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Du spinnst doch!
Du hast doch’n Knall!
Du spinnst doch!
Du spinnst doch total!3

Die Prinzen (1993)

Abstract

Spin-axis attitude estimation is examined in a manner analogous to the study of three-axis
attitude estimation. Measurement modeling issues are given careful consideration, as are
those of representation, frame, and constraint. Three approaches to spin-axis attitude esti-
mation are presented and compared numerically. A thorough covariance analysis of all
algorithms is performed.

Introduction

Spin-Axis attitude estimation4 receives much less attention today than it did in
the past. If we examine the now venerable Spacecraft Attitude Determination and
Control [1], edited by James R. Wertz in 1978, which was an excellent summary of
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practice for near-Earth spacecraft during the 1970s and has been the vademecum of
countless newcomers to spacecraft attitude estimation, we will find among its
nearly 900 pages hundreds of pages devoted to spin-axis attitude estimation but
fewer than twenty pages devoted to three-axis attitude estimation, and this includes
the ten pages devoted to the attitude representations. This great disparity of empha-
sis, of course, reflected the relative emphasis on spin-stabilized and three-axis-
stabilized spacecraft in that decade, at least at NASA Goddard Space Flight Center.
Today, the emphasis is reversed, and one sees papers at conferences on spin-axis
attitude estimation with far less frequency than one sees papers on three-axis atti-
tude estimation.

In 1983, when reference [2] was published, the trend toward more three-axis-
stabilized spacecraft and three-axis attitude determination systems was already well
underway. The principal contribution of reference [2] to spin-axis attitude estima-
tion was to bring to it some of the tools of three-axis attitude estimation, in partic-
ular, a greater reliance on vector methods rather than on spherical trigonometry.
The latter, of course, can never be eliminated completely, at least not if one includes
Earth horizon scanners in the attitude sensor suite.

The two estimation domains, spin-axis and three-axis attitude estimation, can never
be made completely similar because of basic differences between the two. For exam-
ple, the typical measurements for three-axis attitude estimation are directions, i.e.,
unit vectors, while those for spin-axis attitude estimation are usually angles (or,
equivalently, cosines). At an even more basic level, rotations form a group, while
directions in three dimensions certainly do not. Nonetheless, much of the inner work-
ings of the algorithms could be made very similar, and this approach led to more
efficient algorithms for spin-axis attitude estimation than had hitherto been available.
These were applied first to the AMPTE Mission [3], launched in 1984. This is not to
say that earlier work on spin-axis attitude estimation was suddenly swept aside, noth-
ing of the sort. That work [1, 4–8] had been very fruitful and remains very much in
use today. But the final computation step was certainly much improved by the new
approach, as was the quantitative study of the contribution of various error processes.
Like the 1983 paper, the present work concentrates entirely on the problem of spin-
axis attitude estimation alone, and does not address the associated problem of cali-
bration and compensation, which have been important topics from the beginning. As
in basic studies of three-axis attitude estimation, we assume, effectively, that com-
pensation of the sensor data has already been carried out.

There are more similarities connecting spin-axis attitude estimation and three-
axis attitude estimation than there are differences separating them. The 1983 paper [2]
on the former already contains material similar to that in a 2002 paper on constraint
in (three-axis) attitude estimation [9], which, in turn, has informed the present article.
The time is ripe to reëxamine spin-axis attitude estimation from the broader per-
spective and deeper understanding gained from the past two decades of three-axis
attitude estimation, whose level of sophistication and attention to statistics [9, 10]
has grown considerably during that period, while the methods of spin-axis attitude
estimation have been largely static. What will arise from this reëxamination, we
hope, will be a greater appreciation of the nature of spin-axis attitude estimation
within the general framework of spacecraft attitude estimation and greater assur-
ance in constructing new spin-axis attitude estimation algorithms.

The previous work [2] was devoted almost entirely to single-frame estimation.
The present work, which began as Part II of a sequence beginning with reference [2],
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published 24 years earlier, is devoted entirely to batch spin-axis attitude estimation,
which occupied only one page of reference [2]. Thus, the present work and refer-
ence [2] are complementary. On the other hand, the single-frame algorithms are
only a special case of the batch algorithms, so that reference [2] is almost entirely
absorbed in the present work. Not absorbed are the review of research published
before 1983, the explicit two- and three-measurement algorithms, and the deriva-
tion of the nadir-angle measurement (which can be found also in reference [1]).
Reference [2] remains important background for the present work, which, however,
is largely self-contained. For the most part, the notation of this work follows that of
reference [11].

Other Work

The significant literature before 1983 was reviewed in reference [2]. The
methodology of reference [2], as we have said, was applied to the AMPTE space-
craft, launched in 1984 [3] and, together with reference [1], has been the starting
point for many later studies. Van der Ha [12] has carried out a careful covariance
analysis of spin-axis attitude estimation taking into account also the effect of un-
certainty in the biases. Emara-Shabaik [13] has carried out similar calculations of
the spin-axis attitude and biases. Fraiture [14] has developed a sampling method for
spin-axis and bias estimation which greatly simplifies the estimation of the latter.
His publication is noteworthy also for supplying an informative historical per-
spective on the development of spin-axis attitude estimation methodology at ESA.
Van der Ha [15] has offered a deterministic approach, the equal-chord method, to
the problem of spin-axis attitude estimation. His earlier work [12] has also received
a much more detailed treatment recently [16]. Recently, he presented a methodol-
ogy for estimating spin-axis attitude from Sun-aspect data alone [17].

The present work, like reference [2], has considered only the estimation problem.
Our focus has been largely on the geometrical aspects of spin-axis attitude estima-
tion. With the improvement of Earth-horizon scanners over the past two decades,
the contribution of biases to spin-axis attitude errors has been much reduced, except
for systematic errors in the direction of the spin-axis with respect to the spacecraft
body frame (dynamic imbalance) and radiance corrections. Radiative corrections
have been studied for several decades. An extensive study has been carried out by
Phenneger et al. [18]. Van der Ha et al. have given more recent values for all
corrections in their study of the CONTOUR spacecraft [19].

Spin-Axis Attitude Measurements and Models5

Z-Axis Magnetometer

The simplest spin-axis attitude measurement is the magnetic-field component
along the spacecraft spin axis, which we take to be the spacecraft body z-axis. Thus,

(1)

and we assume

(2)vB � N �0, �B
2�

zB �
Bz

m

�B�
� n̂ � B̂ � vB
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where is the magnitude of the magnetic field, obtainable from a field model
given the position of the spacecraft with respect to an Earth-fixed coordinate
system, is the sensor noise, assumed to be Gaussian and zero-mean with angle-
equivalent standard deviation of about 0.5 deg for magnetic latitudes smaller
than 70 deg in magnitude. The spin-axis attitude is represented by the unit vector

the direction of the spacecraft spin axis. The superscript m will generally denote
a measured quantity.

Single-Axis Sun Sensor

A single-axis Sun sensor, sometimes called a Sun aspect sensor, simply measures
the angle between the Sun direction and the spin-axis, and consists essentially of a
“protractor,” which measures the crossing time and the Sun angle when the Sun
line is in the “protractor” plane. Thus,

(3)

with

(4)

and typically in noise equivalent angle deg for digital spinning Sun-aspect
sensors. For an analogue (V-slit) Sun aspect sensor, the accuracies can be higher.

