


102 Cheng and Shuster

and robust compared to other fast batch attitude estimators were true only if QUEST

were executed in an unnecessary manner in a very far-fetched scenario. Reference [4]

left the reader with the misimpression that QUEST was less capable than the algorithms

developed by the authors of Reference [4], and, perhaps, even dangerous to use, which

was not true. Reference [1] showed, in fact, that following a very minor rearrangement

of terms in the QUEST characteristic polynomial,
4
QUEST performed just as well as any

other algorithm even in the unphysical and unreasonable scenario 2 or Reference [4].

In the present work we continue Part I [1] of this article and address our attention to

the question of computational speed. Reference [4] made several claims, in particular, as

noted in Part I, it claimed that :

• QUEST is less accurate than the algorithms developed by the authors of

Reference [7] and does not necessarily converge.

• The zeroth-order approximation of QUEST requires more MATLAB
r

oating-point operations than the zeroth-order approximations of the ESOQ1

and ESOQ2 algorithms of Mortari.

• The �rst-order approximation of QUEST requires more MATLAB
r

oat-

ing-point operations than the �rst-order algorithms ESOQ1.1 and ESOQ2.1.

Part I of this work [1] refuted the �rst claim at length and that refutation need not

be repeated here. Su�ce it to say that all solutions to the Wahba problem
5

are equally

accurate, and QUEST is as robust as any other solution to the Wahba problem except

for Davenport's original implementation of the q-method and Markley's SVD algorithm,
6

which are extremely stable but also very slow.

The second and third claims are absolutely true. However, they are the only cases in

which QUEST requires more MATLAB
r

oating-point operations than the algorithms

examined in Reference [4]. In every other case, the QUEST algorithm requires fewer

MATLAB
r

oating-point operations than any of the other fast optimal attitude estimators.

In terms of MATLAB
r

execution time the QUEST algorithm is the fastest algorithm in

all cases without quali�cation. In terms of the execution time of stand-alone executable

compilations of C-programs, the only true measure of computational speed, then either

QUEST or our OSOQ1 algorithm (an optimized ESOQ1) is the fastest depending on

the case. Reference [4] tells the truth, but, obviously, it does not tell the whole truth,

because the scope of its numerical investigations were too limited.

The presentation of complete results for the op requirements and execution times of

the fast optimal attitude estimators is the subject of the present Part II of this work. We

shall begin with a discussion of the solutions to the Wahba problem from the point of

view of computational burden, and following this a discussion of the nature of �timing�

tests as performed within MATLAB
r

and as compiled C-code and the numerical results.

4
The expression λ4 − (a + b)λ2 + ab is replaced by (λ2 − a)(λ2 − b).

5
These do not include the ESOQ1.1 and ESOQ2.1 algorithms, because (by design) they are only �rst-order

approximations. We shall, however, perform tests of these two algorithms, because they �gure prominently in

Reference [4].

6
As in Reference [1]. when Markley's name does not qualify the name of his algorithm, it will be cited

as M-SVD, to avoid confusion with the general SVD method of Numerical Linear Algebra [5]. Likewise,

Davenport's original implementation of the q-method using Householder's method will be cited as q-Davenport,

since QUEST and the Mortari algorithms are also implementations of the q-method.



The Speed of Attitude Estimation 103

In order to make our language less ambiguous we will say that an algorithm is more

e�cient if it requires fewer oating-point operations and faster if is requires less execution

time. As we shall see, the number of oating-point operations is a poorer indicator

of e�ciency than the number of binary operations, and the number of oating-point

operations provided by MATLAB
r

may be the worst indicator of all.

The present work contains no startling theory. Its interest derives from the depth

and breadth of the numerical results. A great deal of time has been spent in the past

on e�ciency and speed tests, typically in MATLAB
r
. In the present work we discuss

carefully the value of such tests, with particular regard for one test which has been the

subject of dispute for nearly a decade, namely which of the two algorithms, QUEST or

ESOQ2, is the fastest. Our clear answer: neither of the above.

The Solutions to the Wahba Problem

Solutions to the Wahba problem fall into two classes. First there are solutions which

solve for the optimal attitude by applying one of the standard algorithms of Numerical

Linear Algebra to the attitude pro�le matrix B or the Davenport matrix K. These

algorithms are described in detail in [4] and their description need not be repeated here.

