

For the mean and covariance matrix of the estimation errors, on the other hand,
one often has a ready formula, as one does for the TRIAD and QUEST algorithms [7],
or at worst one can compute the Fisher information matrix numerically. In both
cases one is in the region where the Gaussian approximation is reasonable, that is,
in the central portion of the bell curve. Thus, there are theoretical values readily at
hand that can be compared with a sampled mean and covariance matrix. For the
maximum error, except for the trivial examples in this article, one can do none of
this. As an example of reasonable error analysis one can cite reference [6], which
compares several spin-axis attitude estimation algorithms not with 1.7 million
frames of data but with one hundred. The prosecution rests.

Sic transit testificatio errore maximo.

By the same token, while the three-sigma bound, defined, say, as the least upper
bound of 99.73 percent of the absolute-error data, or an equivalent one-sigma bound
defined similarly as the least upper bound of 68.27 percent of the data, are useful
quick figures of merit but are far from the best. For the three-sigma bound, the
accuracy will depend on how many points lie outside the three-sigma bound. This
includes only 0.26 percent of the data. Thus, the error level of this quantity must be
20 times larger than that for the sampled variance. This is better than the maximum-
error test, provided that there are very many times 400 error samples, but still not
very good. The one-sigma-bound test would make use of 31.73 percent of the

A Gaussian asymptotic limit is possible under the less stringent requirements of the Lindeberg or Lyapunov
central limit theorem [9], although convergence to a Gaussian limit may not be as rapid.

"“Typically, a Gaussian random variable of mean zero and variance o is simulated as 12 samples of a uniform
random variable on the interval [—o/2, o/2] [3]. Thus, the pdf for arguments which differ from the mean
by more than 60 is modeled as zero, and p,(x'|w, ) for [x' — u| > 40 may be greatly mismodeled for
our purposes.
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data, which would make the error level 1.8 times larger than that for the sampled
variance."® The present writers always quick-check a simulation by verifying that
roughly one-third of the estimate errors lie outside the expected one-sigma confi-
dence bounds, but not as an analysis tool.
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Appendix A: Historical Notes

The normal distribution was first introduced by Abraham de Moivre in an article
in 1733 [10], which was reprinted in 1738 in the second edition of his The Doctrine
of Chances [11] in the context of approximating certain binomial distributions for
large powers. His result was extended by Laplace in 1812 in his book Analytical
Theory of Probabilities [12], and is now called the theorem of de Moivre-Laplace.

'>The numbers 20 and 1.8 are the square roots of the relative number of samples participating in the test.
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De Moivre, whose book quickly became very popular among gamblers, and is best
known for de Moivre’s formula

(cos 8 + isin 0)" = cos nf + isinno

is also the discoverer of the closed algebraic formula for the Fibonacci Numbers.
The approximation for the factorials, wrongly attributed to Stirling, is also to be
found in De Moivre’s 1733 article.

De Moivre’s work was published mostly in Latin or English, the consequence of
his flight from France following the revocation in October 1685 by Louis XIV of the
Edict of Nantes, which had established religious freedom for Protestants in France
almost a century earlier. Although the revocation did not provoke the atrocities of
the religious wars of the prevous century, which had led Henry IV to proclaim the
edict in 1598, it led to the demolition of protestant churches and the seizure of
protestant private property in a manner not totally unlike that of the German
Kristallnacht of 1938. The revocation resulted in the flight of French Protestants to
Great Britain, the Dutch Republic, Germany, and Switzerland, creating a brain
drain similar to that of continental Europe under the Nazi regime. Among the fall-
out was the demise of the French watch industry, Huguenot for the most part, which
largely moved from Besangon in Burgundy to Geneva, Switzerland. Among the
Huguenots who eventually found their way to America was Apollos Rivoire, father
of the silversmith and patriot Paul Revere.

It is Laplace whom we must thank also for the first great treatise applying
calculus to the study of Celestial Mechanics [13]. Newton may have used the
Calculus to derive for himself the results in his Principia Mathematica, but that
work contains only geometrical proofs and development.

The normal or “Gaussian” distribution is often wrongly attributed to Adrain and
Gauss. The American Robert Adrain first employed the normal distribution in his
work on least squares [14]. Carl Friedrich Gauss, in 1795 at the age of 18, had dis-
covered the fundamentals of least-square analysis, but did not publish this work.
His work with the normal distribution in least-square estimation did not appear
until the publication of Volume II of his Theory of Motion [15] in connection with
his solution of the Ceres problem in 1801.