Earth Horizon Scanner

The Earth horizon scanner begins by measuring a dihedral angle, the Earth
width, which is given by

(5)

where and are the respective times at which the Earth is first detected
(arrival of signal) and at which the Earth signal is lost by the scanner (loss of sig-
nal),6 is the spacecraft spin rate, and is the Earth width. The spin rate is also
a measured quantity determined, for example, from successive Sun crossings. We
shall assume, however, that it is essentially constant and determined from very
many Sun crossings, so that its measurement error can be neglected compared to
those in and . This dihedral angle is converted to an arc length, the nadir
angle , according to references [1] and [2]

(6a)

with

(6b)

Here, is the angular radius of the Earth as seen from the spacecraft, and is the
scanner half-cone angle [2]. The sign ambiguity in equation (6a) must be removed
by reference to other measurements, such as the Earth-Sun dihedral angle below.7

For example, only one of the two possible values of is consistent, in general,
with both equations (6) and equation (14) below. In those special cases where both

cos �

��

A � cos2 � � sin2 � cos2 ��/2�

cos � � n̂ � Ê � A	1�cos � cos � 
 sin � cos��/2� �A 	 cos2 ��1/ 2�

�
tLOStAOS

���

tLOStAOS

�m � ��tLOS
m 	 tAOS

m �

�S 	 0.5

vs � N �0, � S
2�

zS � cos �m � n̂ � Ŝ � vS

�tS

n̂,

�B

vB

�B�
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signs are possible in equation (6a), the two solutions turn out to be equivalent.
The Earth measurement is then

(7)

Because of equations (6), the effective Earth measurement noise has a complicated
dependence on sensor parameters and altitude. We have from simple sensitivity
analysis8

(8)

and we assume

and (9ab)

The error levels and are sensitive to the bandwidth and the triggering cir-
cuitry of the Earth horizon scanner. In low-Earth orbit, the standard deviation of 
is typically in the angle-equivalent range from 0.1 to 0.5 deg.9

Earth-Sun Dihedral Angle

We define the Earth-Sun dihedral angle to be the dihedral angle from the plane
of the Sun direction and the spacecraft spin axis to the plane of the nadir vector and
the spacecraft spin axis, measured in the same sense as the spacecraft spin. Thus,

(10)

and we assume, as usual,

(11)

From the definition, it follows that [2]

(12)

The dependence of on is complicated by the denominators. However,

and (13ab)

so that

(14)

The Earth-Sun dihedral angle measurement is now linear in (and now, effectively,
an arc-length measurement), but the effective measurement noise will now contain

n̂

 � n̂ � �Ŝ 
 Ê� � vES

 zES � 
1 	 zS
2 
1 	 zE

2 sin ��tS 	 �tLOS � tAOS��2�

�n̂ 
 Ê� � 
1 	 zE
2�n̂ 
 Ŝ� � 
1 	 zS

2

n̂�ES

sin �ES �
n̂  � �Ŝ 
 Ê�

�n̂ 
 Ŝ��n̂ 
 Ê �

�tS � N �0, �tS

2�

�ES � ��tS 	 �tLOS � tAOS��2�

�ES

vE

�LOS�AOS

�tLOS � N �0, �LOS
2 ��tAOS � N �0, �AOS

2 �

vE 	
�

2
 

sin �

cot � 	 cot���2� cot � 
�sin���2�� ��tLOS 	 �tAOS�

zE � cos �m � n̂ � Ê � vE 

zE
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terms arising from , , , and . That price is fair, however, since
there is much more to be gained from having a simpler sensitivity matrix than from
having a simpler covariance matrix, which, in practice, we will tend to approximate
rather crudely in any event. From equation (14),

(15)

from which

(16)

The error in the Earth-Sun dihedral is a simple function of the errors in the
crossing times.

The computation of is straightforward but unenlightening. Note that and
will be correlated unless . In a similar way we can define and

Note, however, that only two of these three dihedral angles can be independent
measurements.

If we write our concatenated measurement for frame k as, for example,

(17)

where T denotes the matrix transpose, then the measurement covariance
matrix will be correlated as

(18)

where “
” shows the location of possible nonzero entries. Again, the computation
of from the information provided above is straightforward but unenlightening.
There are, of course, many choices for the effective measurements depending on
the sensor suite and the choice of dihedral angles.10

The Cost Function11

In the previous section, we have created an effective measurement vector which
is linear in the spin-axis vector and satisfies

(19)

with measurement noise

(20)k � 1, . . . , Nvk � N �0, Rk�, 

k � 1, . . . , NZk � Hk n̂ � vk,

Rk

Rk � � 


0

0

0

0




0




0

0







0
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� �B̂k Ŝk Êk �Ŝk 
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Zk � �zB, k zS, k zE, k zES, k�T
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zBE�AOS

2 � �LOS
2��ES
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2 �

� �n̂ � �Ŝ 
 Ê��true�	cos �

sin2 �
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cos �
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The measurement noise is generally assumed also to be white. From these forms
we may construct our estimators.

The maximum-likelihood estimate [10] for such a set of measurements is simply

(21)

that is, the value of the unit vector for which is a minimum, and is the
data-dependent part of the negative-log-likelihood function [10, 20], namely,

(22)

The minimization of directly in terms of is complicated by the norm constraint

(23)

the treatment of which is the main feature of this paper.
is a quadratic function of . Therefore, it may be written as

(24)

with

(25a)

(25b)

(25c)

The scalar J is just , that is, evaluated at zero argument, a physically
impossible value for the spin-axis vector because of the norm constraint. The col-
umn array G is the gradient of at zero argument, taking the three components
of as independent. Lastly, the symmetric matrix F is the Hessian matrix of ,
again taking the three components of as independent. These three quantities are
clearly unphysical individually, but also very useful, since, once computed, one
need never deal with the individual measurements again.

The minimization of the cost function of equation (22) is complicated by the pres-
ence of the constraint, equation (23). There are two approaches to obtaining the min-
imizing value of . First, one can minimize explicitly over the three-dimensional

by using Lagrange’s method of multipliers or, secondly, one can replace the three-
dimensional argument of J by a two-dimensional variable, so that the constraint is sat-
isfied automatically. We consider both approaches in the present work. 

We will assume for the first part of this work that F is nonsingular. Singular cases
will result when the vectors implicit in the individual cosine measurements (limited
to a subset of , generally without measurements of dihedral
angles) are coplanar. Such a situation can also occur by accident due to delicate
cancellations in the construction of F, but the likelihood of that occurring is too
minute to merit serious consideration. We treat the singular cases explicitly near the
end of this article, in which we present additional algorithms applicable specifically
to the singular cases.

k � 1, . . . , N,B̂k, Êk, Ŝk

n̂
J�n̂�n̂

n̂
J�n̂�n̂

J�n̂�
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TRk

	1Hk

 G � 	�N
k�1

Hk
TRk

	1Zk

 J �
1

2
�N
k=1

Zk
TRk

	1Zk

J(n̂) � J � GTn̂ �
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Method 1: The Lagrange-Multiplier Method

Using Lagrange’s method of multipliers, which was also employed in the non-
Euclidean single-frame context of reference [2], we write

(26)

with a yet unspecified constant, and minimize without constraint. This leads
directly to

(27)

or

(28)

and the satisfaction of equation (23) now requires

(29)

which may be solved for by the Newton-Raphson method, namely,

(30a)

(30b)

(30c)

(30d)

and

(31ab)

This approach, first applied in a somewhat different form and context in reference [2],
is also to be found mutatis mutandis in Part II of reference [9] for three-axis atti-
tude estimation.