Examples of such methods are the polar-decomposition method of Farrell and Stuelpnagel

[4, 6], the matrix square-root algorithm of Wessner [4, 7] and Brock [4, 8], the q-method

of Davenport [2, 4, 9], and Markley's SVD algorithm [4, 10], which is very similar to

Farrell and Stuelpnagel's polar-decomposition algorithm in concept and execution.

The second class of solutions �rst determines λmax, the maximum characteristic value

of the Davenport matrix K [1, 2, 4], by some method especially tailored to the Wahba

problem and then, knowing λmax, solves the simpler problem of constructing the optimal

quaternion q̄∗ or the optimal direction-cosine matrix A∗
from K or B. These are the

faster solutions to the Wahba problem. The �rst of these was QUEST [2, 4] followed a

decade later by FOAM [4, 11] and �nally by Mortari's many Euler and ESOQ algorithms

[4, 12�16].
7

Of the Mortari algorithms, the top-of-the-line algorithm is ESOQ2 [4, 15, 16].

The algorithms of this second group solve for λmax by applying the Newton-Raphson method

to the characteristic polynomial using an initial value λo easily calculable from the weights

of the Wahba cost function. This procedure was introduced in Reference [2] and has

been copied by all later algorithms of the second class.
8

The QUEST algorithm uses the

QUEST form of the characteristic polynomials, the other algorithms the FOAM form. In

in�nitely precise arithmetic the two forms are exactly equivalent.

The two classes of algorithms have di�erent numerical qualities. The algorithms of

the �rst class, which rely on general-purpose numerically stable library routines, are

extremely stable, because every conceivable special case has already been treated in the

standard library routine. This means, however, that they carry for us a lot of excess

baggage which is not needed for the problem at hand (the Wahba problem). As a

result they are slower than an algorithm speci�cally tailored to the needs of the Wahba

problem. Davenport's original implementation of the q-method, which employed a library

routine for Householder's method for �nding the characteristic vectors and characteristic

values of a real-symmetric matrix, was burdened with an algorithm of extreme complexity,

7
ESOQ1.1 and ESOQ2.1 are actually the invention of Markley.

8
As noted frequently, for attitude data of accuracy 10 arcsec/axis or better, a single Newton-Raphson iteration of

the characteristic polynomial will yield a value for λmax whose precision exhausts that of an IEEE double-precision

oating-point number (64 bits or approximately 17 signi�cant digits).



104 Cheng and Shuster

whose computational burden may vary from library to library. For example, there are 16

di�erent code paths underlying the MATLAB
r

(LAPACK [17]) eig function, depending

on the nature of the arguments [18]. A customized implementation that directly calls the

appropriate low-level routine beneath the MATLAB
r

eig interface would improve the

execution time of q-Davenport, because the K matrix is always real-symmetric and 4 × 4.
Likewise, the execution time would be smaller if one could design the program to �nd only

the largest characteristic value and associated characteristic vector. Similar arguments

hold for the implementation of a general all purpose SVD algorithm (MATLAB
r

svd)

in Markley's SVD method. The algorithms of the second class, because they use custom-

tailored numerical algorithms are faster.

The computational complexity of using the QUEST or FOAM form of the characteristic

polynomial are the same, and the construction of the B or K matrix is the same for

all algorithms.
9

Di�erences in execution of the various fast algorithms depend on the

computational requirements for computing the coe�cients of the characteristic polynomial

and the construction of the optimal attitude from λmax and B (equivalently, from λmax
and K). A time-saving feature of the QUEST algorithm is that it constructs the optimal

quaternion from the same intermediate variables as were used to construct the characteristic

polynomial.

In all of the op-count or timing tests presented here, only minimal versions of the

attitude estimation algorithms were tested, as in Reference [4]. Missing from the tests,

as in Reference [4], are the examination of the computational burden due to low-level

data checking, data adjustment, data validity tests (in QUEST the TASTE test [20]),

observability tests, the computation of the attitude covariance matrix, or the method of

sequential rotations [2], none of which need be the same for each algorithm. The timing

tests of Reference [4] and this work are, thus, somewhat unrealistic in nature and might

never have been studied by the present authors, had Reference [4] not established a

precedent. In every case we have insisted that the �nal output be the quaternion, thus

placing an additional small extra burden on the M-SVD and FOAM algorithms. These

algorithms, however, are somewhat slower than the others in any event. Since it is hard

to imagine an attitude determination system in which the direction-cosine matrix will not

also be needed, and the quaternion will always be needed for archiving results, perhaps, it

would have been more democratic to insist that all algorithms output both representations.

However, we have not done this.

The E�ciency and Speed Tests

In the present work we have performed four di�erent speed tests :

• MATLAB
r

oating-point operation counts (op counts)

• MATLAB
r

execution times

• execution times of MATLAB
r

C-mex �les

• execution times of stand-alone C-language compilations

Of these only the last is pertinent to execution times of mission software. The �rst

three are presented largely because Reference [4] relied solely on MATLAB
r

op counts

for the computations. As we shall see, MATLAB
r

op counts and even MATLAB
r

9
M-SVD and FOAM do not calculate K, which, however, requires no oating-point multiplications or divisions

to be calculated from B.



The Speed of Attitude Estimation 105

execution times are poor criteria for judging algorithm speed. We have used two di�erent

C compilers and mathematics libraries to generate the C-mex �les and the stand-alone

executable programs. It is interesting that these two do not generate compatible results

for relative execution times.

The computer platform in all tests was a Dell Precision PWS 380 desktop personal

computer embodying an Intel
r

Pentium
r

D CPU with clock frequency 3 GHz and with

2 GB of random access memory. The operating system was Microsoft Windows
r

XP

Professional, version 2002, with service pack 2.

We have generated test data consisting of one thousand randomly generated frames each

consisting of 2, 3, 4, or 25 measurements. The test samples for 2, 3, and 4 measurements

were an obvious subset of the 25-measurement samples. We made certain that in each

frame at least two observation vectors were separated by an angle of at least 0.1 rad and

that the angle of rotation of the attitude used to generate the reference vectors from the

observation vectors lay between 0.1 rad and π − 0.1 rad, so that there would be no need

to perform the method of sequential rotations [3, 4]. Measurement noise was applied to

the reference directions by adding a Gaussian random error of mean zero and standard

deviation σ = 6 arcsec and then renormalizing the vector. These noisy reference vectors

were then transformed to the body frame to create the observation vectors. In all tests

for n measurements the inputs were two data matrices (one for the observed directions

and one for the reference directions) each of dimension 3×1000 n, where n = 2, 3, 4, or 25.
When determining execution times these 1000 samples have been repeated 5,000 times

to reduce truncation errors. (One assumes by a factor 1/
√

5000 ≈ 1/70.)
The MATLAB

r
m-�les were written in the MATLAB

r
script language and executed in

MATLAB
r
. The MATLAB

r
C-mex �les were written in C, compiled with dynamically-

linked library �les, and executed in MATLAB
r
. The stand-alone C executables were

written in C and executed independently of MATLAB
r

as a Windows console program.

MATLAB
r

6.5, which incorporates LAPACK and the JIT-accelerator, is used for most of

the MATLAB
r
-related experiments. MATLAB

r
5.3, an earlier version, is used for op

counting. The C source code for the C-mex �les and for the stand-alone executables was

compiled using Microsoft Visual Studio.Net 2003 (known also as Visual C++ 7.1) or the

GCC (GNU compiler collection) C/C++ compiler.

In our e�ciency and speed tests we have examined the iterative algorithms: QUEST,

QUEST
MM

, FOAM, ESOQ1, ESOQ2, OSOQ1, OSOQ2, QUESTOQ1 and QUESTOQ2,

and the non-iterative algorithms: q-Davenport, M-SVD, ESOQ1.1 and ESOQ2.1. The

last two perform one execution for the solution of the maximum overlap characteristic

value λmax, a normally iterative procedure. Since these algorithms perform exactly one

and only one execution of the computation of λmax, we have classed them as non-iterative.

QUEST
MM

is the version of QUEST implemented by Reference [4] and used an external

function call to evaluate determinants. The original QUEST implementation calculated

the determinant explicitly without an external function call. Both implementations have

been tested for e�ciency and speed. The di�erences in the results for QUEST and

QUEST
MM

will show the extent to which minute di�erences in coding e�ect these results.

OSOQ1 and OSOQ2 di�er from ESOQ1 and ESOQ2 in the same way that QUEST

di�ers from QUEST
MM

. QUESTOQ1 and QUESTOQ2 are variations of ESOQ1 and

ESOQ2 in which the QUEST characteristic polynomial is used for the computation of



106 Cheng and Shuster

the maximum overlap characteristic value. The QUESTOQ1 and QUESTOQ2 results

will not be presented explicitly.