Because equation (29) is nonlinear, it may have many solutions for . In fact, it
can have as many as six solutions, but only one is physical. The nature of the
Lagrange multiplier is examined in Appendix A.

The cost function as a function on is differentiable everywhere and
bounded below by zero. Therefore, it has a unique minimum provided F is positive
definite. In the case of vanishing measurement noise this minimum
must be the true value of the spin-axis attitude12

(32)

which must also satisfy the unit-norm constraint, equation (23), and, therefore,13

(33)�true � 0

n̂true � 	F	1Gtrue

(G � Gtrue)

R3J�n�
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i l �

ni� � lim 
i l �

�i,

 �i � �i	1 	
1

2
 
(1 	 ni	1

T  ni	1)

ni	1
T Di	1 ni	1

 ni	1 � 	Di	1 G

 Di	1 � �F � �i	1 I3
3�	1

 �o � 0

�

n̂* � n̂* � GT�F � � I3
3�	2 G � 1

n̂* � 	�F � � I3
3�	1G

�J�

�n̂
�n̂*� � G � �F � � I3
3� n̂* � 0

J��n̂��

J��n̂� � J�n̂� �
1

2
��n̂Tn̂ 	 1�
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Since , the unit sphere in , is a compact subspace of , it follows in the
general case that must also attain its respective minimum on , and there-
fore, cannot be singular. Since this quantity is positive definite for van-
ishing measurement noise and it must be a continuous function of the measurement
noise (that is, of ) it cannot become singular for some value of G infini-
tesimally different from . If it could, then clearly the value of G would be un-
physical.14 Therefore, we must have that is always positive-definite for
F positive-definite.

Covariance Matrix for the Lagrange-Multiplier Method

To calculate the covariance matrix of the Lagrange-method estimate we note from
equation (28) that the error in is given to first order in the measurement noise by

(34)

with

(35)

and we have noted that

(36)

to first order in . Note also that

and (37ab)

where denotes the expectation, the covariance matrix, and
(below) the variance.

It follows to first order that

(38)

From equation (29) we obtain likewise to first order

(39)

from which, trivially,

(40)

and, therefore,

and (41ab)

and also

(42)

We see from equation (41b) that although F is of order , where N is the num-
ber of measurements, and is the typical measurement error level, is only of
order . Thus, while large in absolute terms, is generally minute in com-
parison with the scale of F.
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The calculation of the spin-axis attitude covariance matrix is now straight-
forward with the result

(43)

where

(44)

It is easily verified to within errors of third order in the measurement noise that15

(45)

Method 2: Unconstrained Brute-Force Method

Although the spin-axis attitude estimate, as defined by equation (21), must have
unit norm, we can define, nonetheless, an unconstrained estimate as the value
which minimizes without constraint. This leads immediately to

(46)

or, if F is invertible,16

(47)

If there were no measurement noise, then as given by equation (47) would
have unit norm and be the exact spin-axis vector, as noted in equation (32). Thus,

must be close to the desired . We can write, certainly,

(48)

We do not attach physical significance to , because, not necessarily having unit
norm, it cannot be a direction. However, because the measurement noise terms are
Gaussian, independent, and zero-mean, so approximately is the “estimate error”
In fact, we must have that the error covariance matrix associated with satisfies

(49)

provided that F is invertible. The unconstrained estimate will be a sufficient sta-
tistic [10] for , so that the entire content of equation (22) can be recapitulated as

(50)

can differ from the expression of equation (22) only by a constant. In fact,
by a rearrangement of the terms of equation (22) we can write

(51)

Thus, J, and represent the data equally well as J, G and F, provided F is
invertible.
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The correctly constrained spin-axis attitude estimate can now be written

(52)

which are all equivalent, clearly, to equation (28). The Lagrange multiplier, like-
wise, is a solution of

(53)

Thus, the unconstrained “estimate” of the spin-axis vector becomes simply an
intermediate step in the estimation of the constrained spin-axis vector. This is the
case for all of the nonsingular algorithms developed in this work.

Because the unconstrained estimate of the spin-axis vector is expected to be
close to the correct estimate of the spin-axis vector, one can obtain a first-order
approximation, simply by unitizing it. Thus, we write the brute-force unconstrained
estimate

(54)

To calculate the covariance matrix for this unconstrained estimate note

(55)

from which we can write the corresponding covariance matrix

(56)

in analogy to equation (43). If F shows strong correlations, then � and will be
very different, and the unconstrained estimate will be a poor approximation.
Clearly, we must have . In any event, the computation of a correctly
constrained estimate is so simple, that the unconstrained approximation has little
practical value as a final result.

Method 3: The Incremental Vector Method

Since is a direction, it is characterized by only two independent parameters,
and, therefore, there can be only two independent incremental parameters. Like-
wise, since is a unit vector, then to the increments in three-dimensional
space must be along the two directions perpendicular to . Thus, if con-
stitutes a (proper) orthonormal triad of vectors, we may write

(57)

where , a array, and the array are given by

and (58ab)

We initialize our iterative algorithm with17
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*
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O���i�2�n̂i
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* � �I3
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n̂uc
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with given by equation (54). Thus, we write

(60)

The estimation of is straightforward and leads to

(61)

and

(62)

In order to maintain the unit norm of at each iteration, we should mechanize the
calculation of as

and (63ab)

As , we must have18 and . To see that equations (63) are
consistent with equation (28), we remark that it cannot be true that 
because of the norm constraint. Therefore, taking the limit (assuming the 
and have been defined so that the limit exists), it must be true that 
can have components only in the null space of , that is, in the subspace spanned
by . Therefore, for some value of � it must be true on taking the limit that

(64)

which is equivalent to equation (27).
The companion matrix for , the i-th increment, is

(65)

and for the converged result

(66)

The quantities in equation (65) and in equation (66) are not the Fisher
information matrix (although they may be very near to it in value), because in
theory the latter is always evaluated at and not at or .19 We must not con-
fuse the converged tangent plane spanned by the basis with the tangent
plane for the definition of the spin-axis attitude errors. The individual bases 
span only the plane of the i-th spin-axis attitude increment. For the computation of
the Fisher information matrix we must employ the plane spanned by ,
which is perpendicular to . This distinction is often disregarded and can lead to
imprecision in our statements about the Fisher information matrix and the covari-
ance matrix. In reference [9], which addressed a similar distinction in three-axis
attitude estimation (sic), the distinction is reinforced by denoting the increment in
the i-th Newton-Raphson iteration by and the estimation error by . We shall
follow that practice in this work.