Numerical Results: MATLAB
r

Flop Counts

The MATLAB
r

ops function has been obsolete since the incorporation of LAPACK

(Linear Algebra PACKage), the modern replacement for LINPACK and EISPACK, in

MATLAB
r

6, because most of the oating-point operations are now performed in

optimized BLAS (Basic Linear Algebra Subprograms) that do not record op counts

[18]. Also, not only may ops not have been counted consistently in previous MATLAB
r

releases, but non-oating-point operations, such as logical expressions, are ignored in op

counting. More importantly, for modern computer architectures oating-point operations

may not be the dominating factor in execution speed. Memory reference and cache

usage may be more important [18]. Flop counts for this work have been obtained using

MATLAB
r

version 5.3.

MATLAB
r

often does not count ops realistically for calls to precompiled utilities

(like those for the singular-value decomposition and the characteristic value decomposition

used here). In these cases not all oating-point operations may be counted. Furthermore,

MATLAB
r

counts additions, subtractions, multiplications and divisions as equal oating-

point operations, although for IEEE double-precision numbers a multiplication or division

requires 64 times as many binary operations as do an addition or subtraction. Hand-

counting may be more reliable, but this may be di�cult for non-iterative algorithms

such as q-Davenport and M-SVD, in which the number of ops will depend on the

values of the inputs. Calls to special functions of a single variable generally require

eight multiplications, because such calculations are usually performed using an optimized

eighth-order polynomial [22].

As an example of the discrepancies in op counts in MATLAB
r
, we note that

MATLAB
r

function det computes the determinant from the triangular factors of a

matrix obtained by Gaussian elimination (the LU decomposition) [23]. This factorization

based approach is generally more robust and more accurate than the naive calculation

of the determinant using the usual expansion expression. The naive computation of

the determinant of a 3 × 3 matrix requires 12 ops while, according to the MATLAB
r

ops function, an external call to det requires 13. The MATLAB
r

det function, however,

calculates the determinant by performing an LU factorization, and thus requires many more

ops than 13. Thus, the discrepancy in the number of ops is greatly underestimated by

MATLAB
r
. In fact, we �nd that the MATLAB

r
op count for the determinant is always

equal to that for the LU decomposition of the same matrix. Because the MATLAB
r

det

function has been precompiled, however, the complexity of det is hidden somewhat by its

high speed.

Table 1 shows our results for op counts of the fast optimal algorithms. Reference [4]

found that for zero iterations the ESOQ1 and ESOQ2 algorithms were most e�cient, which

is borne out also by our results here. That work found also that for a single iteration,

ESOQ1.1 was the fastest. ESOQ1.1 and ESOQ2.1 are only approximate algorithms

incapable of re�nement by further iteration. We note also that in all other cases it is

QUEST and QUEST
MM

which are the fastest.

In Reference [4], because of the supposed convergence problem, the QUEST algorithm

(really the QUEST
MM

algorithm) was eliminated as a contender in the speed (really the

e�ciency) contest. However, as we commented in Reference [1], that lack of robustness



The Speed of Attitude Estimation 107

TABLE 1 MATLAB
r

Floating-Point Operation Counts (Flops) for the Fast Optimal

Attitude Estimators

Iterations FOAM QUEST
MM

ESOQ1 ESOQ2 QUEST OSOQ1 OSOQ2

2 Measurements

exact 276 179 246 238 187 178 188

0 257 146 116 114 147 112 113

1 292 183 257 254 193 191 201

2 303 194 269 265 207 202 212

3 314 205 281 276 221 210 223

4 325 216 293 287 235 224 234

5 336 227 305 298 249 235 245

3 Measurements

0 278 167 137 135 168 133 134

1 313 204 278 275 214 212 222

2 324 215 290 286 228 223 233

3 335 226 302 297 242 234 344

4 346 237 314 308 256 245 255

5 357 248 326 319 270 256 266

4 Measurements

0 299 188 158 156 189 154 155

1 334 225 299 296 235 233 243

2 345 236 311 307 249 244 254

3 356 247 323 318 263 255 265

4 367 258 335 329 277 266 276

5 378 269 347 340 291 277 287

25 Measurements

0 740 629 599 597 630 595 596

1 775 666 740 737 676 674 684

2 786 677 752 748 690 685 695

3 797 688 764 759 704 696 706

4 808 699 776 770 718 707 717

5 819 710 788 781 732 718 728

TABLE 2. MATLAB
r

Floating-Point Operation Counts (Flops) for the q-Davenport,

M-SVD, ESOQ1.1, and ESOQ2.1 Algorithms

Number of

q-Davenport M-SVD ESOQ1.1 ESOQ2.1
Measurements

2 715 523 161 163

3 752 797 182 184

4 771 853 203 205

25 1189 1347 644 646



108 Cheng and Shuster

occurred only for a very unphysical and somewhat ridiculous example, and disappeared

entirely with a trivial rearrangement of terms in the QUEST characteristic polynomial

(see footnote 5 above). At the same time ESOQ1 and ESOQ2 win the speed contest on

the basis of their performance for no iterations whatsoever, the case for which QUEST,

even for the far-fetched scenario 2 of Reference [4], has no robustness problem. This

seems a somewhat contrived result. Clearly, in the vast majority of cases it is QUEST

(or QUEST
MM

) which is the most e�cient in MATLAB
r
.

Table 2 shows the results for the non-iterative algorithms. It is interesting to note that

the number of ops required for q-Davenport and M-SVD di�ers less from that for the

iterative algorithms as the number of measurements increases, indicating that for a very

large number of measurements the ops devoted to computing B and K overwhelm the

other operations, as one would expect. However, as we have said, MATLAB
r

does not

count ops realistically for library functions such as eig and svd, which, naturally, �gure

prominently in the MATLAB
r

implementations of q-Davenport and M-SVD.

Numerical Results: MATLAB
r

Execution Times

Beginning with version 6.5, MATLAB
r

has incorporated the JIT (just-in-time) accel-

erator in its system. This greatly lessens the execution time of MATLAB
r

programs but

not necessarily consistently. A program may execute more quickly than a subset of its

operations. Therefore, all tests of MATLAB
r

execution times have been performed with

the JIT accelerator turned o�. The exact origin of the inconsistencies in timing tests may

be very complex.

There are two timing functions in MATLAB
r
, cputime and tic/toc. The �rst records

only actual CPU time, while the second measures actual time elapsed (�wall-clock� time)

and is, therefore, more sensitive to properties speci�c to the platform. The results

reported here for MATLAB
r

execution times were all determined using cputime (with

the JIT accelerator o�). This was also the con�guration for measuring execution time

for C-mex �les.

The MATLAB
r

JIT-accelerator reduces interpreter and data-handling overhead [24]

by converting many p-code
10

instructions into native machine instructions. The native

machine instructions su�er no interpreter overhead and, therefore, run very quickly. By

default, the state of the JIT-accelerator is on. The action of the JIT-accelerator is rather

complicated and sometimes seemingly counter-intuitive. For example, when the JIT-

accelerator is on, the function call for the determinant function is slower than the explicit

calculation of the determinant, at least in MATLAB
r

6.5. When the JIT-accelerator is

o�, the opposite is true. We have, therefore, executed our tests with the JIT-accelerator

o� in order to better simulate the performance of the compiled programs more likely to

be used in mission support. Di�erences in MATLAB
r

overhead may also play a role.

For OSOQ1 and OSOQ2 the MATLAB
r

pro�le function was used to optimize the

m-�les by tracking their execution times. Those parts of the m-�les that took unnecessarily

long to execute were rewritten to improve e�ciency.

Tables 3 and 4 show the timing results for the execution of the MATLAB
r

m-�les.

We note immediately that QUEST
MM

and QUEST are the fastest algorithms in all cases,

and our optimized OSOQ1 and OSOQ2 are faster then the corresponding ESOQ1 and

10
The p-code was the linear stream of instructions converted from the MATLAB

r
code and executed by the

MATLAB
r

interpreter in earlier versions.



The Speed of Attitude Estimation 109

TABLE 3 MATLAB
r

Execution Times (µs) for the Fast Optimal Attitude Estimators

(JIT-Accelerator o�)