�̃�i
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18When obvious from the context, we will not denote the dimension of zero arrays explicitly.
19Of course, in mission operations, where one must compute confidence intervals for the estimate of a vari-
able, and the true value of that variable is not available, one has no choice but to evaluate the covariance
matrix at the estimate.



It follows that the estimate-error covariance matrix for is

(67)

with

(68)

provided that the Fisher information matrix is invertible (i.e., the spin-axis attitude
is observable). Here, C is defined similarly to in equation (58) but in terms of

and . Note again that both and are symmetric matrices. For
convenience we write C rather than .

and are matrix representations in the two-dimensional tangent space to
with basis . If we wish to expand this basis to three-dimensional

space by appending the basis vector , then the resulting estimate-error
covariance matrix becomes

(69)

which is explicitly singular. The superscript denotes the basis. For an arbitrary basis
of the three-dimensional space, this becomes more generally

(70)

The last identity follows from

(71)

Thus, by explicit construction it follows that

(72)

the direct result of equation (23), from which

(73)

We have already seen the consequences of this in equation (45).
Note, finally, the relationships

(74a)

(74b)

and consequently

(74c)

It is not necessarily true, as we see from equation (74c), that can be obtained
from a simple bilinear operation on . Despite the redundancy, there is an econ-
omy and universality to the covariance matrix of equation (74a) which is referred
to a single space-fixed basis, which are lacking in the matrix of equation (69) which
is referred to one of a continuum of body-fixed bases.

Method 4: The Incremental-Angle Method

Except for the treatment of the measurement of the nadir angle and the Earth-Sun
dihedral angle, the treatment up to now has been purely vectorial. However, the
spherical angles of the spin-axis attitude provide an equally valid parameterization,

Pnn
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which merits our attention. This method is essentially the one used at the beginning
of the space age for least-square spin-axis attitude estimation, which is prominent
in reference [1]. The processing of the data by vectorial methods simply makes it
more efficient.

We write the spin-axis vector as a function of the two spherical angles

(75)

and define the cost function of the spherical angles in the usual way as

(76)

with . Then the gradient vector and Hessian matrix are given by

(77)

(78)

with

(79)

The second term in equation (78) will nearly vanish when we evaluate the expecta-
tion to compute the Fisher information matrix.20 Thus,

(80)

(c.f. equation (68)) and the Gauss-Newton estimation sequence for becomes

(81a)

(81b)

(81c)

where is the unconstrained estimate of the spin-axis attitude presented earlier.21

Equation (81b) is almost identical to equation (61) except that appears
instead of . As before, the covariance matrix of , , is given by the inverse of
the Fisher information matrix. Hence,
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20In this regard, recall equation (64) above. If F is on the order of and is on the order of , then the
two terms in equation (78) will be in the ratio . The converged value of the Newton-Raphson itera-
tion will not be altered at all by the approximation of the companion matrix. Only the value of the related
Fisher information matrix will be altered by 0.1 percent, which is not significant. In any event, the discard-
ing of the second term in equation (78) may be more explicit, but it is not less important than the terms dis-
carded in the linearization approximation of the incremental-vector approach.
21Which exists only if F is nonsingular and G is nonvanishing.
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(82a)

(82b)

The incremental-angle approach, obviously, has much in common with the
incremental-vector method. This should not be surprising, because and are
simply the polar and azimuthal angles of , equivalently in more geographic terms,
the latitude (really colatitude) and longitude of . At least locally, the line of lati-
tude and the line of longitude passing through the point of the unit sphere corre-
sponding to are the basis vectors of the tangent space to . However, because a
line of latitude is not an arc of a great circle, it is and which are the
equivalent increments in the tangent space rather than and . Other than that,
the incremental-vector treatment will be virtually the same as the incremental-angle
treatment provided one chooses

and (83abc)

with .22

Note also that , , and also form a set of three ortho-
normal axes, which are related, obviously, to the column vectors of .

It follows that

(84)

The matrix is singular for certain values of the spherical angles and 
If the spacecraft spin axis is parallel or antiparallel to the z-axis, then and
the matrix becomes rank one. One avoids this situation by choosing a differ-
ent set of polar and azimuthal axes. In the case above, the polar axis was the z-axis,
following the common convention. If instead the x-axis is chosen, then

(85a)

(85b)

(85c)

If the y-axis is chosen as the polar axis, then

(86a)

(86b)

(86c)

In deriving equations (85) and (86) we have simply permuted the indices of equa-
tions (75), (79), and (81a) cyclically.23
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22The sign occurs in , because our (local) coordinate system is south-east-up, rather than the more common
north-east-down.
23Equations (83) hold specifically when equation (75) is true. For axes consistent with equations (85) or (86),
we must replace with or , respectively.2̂1̂3̂
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Alternate Mechanization of the Lagrange-Multiplier Solution

The Lagrange-multiplier solution would seem to be the most complicated of the
solutions, but it can be made very efficient. The matrix

(87)

need not be computed separately, since it appears only in combination with the col-
umn matrix G. Thus, one need compute only the two vectors and , which are
defined to be the solutions of

and (88ab)

respectively. Many high-level computer languages, such as Matlab®, contain an
operation which solves these linear equations directly without the intermediate
computation of the matrix inverse. From these two vectors we have

(89a)

(89b)

which are the quantities that appear in equations (30), and

(90)

The Importance of Constraint

To appreciate the ill effect of neglecting the constraint more clearly we examine
the following analytical example, based on our numerical examples. Write the
inverse unconstrained Fisher information matrix and the true spin-axis vector as

(91ab)

then it follows from equations (43), (44), (55) and (56) that

(92ab)

The third row and column in each case must vanish because of equations (43) and (56).
The variances of the components of the correctly constrained spin-axis vector,
however, are certainly smaller.

Consider the special case

(93)

with the correlation

(94)

Then from equations (92)
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(95a)

and

(95b)

Should we have, say, , an extreme case, then the standard devia-
tions of the estimation errors for the brute-force estimate would be three times
larger than that for the correctly constrained estimate. The importance of treating the
constraint correctly cannot be overemphasized. The above analysis is easily extended
to any Cartesian spin-axis attitude covariance matrix, because there always exists a
proper orthogonal transformation which carries into .

One must be careful not to confuse the correlations of P with those of the unit-
norm estimates. For Numerical Example 2, for example, the final covariance
matrices are

(96a)

and

(96b)

These should be compared with P in equation (125c).
The brute-force method performed well in Numerical Example 1, because the

correlations were small, the largest smaller than 0.2 in magnitude, the others being
very close to zero. In Numerical Example 2, on the other hand, all three correla-
tions were fairly large, with a consequent reduction in estimation accuracy. Refer-
ence [2] was too quick to declare the constraint of only small importance.

Singular Cases

Of special interest are the cases in which F is singular. This special case does not
lead to continuous degeneracies for the estimate of the spin-axis attitude, because
the latter has only two degrees of freedom, and except for the silly case where all
of the physical vectors (other than the spin-axis vector) are parallel or antiparallel
to one another, F will always have rank two. We shall find, however, as we did in
reference [2], that we will encounter discrete degeneracies in this case.