Iterations FOAM QUEST
MM

ESOQ1 ESOQ2 QUEST OSOQ1 OSOQ2

2 Measurements

exact 241 222 353 343 227 325 291

0 219 175 230 195 181 216 185

1 255 230 371 359 236 342 310

2 264 241 380 368 248 350 319

3 273 253 389 378 260 359 329

4 283 265 398 386 271 368 336

5 291 276 407 395 283 376 345

3 Measurements

0 220 175 229 195 181 217 185

1 259 234 376 364 240 348 312

2 268 246 386 373 253 357 321

3 277 258 395 383 264 366 330

4 286 269 403 391 276 375 339

5 295 281 412 400 286 383 348

4 Measurements

0 221 177 231 196 183 218 186

1 261 235 376 364 241 348 314

2 270 248 386 373 253 358 323

3 278 259 395 382 265 366 332

4 288 270 403 391 276 375 340

5 296 282 413 400 288 384 349

25 Measurements

0 229 187 240 207 192 226 195

1 271 244 385 373 252 357 323

2 280 256 394 383 264 366 332

3 289 269 403 392 275 374 341

4 297 280 412 401 287 384 349

5 306 292 421 409 299 393 358

TABLE 4. MATLAB
r

Execution Times (µµµs) for the q-Davenport, M-SVD, ESOQ1.1, and

ESOQ2.1 Algorithms (JIT-accelerator o�)

Number of

q-Davenport M-SVD ESOQ1.1 ESOQ2.1
Measurements

2 143 208 287 268

3 141 212 288 268

4 142 213 289 269

25 151 223 296 279



110 Cheng and Shuster

ESOQ2. The di�erences in speed among the di�erent iterative algorithms were not great,

just as the di�erences in op counts were not great. Particularly noteworthy is that the

speed of the q-Davenport and M-SVD algorithms exceed that of QUEST, which shows the

unreliability of MATLAB
r

as a laboratory for speed tests, since these last two algorithms

impose a signi�cantly greater computational burden.

Numerical Results: MATLAB
r

C-mex Files

For the C-mex �les and stand-alone executable programs we have examined the

execution times for two di�erent C environments and mathematics libraries. The �rst of

these was Microsoft Visual Studio Net 2003 (also known as Visual C++ 7.1) using the

LAPACK routines for characteristic value decomposition and singular-value decomposition

taken from the MATLAB
r

mathematics library (labeled there eig and svd. The second C

environment was GCC and the similar routines from the GSL (GNU Scienti�c Library).

For the iterative algorithms, we have presented the results only for C-mex �les constructed

using Microsoft Visual C++, but for the non-iterative algorithms, we have shown the

results for both compilers to show the typical di�erences in speed.

It is obvious from Table 5 that the execution times are dominated by the MATLAB
r

overhead. The execution times for the C-mex �les are approximately an order of magnitude

greater than those for the m-�les. The di�erence between the execution times for the

iterative and non-iterative algorithms is small, but only because of the excessive overhead

of MATLAB
r

involved in the C-mex �les. Note that the execution times for the C-mex

�les in Table 6 created using the GCC are somewhat faster than those created using

Microsoft Visual C++. This is likely due to the fact that the Microsoft Visual C++

versions have used the LAPACK mathematics library of MATLAB
r
, whose functions are

much more complex than those of the GSL library used by C.

Numerical Results: Stand-alone Executable Programs

For stand-alone executables, the timing function (Windows application programming

interface, API) timeGetTime was used to measure elapsed time under Windows XP. Here,

we have presented explicit results for both Microsoft Visual C++ and for GCC.

The results for the iterative algorithms are shown in Tables 7 and 8. The results of

the two tables are very similar. We see that Microsoft Visual C ++ favors OSOQ1,

our optimized ESOQ1, while the GCC favors QUEST. Note that the FOAM algorithm

requires considerably longer execution times than the other iterative algorithms, which

are all roughly comparable. As one gets closer to real mission software, the di�erences

in the execution times becomes less important. For the most part the execution times

for the QUESTOQ algorithms were intermediate between those of the respective OSOQ

and ESOQ algorithms.

The results for the non-iterative algorithms are shown in Table 9. Here, we have

included also the combination of the Microsoft Visual C++ compiler with the GSL

mathematics library. The remaining fourth combination of the GCC coupled with the

MATLAB
r

mathematics library presented special di�culties in MATLAB
r

6.5 and was

not studied. The di�erences in execution times reect the better optimization capabilities

of the Microsoft Visual C++ compiler and the greater simplicity of the functions in the

GSL mathematics library.