The physical vectors from which the spin-axis aspect is measured can be copla-
nar if the spacecraft is in an orbit in the ecliptic plane, and relies for spin-axis atti-
tude determination on measurements of the Sun and nadir angles. This case was
prominent in reference [2], in which considerable space was devoted to the deter-
mination of the spin-axis attitude from the single simultaneous measurements (the
single-frame solution) of the nadir and Sun angles. The treatment here is a simple
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generalization of the algorithm of reference [2]. We call the new algorithm devel-
oped here the pseudo-inverse method.

If F is singular, then we can write

(97)

where the matrix is positive-definite and the matrix satisfies

and (98abc)

with the null vector of F. We can obtain and from the spectral decomposi-
tion of F, but there is no requirement in the present work that be diagonal. If is
diagonal, then

(99)

where and are the other two characteristic vectors of F. From the structure of
F and G it follows also that

(100)

Likewise, we must have

(101)

Defining the matrix by

(102)

we can write the cost function of equation (24) as

(103)

with

(104)

Since is not constrained, the minimization of leads straightforwardly to

or (105)

Noting equation (98b) it follows that the two possible solutions can be combined
as

and (106)

and

(107)

where is the (ambiguous) component along , i.e., the component perpendicu-
lar to the measurement plane.

The two solutions for the spin-axis estimate are, therefore,

(108)
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n̂* � Ũ ñ* � n�
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ñ � Ũ Tn̂
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3 	 û3û3
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and so the two solutions cannot be distinguished. In order to determine which of
is the correct estimate, we must use other data, for example, the Earth-Sun

dihedral angle data described by equations (10) through (16). For the case of a
spacecraft in an ecliptic orbit relying on Sun and nadir angle measurements, these
additional measurements are sensitive to the component of normal to the meas-
urement plane.

We may write the solution also as

(110)

with

(111)

the Moore-Penrose pseudo-inverse of F,

and (112ab)

and, in this case,

(113)

These expressions should be compared with those for the single-frame case with
two measurements in reference [2].

Covariance Analysis for Singular F

Clearly, defining

(114)

it follows that

(115)

and

(116)

and finally,

(117)

Note that for singular F, the method is no longer iterative. Note also that the
covariance matrix becomes infinite when the spin-axis is normal to the measure-
ment plane, or, equivalently, a null vector of F. The methods of this section may be
useful in cases where F is only nearly singular.

Numerical Results
Example 1: Good Observability

We examine these algorithms for a spacecraft in a 100-minute circular equatorial
Earth orbit. The spacecraft is Earth-locked with z-axis parallel to the spin axis of
the Earth (the inertial z-axis) and the spacecraft x-axis pointing toward the nadir.
The spacecraft is equipped with a coarse vector magnetometer, a coarse vector Sun
sensor, and a (coarse) Earth horizon sensor, all three attitude sensors with angle
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1


1 	 �ñtrue�2
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equivalent accuracy equal to 0.5 deg. Data are taken once per minute. Such a
scenario was typical of the time of publication of reference [2].

For simplicity in our simulations we assume that the geomagnetic field at the
equator is constant and directed along the inertial z-axis.24

(118)

with the subscript I denoting the inertial frame. The Sun direction is taken to be

(119)

where . This particular model implies a nonstandard choice for the
direction of the inertial x- and y-axes. We assume also that the Sun will be observable
for orbit argument , measured from the inertial x-axis, in the interval 

. The nadir vector is simply the negative direction of the spacecraft
position vector. Thus,

(120)

with constructed according to the model of equation (17) and the measurement
error covariance matrix is taken as

(121)

when all three measurements are present. When only magnetic-field and nadir
measurements are available because of occultation of the Sun by the Earth, the 
will have only two components and we will assume . Such a model is
exceedingly simplified, but will be adequate for our studies and will make it easier
to see the effects of the unit-norm constraint.

On the basis of this model we have generated the matrix F and the 
matrix G for one full orbit of data. These gave the results

(122ab)

(122c)

The near vanishing of and as well as of are the result of the
special and very simple choices that were made for the test scenario.
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24Actually, the equatorial magnetic field at the Earth’s surface has a declination varying from 2 deg to 10 deg
and an inclination varying roughly from 	30 deg to �20 deg. Our magnetic field model is not very realistic,
but adequate for our simulation needs.



For this example we have computed the spin-axis attitude estimate and displayed
those results in Table 1,25 which shows results for the Lagrange-multiplier method
(Table 1A), the incremental-vector method (Table 1B), the incremental-angle
method (Table 1C), and the unconstrained brute-force method (Table 1D). The
iteration was terminated in each case when the last change in the result was smaller
than 0.000001. The first four columns show the iteration index and the three compo-
nents of the estimates of . The second iteration for each method shown in Table 1
was obviously superfluous.

Note that in all three mechanizations of the constrained estimation only one iter-
ation was required beyond the initial unconstrained approximation. Without the use

n̂
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25In Table 1 and Table 2, numbers which are formally zero are displayed as zero. We do the same for elements
of the covariance matrix, notably in equations (122a) and (125a) which are intrinsically zero or extraordinar-
ily minute in the specific example.

TABLE 1. Comparison of the Four Methods for Numerical Example 1

A. Lagrange-Multiplier Method

Iteration 

0 0.000241 0.000156 1.000103 0
1 0.000261 0.000156 0.999999 143
2 0.000261 0.000156 0.999999 143


0.000901 
0.001240 
0

B. Incremental-Vector Method

Iteration 

0 0.000241 0.000156 0.999999 	
1 0.000261 0.000156 0.999999
2 0.000261 0.000156 0.999999


0.000901 
0.001240 
0

C. Incremental-Angle Method

Iteration 

0 0.000241 0.000156 0.999999 	
1 0.000261 0.000156 0.999999
2 0.000261 0.000156 0.999999


0.000901 
0.001240 
0

D. Unconstrained Brute-Force Method

Iteration 

0 0.000241 0.001560 0.999999 

0.000917 
0.001240 
0 

n3n2n1

1.4 
 10	7
2.0 
 10	5

�n̂ i 	 n̂ i	1�n3n2n1

2.3 
 10	9
2.0 
 10	5

�n̂ i 	 n̂ i	1�n3n2n1

�n3n2n1



of as an initial value as many as a dozen iterations were found to be necessary.
(Note that the initial value is built into the Lagrange-multiplier method.) The errors
in are much smaller than the others due to the influence of the norm constraint.
Had we chosen to be different from a coordinate axis, this would not have been
the case. Note also that the zero-th iteration of the Lagrange-multiplier method is
different from the other two, because the former does not incorporate a normaliza-
tion step. By the first iteration, however, it seems to have accomplished its mission
to six significant digits. For the unconstrained brute-force method the standard
deviation of the estimate of was larger than that of the other estimates by about
2 percent. This is consistent with the correlation of P being roughly . This
is explained fully in the following section on the importance of constraint.

The one-sigma confidence intervals for the spin-axis attitude estimates were each
calculated using the expression for the spin-axis attitude covariance matrix derived
for each method. Not surprisingly, the numerical values are the same for the first
three cases. The large value of in our numerical example was not unexpected.
Given equation (41b) we anticipate

(123)

In the present case, is positive, because .

Example 2: Poorer Observability

The measurement vector was chosen this time to be

(124)

We have again chosen the orbit plane to be equatorial and the x-axis of the orbit
plane to be the projection of the Sun direction. The data interval spanned the orbit
angular interval from 0 deg to 45 deg measured from the orbit x-axis. The time in-
terval between measurements has been adjusted so that the estimate remains based
on 100 measurements, as in the previous example. The measurements consist solely
of the Sun angle and the nadir angle. For this case, we find

(125ab)

(125c)

The unconstrained covariance matrix P now shows correlations 
and , which are considerably greater in magnitude than

those in Example 1.26 The three correctly constrained methods all yield the same
result to six decimal places for the estimate of the spin-axis vector, but that from
the unconstrained brute-force method is decidedly poorer in quality. The results are
shown in Table 2.

�23 � 	0.718�13 � 	0.873
�12 � 	0.862,

P � F	1 � �   2.879

	5.015

	6.784

	5.015

12.909

11.814

	6.784

11.814

20.969

 
 10	6

F � �2.186

0.147

0.472

0.417

0.239

0

0.472

0

0.200

 
 106,        G � �	0.471

0.001

	0.201

 
 106

Zk � �zE,k, zS,k�T

�nuc
* � � 1�

� � 0 
 1170

�

	0.2�13

n1

n̂true
n3

n̂uc

n̂uc
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26Had we chosen to make one of the sensor accuracies larger than the other, the correlation would have been
greater still.



The convergence of the iterative algorithms in this case is certainly poorer but
better than the more than a dozen iterations which would be the case if one did not
have a good initial value available. However, if we make our convergence criterion
one-tenth of the standard deviation of the estimate error rather than an arbitrary
0.000001, then one iteration still provides sufficient accuracy for all four imple-
mentations of the iterative algorithms. Note also that the standard deviation of the
estimate of is twice as large for the brute-force unconstrained estimate than for
any of the constrained estimates. For the estimate of the brute-force error is
50 percent larger. In terms of a rotationally-invariant error measure, the trace of the
Cartesian spin-axis attitude covariance matrix, the trace for the brute-force estimate
is larger than that for the properly-constrained estimate by a factor 2.3.

n2

n1
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TABLE 2. Comparison of the Four Methods for Numerical Example 2

A. Lagrange-Multiplier Method

Iteration 

0 	0.000602 	0.002632 1.003112 0
1 0.000400 	0.004375 1.000010 148
2 0.000407 	0.004387 0.999990 149
4 0.000407 	0.004387 0.999990 149


0.000828 
0.002501 
0

B. Incremental-Vector Method

Iteration 

0 	0.000601 	0.002624 0.999996 	
1 0.000407 	0.004388 0.999990 0.0020
2 0.000407 	0.004388 0.999990


0.000828 
0.002501 
0

C. Incremental-Angle Method

Iteration 

0 	0.000601 	0.002624 0.999996 	
1 0.001180 	0.004017 0.999991 0.0022
2 0.000361 	0.004309 0.999991 0.00087
3 0.000408 	0.004387 0.999990 0.000091
4 0.000407 	0.004387 0.999990


0.000827 
0.002501 
0

D. Unconstrained Brute-Force Method

Iteration 

0 	0.000600 	0.00262 0.999996

0.001697 
0.003593 
0

n3n2n1

7 
 10	7

�n̂ i 	 n̂ i	1�n3n2n1

7 
 10	7

�n̂ i 	 n̂ i	1�n3n2n1

�n3n2n1



Execution Times

Table 3 shows the relative execution times of the different methods obtained
using Matlab®. All five results are for the first numerical example and each iterative
method was terminated after a single iteration beyond the initial brute-force initial-
ization (in the implementations of the Lagrange-multiplier method, equivalently,
the estimate uses ). In all cases, the code has been optimized as much as possi-
ble. Surprisingly, the use of the linear-equation solver increases the computational
burden rather than decreasing it. Based on the results of Tables 2 and 3 the
incremental-vector method would seem to offer the best value.27

Comparison with Sampled Covariance Matrices

As a check on the consistency of our calculations, we have compared the results
for the model covariances, as given by equations (43), (55), (74a), and (82b), with
the sampled covariance matrices for the spin-axis attitude estimate

(126)

and with a similar definition for the sampled covariance matrix . Here, is
the estimate of the spin-axis vector for the m-th sampled data set,

is a random matrix and satisfies

(127)

For N very large, will be approximately Gaussian and zero-mean with
variance given by

(128)

We have computed , the model covariance matrix, and the confidence
bounds for all four spin-axis attitude estimation methods and both numerical
examples for 100 sample tests and found agreement within the antici-
pated confidence bounds. As an example, for the iterative algorithms of Numerical
Example 2, the results were 

(N � 100)

Pn̂n̂
sampled

Var{(Pn̂n̂
sampled)ij} �

1

N
��Pn̂n̂ �ii �Pn̂n̂ �jj � �Pn̂n̂ �ij

2]

(�Pn̂n̂
sampled)ij

Pn̂n̂
sampled � Pn̂n̂ � �Pn̂n̂

sampled

Pn̂n̂
sampled

m � 1, . . . , N.
n̂m

*Pn̂ucnucˆ
sampled

Pn̂n̂
sampled �

1

N
�N

m�1
�n̂m

* 	 n̂true� �n̂m
* 	 n̂true�T

�1
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27As demonstrated recently [25], execution times or counts of floating-point operations in Matlab® can be a
very poor indicator of algorithm speed or efficiency.

TABLE 3. Execution Times for Spin-Axis Attitude Estimation

Method Relative Execution Time

Iterative Optimal Methods
Lagrange-multiplier (matrix inverse) 76
Lagrange-multiplier (linear equation) 88
Incremental-vector 66
Incremental-angle 100

Non-iterative Approximate Method
Brute-force 34



(129)

where, for reasons of space, we have deleted the uninteresting third row and third col-
umn, and the three matrices are in the same order as in equation (127). The errors
in the sampled covariances are and , where is the appropriate
standard deviation for each covariance.

A Further Test

All of the algorithms for the nonsingular case, except for the approximate brute-
force algorithm, take into account at a fundamental level the unit-norm constraint
of the spin-axis attitude, although the temporary neglect of the norm constraint can
clearly provide a useful first step. The performance of the brute-force algorithm has
been mixed. In our first example, the unconstrained initial estimate when normal-
ized turned out to provide all the accuracy that was needed. In our second example,
however, this was not the case, and the cavalier treatment of the unit-norm con-
straint for the spin-axis vector led to a distinctly inferior result. Proponents of the
problematic unconstrained (three-axis) quaternion Kalman filter should find a
lesson here.