The Speed of Attitude Estimation 111

TABLE 5. Execution Times (µµµs) for C-mex Files of the Fast Optimal Attitude Estimators

within MATLAB
r

(using Microsoft Visual C++)

Iterations FOAM QUEST
MM

ESOQ1 ESOQ2 QUEST OSOQ1 OSOQ2

2 Measurements

exact 32.720 31.500 32.686 31.092 31.500 33.030 33.062

0 31.186 31.220 31.812 31.406 31.406 30.874 31.314

1 33.218 32.374 33.030 33.844 31.842 32.030 31.312

2 30.156 32.218 32.968 33.156 32.376 31.500 31.718

3 32.032 32.186 33.218 33.250 32.000 32.062 32.844

4 32.656 32.814 32.624 33.562 31.906 31.718 31.874

5 32.906 31.876 33.156 33.562 32.126 32.782 32.250

3 Measurements

0 31.156 30.844 31.374 31.562 31.436 31.376 31.718

1 32.936 32.280 32.376 30.812 31.500 32.342 32.906

2 32.188 32.500 32.436 31.342 32.218 31.968 32.156

3 32.186 32.220 32.876 31.282 31.468 32.344 32.094

4 31.718 32.186 32.718 31.436 31.312 31.218 32.530

5 32.408 31.624 32.094 31.032 31.564 32.282 31.844

4 Measurements

0 30.844 31.968 30.250 31.124 30.000 29.780 31.250

1 33.438 33.686 32.064 31.406 33.812 33.436 33.782

2 32.812 33.532 32.688 31.156 32.782 33.344 33.592

3 32.750 33.342 32.374 31.032 33.186 33.250 33.218

4 33.218 33.814 32.874 31.376 32.626 33.530 33.250

5 33.376 33.000 32.938 31.500 33.562 33.626 32.936

25 Measurements

0 35.562 34.438 34.250 34.438 35.156 34.344 34.656

1 35.094 34.594 35.688 34.562 35.656 34.562 35.530

2 34.968 35.188 35.436 34.686 35.656 35.874 35.188

3 35.406 35.092 35.500 34.688 35.344 35.376 35.250

4 35.906 35.064 35.342 34.750 35.906 34.780 34.812

5 36.280 34.874 35.814 34.562 35.936 35.938 35.156

TABLE 6. Execution Times (µµµs) for the q-Davenport and M-SVD Algorithms as C-mex

�les in MATLAB
r

Number of q-Davenport q-Davenport M-SVD M-SVD

Measurements (MSVC/MATLAB) (GCC/GSL) (MSVC/MATLAB) (GCC/GSL)

2 72.97 54.53 69.38 57.81

3 71.87 54.85 74.53 57.03

4 71.88 54.53 75.47 57.03

25 75.00 57.66 78.43 60.63



112 Cheng and Shuster

TABLE 7. Execution Times (µµµs) for Stand-Alone Executable Versions of the Fast Optimal

Attitude Estimators (using Microsoft Visual C++)

Iterations FOAM QUEST
MM

ESOQ1 ESOQ2 QUEST OSOQ1 OSOQ2

2 Measurements

exact 0.447 0.350 0.414 0.472 0.343 0.337 0.405

0 0.382 0.263 0.250 0.303 0.268 0.244 0.304

1 0.429 0.337 0.426 0.479 0.332 0.323 0.401

2 0.465 0.369 0.459 0.510 0.363 0.360 0.436

3 0.500 0.403 0.496 0.552 0.395 0.391 0.469

4 0.530 0.436 0.534 0.581 0.429 0.424 0.501

5 0.573 0.475 0.574 0.630 0.468 0.461 0.540

3 Measurements

0 0.397 0.281 0.267 0.320 0.290 0.265 0.325

1 0.460 0.351 0.447 0.518 0.343 0.350 0.420

2 0.495 0.382 0.481 0.533 0.376 0.384 0.452

3 0.530 0.414 0.522 0.565 0.409 0.416 0.485

4 0.560 0.447 0.557 0.626 0.442 0.451 0.519

5 0.603 0.486 0.597 0.637 0.480 0.490 0.559

4 Measurements

0 0.419 0.306 0.295 0.349 0.307 0.292 0.350

1 0.478 0.373 0.471 0.548 0.369 0.366 0.437

2 0.514 0.404 0.503 0.561 0.400 0.400 0.468

3 0.549 0.437 0.548 0.593 0.432 0.431 0.502

4 0.580 0.471 0.584 0.657 0.467 0.466 0.536

5 0.624 0.509 0.624 0.668 0.505 0.506 0.575

25 Measurements

0 1.144 1.021 1.003 1.072 1.023 1.000 1.069

1 1.209 1.099 1.168 1.266 1.093 1.094 1.157

2 1.246 1.131 1.204 1.280 1.127 1.122 1.190

3 1.285 1.158 1.246 1.315 1.155 1.153 1.223

4 1.313 1.193 1.288 1.374 1.190 1.185 1.260

5 1.353 1.231 1.326 1.386 1.228 1.226 1.298

Note that the execution time for q-Davenport is at best about 60 times longer than

that of QUEST.