One can also see this by computing the figure of merit

(130)

For the three iterative constrained algorithms in Case 1, we found that had a
mean value 1.771 and a standard deviation of 1.458, very close to what one would
expect of a chi-square variable with two degrees of freedom ( ,

28 When this same quantity is evaluated for the brute-force estimate,
we found a mean of 2.073 and a standard deviation of 1.812, not very different.
For Case 2, however, where the correlations played a large role in the accuracy of
the estimate, we found for the iterative algorithms that , still
compatible with a chi-square distribution, but for the brute-force method

very different from chi-square behavior. For Case 2, the mean
of for the brute-force method differed from that for the constrained iterative
methods by 3.313, a very significant deviation when the goodness of fit is judged
by proximity to the value .

The Singular Case

To illustrate the efficacy of the special algorithm developed for the singular case,
we have compared the Lagrange-multiplier and pseudo-inverse methods for a sce-
nario like that of Table 2 but with , so that the Sun vector lies in the orbit
plane (whose coordinates, therefore, are ecliptic coordinates). We have also chosen

(131)n̂true � �3�5, 0, 4�5�T

� � 0

2 
 0.2

�
� � 5.143 
 7.476,

� � 1.830 
 1.948

variance � 4).
mean � 2

�

��m̂� � �m̂ 	 n̂true�T Pn̂n̂
	1�m̂ 	 n̂true�

�0.2�0.3�, 	1.7�

� � 0.685

	1.193

	1.193

6.253
 
 10	6 
 �0.116

0.231

0.231

0.500
 
 10	6

� 0.707

	1.530

	1.530

7.549
 
 10	6
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28Since these sampled means and variances were for 100 tests, we anticipate an error level of 10 percent for
the mean of and 14 percent for the standard deviation.�



so that will be finite. For the pseudo-inverse algorithm

(132)

The solution is in very close agreement with the true value.29 In practice, the
two solutions must be distinguished by examining other data, for example, the Earth-
Sun dihedral angle.

Similarities to Three-Axis Attitude Estimation

There are numerous similarities between spin-axis and three-axis attitude esti-
mation. The use of a quadratic cost function with constant coefficients was present
already in reference [2]. In three-axis attitude estimation, the column vector

must be replaced by the column vector A composed of the nine elements
of the attitude matrix A. Thus, is also a column vector, and 
is a positive-semidefinite matrix (positive definite if the three-axis attitude is
observable).30 For vanishing measurement noise one has necessarily

(133)

analogously to equation (32). The unconstrained brute-force estimate of the three-
axis attitude “vector” is likewise

(134)

We cannot orthogonalize as simply as we could normalize earlier. The sim-
plest way to orthogonalize is to use Markley’s modification [22] of Shepperd’s
algorithm [23] for extracting the quaternion from and then to recompute A
from this . A more cumbersome approach is to maximize , which entails
using a solution to the Wahba problem [24].31 These are both arbitrary orthogonal-
izations and do not yield the optimal estimate although either is adequate for gen-
erating an initial value for an iterative process which converges to the optimal
estimate. Part II of reference [9] used an equally arbitrary but simpler method.

The Lagrange-multiplier method, which, effectively, provides an optimal
orthogonalization of the brute-force estimate of the three-axis attitude, was present
already in reference [2] and has found other echoes in three-axis attitude estima-
tion. Kasdin and Weaver [26] have applied it to three-axis attitude estimation in the
context of the Kalman filter. Part II of reference [9] presents it within the context
of batch three-axis attitude estimation. The Lagrangian-multiplier method for three-
axis attitude is complicated, because there are six independent Lagrange multi-
pliers. Therefore, methods similar to the incremental-vector and incremental-angle
methods for three-axis attitude are to be preferred.32

In the three-axis equivalent to the incremental-vector and incremental-angle
methods, one works to greater advantage with matrices rather than with3 
 3

tr[Auc
* TA]q̄
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*q̄
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*
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	1 GA
uc

Atrue � 	FAA
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29The 
 sign preceding the column vector of confidence bounds is not linked to the sign label of the solution.
30We do not make comparisons with quaternion estimation, in which the constraint is one of norm, because
the measurements are usually linear in A but not in .
31Reference [24] presents an excellent review of the solutions to the Wahba problem. For its numerical results
and their interpretation see references [21] and [25].
32And of course, both are overshadowed by special solutions to the Wahba problem [24], especially the
QUEST algorithm [27].

q̄



column vectors. Instead of equation (57) one uses instead

(134)

with

(135)

This is the incremental-vector method presented in Part I of reference [9]. In gen-
eral, one initializes the Newton-Raphson sequence for not with the brute-force
attitude estimate above but with the result of the TRIAD algorithm [27], whose
computation is much simpler and is always proper orthogonal. This methodology
assumes that at least a subset of the data consists of direction measurements,
required by the TRIAD algorithm, which is generally the case. Despite its attrac-
tiveness, this incremental-vector method for three-axis attitude has not, to the
authors’ knowledge, ever been implemented in actual mission support, probably
because it had not been suggested before the advent of efficient solutions to the
Wahba problem [24], especially QUEST [27]. Attitude determination analysts
before then preferred to work with Euler angles.

For the incremental-angle method, the analogy is the differential correction
methods for attitude estimation in terms of Euler angles, which were common in
the early decades of the space age. Typically, one would define initial values of the
Euler angles based on the TRIAD attitude solution [27] of a subset of the data (as-
suming the data consisted of measured directions) and then carry out the Newton-
Raphson sequence in these Euler angles. This method disappeared almost overnight
with the advent of the QUEST algorithm [27].

The ambiguity of the singular case occurs, because one wishes to estimate a spin-
axis vector from two cosine measurements, and , so that one has no
way of removing the sign ambiguity of . One is left with a similar phe-
nomenon when one attempts to determine the three-axis attitude from  three cosine
measurements, with the arc lengths being between three directions fixed in the
spacecraft and three corresponding directions fixed in the primary reference frame
[28]. Since the three-axis attitude can be described by only three parameters, it
would seem that the measurement of three scalars would be enough. However, care-
ful analysis shows that depending on the disposition of the vectors, there will be
either a four-fold or an eight-fold degeneracy in the solutions. Attempts to econo-
mize on the inputs to the TRIAD algorithm have a similar effect [29].

The need to single out a particular axis in the incremental-angle and also in the
incremental-vector method (one must introduce a known axis in order to construct

and normal to ) is reminiscent of the problem in the fast solutions to the
Wahba problem, which require the interventions of the method of sequential rota-
tions [24, 27]. The problem arose in three-axis attitude estimation when one esti-
mates a three-parameter set characterizing a unit four-dimensional column vector
(the quaternion). In spin-axis attitude one equivalently estimates a two-parameter
set characterizing a unit three-dimensional column vector.

There is nothing new under the Sun.33
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33What was is what shall be, and what has been done is what shall be done, and there is nothing new under
the sun (Ecclesiastes ). 1 : 9



Discussion and Conclusions

A number of algorithms have been presented for spin-axis attitude estimation.
All of these algorithms ultimately estimate a spin-axis vector, which is a represen-
tation of the spacecraft spin-axis (generally, the spacecraft body z-axis) with respect
to some fiducial space-fixed coordinate system, typically inertial, because the
spacecraft spin will cause the spin-axis to be inertially stabilized.

Note that the Cartesian spin-axis Fisher information matrix, can only
be of rank two, and, therefore, the spin-axis attitude covariance matrix is not
generally defined directly in terms of the spin-axis attitude covariance ma-
trix. The spin-axis attitude covariance matrix in this work is in reality the
pseudo-inverse of the spin-axis Fisher information matrix and vice versa.
Nonetheless, the error bounds in Table 1 are meaningful, because they reflect the
true variation of these estimates, even though they provide no information on their
mutual correlation.

The Cartesian spin-axis attitude covariance has one excellent quality, it is
always defined with respect to the same inertial axes. In a sense, this covari-
ance can be regarded almost as a representation of both the spin-axis attitude and
the spin-axis attitude covariance matrix in the same way that the attitude profile ma-
trix B of the Wahba problem [24, 27] contains both the (three-axis) attitude estimate
and its covariance matrix [20]. Unfortunately, the null vector of this matrix
gives us the spin-axis vector only within a sign.

Execution times are often not very significant in an interpreted language such as
Matlab® where the computation of a simple operation, such as a vector product, by
means of an external function may take considerably longer than the same opera-
tion coded explicitly without a function call. In all cases we have removed such
function calls when the removal resulted in a faster algorithm. Likewise, in the
incremental-angle method we have avoided duplicate evaluations of the sine and
cosine functions. The incremental-angle method, the “classical” method for spin-
axis attitude estimation, turns out to be the slowpoke of our algorithms. It would
seem that the evaluation of the trigonometric functions in the incremental-angle
method imposes a greater computational burden than the vectorial apparatus of the
incremental-vector method. The incremental-vector method also converges in far
fewer steps, making it the clear winner. Even to achieve an error in significantly
smaller than the confidence bound (0.0087 rather than the arbitrarily more stringent
0.000001), the incremental-angle method required two iterations beyond the brute
force initialization. These, of course, were the motivation for abandoning a trigono-
metric approach in reference [2]. The brute-force computation is fastest, as was to
be anticipated, but this is insufficient recommendation for its use.

We have given special attention to singular cases, that is, when the unconstrained
spin-axis attitude information matrix, F, is singular. Such algorithms are useful
when the physical vectors (other than the spin-axis itself) on which the cosine
measurements are based are coplanar. This can occur for example, either for the
case of only two cosine measurements, the principal topic of reference [2], and for
the case where the spacecraft orbit lies in the ecliptic plane and the spin-axis atti-
tude is estimated from measurements of the Sun angle and nadir angle. A recent
example, showing that the methods of reference [2] are still useful, is the estima-
tion of the spin-axis attitude from Sun aspect alone [17].
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While our pseudo-inverse algorithm generates both solutions to the spin-axis
attitude estimation problem for singular F, it does not tell us which one is correct.
To accomplish that, we must examine other data, which can be consistent with only
one of the solutions. It is better, however, to include such data (such as dihedral-
angle data) directly in the construction of the spin-axis attitude estimate, so that F
will not be singular, and the estimate will be more accurate.

An important outcome of this work is the importance of treating the norm con-
straint correctly. When the estimation error shows strong correlations, the improper
treatment of the unit-norm constraint can lead to unacceptable error levels. This
should also serve as a warning to analysts who insist on ignoring the unit-norm con-
straint of the quaternion in the attitude Kalman filter. Part II of reference [9] pre-
sented numerous cases where neglect of the norm constraint led not only to less
accurate but even silly results. Reference [2], as we have said, was too hasty in dis-
counting the importance of the norm constraint.

This work sought to bring greater sophistication to the estimation of spin-axis
attitude. We must keep in mind, however, that spin-axis attitude is a largely unso-
phisticated quantity. Unless the spacecraft is spinning about the major principal
axis, it will nutate or drift, and the spin-axis attitude will not be constant in time.
Energy-dissipation devices, such as nutation dampers, will cause the spacecraft to
spin about the major axis of the inertia tensor, but the instrumented "spin" axis may
be offset from the major axis, owing to the difficulty of measuring the inertia ten-
sor, especially the products of inertia, before launch. Hence, the supposed spin axis
will cone in space, and further accuracy can be obtained only by estimating the
direction of the major axis in the body frame as well. When a single-axis attitude
estimate, say of the optical axis of a spacecraft payload, is needed at very high
accuracy, it may best be accomplished using a star-tracker and estimating the full
three-axis attitude.
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Appendix A: On the Possible Values of the Lagrange Multiplier

Equation (29) for the Lagrange multiplier is a nonlinear equation and may have
multiple roots. We show in this appendix that it can have no more than six roots
only one of which can be physical.

Define the function

(A1)

If the coordinate axes are chosen so that F is diagonal with eigenvalues 
, then we may write as

(A2)

We plot in Figure A-1 using the value of F for Numerical Example 1. Clearly,
and becomes infinite at . The values of which lead

to a solution of equation (A1) occur when the line with unit ordinate intersects g���.
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FIG. A-1. Possible Values for the Lagrange Multiplier.



In general, there can be as many as six intersections: one for zero,
one or two in the interval ; zero, one or two in the interval 
and one at . Since as , the solutions and

will always exist. (The solution is not visible in Figure A-1, because the
abscissa does not extend sufficiently far to the left.)

There are only two solutions for for Numerical Example 1, because 
for . The relative proximity of the asymptotes to the vertical at

reflects the smallness of relative to the other two components.
Consider the simple example of . Then

(A3)

where is the norm excess of the unconstrained unnormed solution. For our two
numerical examples had values of approximately 0.0001 and 0.003. The solution
of for our simple examples are

(A4)

and for 

and (A5)

The multiplier will be positive, zero or negative according to whether is
positive, zero or negative. For our simple example

(A6)

From equations (41) we know that in our degenerate example will be zero-
mean with root-mean-square value

(A7)

Our simple example for F will arise if we choose , and 
Then

(A8)

For and rad we obtain

and (A9)

Thus will be a 1000- event! The probability of a 1000- event is
approximately . Of course, this probability assumes that the lineariza-
tion of equation (34) is correct, which won’t be the case if is an acceptable
value for the multiplier.

We claim that only can have physical significance. Consider a continuum of
systems with the measurement covariance matrix given now by

(A10)

and consider as a function of . (We assume that the realizations of the noise are
identical, except for the scaling by .) For , the noise-free case, we know for
any positive-definite F that has a unique zero, which is just and cor-
responds to , which can only be . (The multiplier in the degenerate�min�max� � 0
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noise-free example has the value 	2F and leads to the value , which is not
a root of .) Since must be a continuous function of , it follows that the
Lagrange multiplier for , the actual data, must also be .

From a practical standpoint, because the second derivative of becomes infi-
nite at , it is extremely unlikely that a Newton-Raphson iteration could lead
to as a solution unless is minute. Thus, the possibility that the Lagrangian-
multiplier method could have multiple solutions is an observability problem, simi-
lar to that of other values of being proximate to in Davenport’s q-method [14].
As we saw in reference [20], the separation of the other eigenvalues of Davenport’s
K-matrix from was connected directly to the Fisher information matrix of the
three-axis attitude. In the present application, if the spin-axis is well observable,
then we must have that , and will be enormously larger in magnitude than

and negative.�max
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