The Speed of Attitude Estimation 113

TABLE 8. Execution Times (µµµs) for Stand-Alone Executable Versions of the Fast Optimal

Attitude Estimators (compiled using GCC)

Iterations FOAM QUEST
MM

ESOQ1 ESOQ2 QUEST OSOQ1 OSOQ2

2 Measurements

exact 0.617 0.412 0.441 0.504 0.397 0.431 0.558

0 0.531 0.328 0.295 0.334 0.332 0.291 0.396

1 0.576 0.434 0.459 0.531 0.415 0.452 0.551

2 0.610 0.468 0.497 0.569 0.446 0.513 0.585

3 0.648 0.504 0.536 0.607 0.481 0.531 0.624

4 0.685 0.538 0.579 0.642 0.517 0.569 0.661

5 0.723 0.575 0.615 0.680 0.552 0.608 0.698

3 Measurements

0 0.551 0.350 0.315 0.357 0.346 0.322 0.422

1 0.602 0.438 0.480 0.540 0.419 0.462 0.553

2 0.643 0.473 0.519 0.578 0.454 0.499 0.589

3 0.679 0.506 0.557 0.613 0.488 0.536 0.631

4 0.718 0.539 0.599 0.653 0.522 0.579 0.666

5 0.757 0.575 0.636 0.690 0.554 0.614 0.706

4 Measurements

0 0.589 0.382 0.347 0.384 0.383 0.350 0.455

1 0.644 0.478 0.520 0.577 0.460 0.510 0.593

2 0.684 0.513 0.560 0.615 0.495 0.546 0.630

3 0.720 0.548 0.598 0.653 0.528 0.585 0.668

4 0.757 0.582 0.642 0.691 0.561 0.623 0.705

5 0.796 0.616 0.680 0.728 0.595 0.659 0.742

25 Measurements

0 1.618 1.397 1.372 1.283 1.403 1.241 1.416

1 1.653 1.468 1.504 1.577 1.455 1.487 1.579

2 1.694 1.505 1.545 1.608 1.485 1.525 1.619

3 1.731 1.539 1.578 1.675 1.522 1.568 1.657

4 1.765 1.578 1.621 1.684 1.560 1.597 1.694

5 1.803 1.603 1.660 1.722 1.587 1.637 1.733

Discussion and Conclusions

We have seen that the performance of the Wahba algorithms, with regard to accuracy,

robustness and speed, is much more complex than presented in Reference [4]. The

comments made by Reference [4] were correct certainly, but the larger picture is much

more interesting.



114 Cheng and Shuster

TABLE 9. Stand-alone Execution Times (µµµs) for the q-Davenport and M-SVD Algorithms

Number of q-Davenport q-Davenport q-Davenport

Measurements (MSVC/MATLAB
r

) (GCC/GSL) (MSVC/GSL)

2 34.64 23.79 18.11

3 34.95 24.14 18.50

4 35.08 24.22 18.41

25 35.68 24.61 18.61

M-SVD M-SVD M-SVD

(MSVC/MATLAB
r

) (GCC/GSL) (MSVC/GSL)

2 30.51 23.49 18.85

3 36.51 22.40 18.85

4 37.29 22.44 18.93

25 39.10 23.57 19.65

As pointed out in Part I of this work [1], when the QUEST characteristic equation

has been put in partially-factored form, that is, in a form similar to that of the FOAM

algorithm, QUEST becomes as robust and as accurate for any number of Newton-Raphson

iterations as any other algorithm, except (in robustness) for the q-Householder and M-SVD

algorithms, of course.

In e�ciency and speed, the subject of the present Part II, we have seen that MATLAB
r

greatly exaggerates the di�erences between the algorithms. QUEST, as we have seen, is

most frequently the most e�cient algorithm and always the fastest algorithm in MATLAB
r
.

The great ine�ciency of the C-mex �les in general make the speed di�erence between

the iterative algorithms unimportant. Clearly, barring some special operational need, one

would never want to create a C-mex �le for a solution to the Wahba problem. For stand-

alone implementations in C on an IBM-compatible PC running Windows XP, the closest

we can come to testing the various algorithms in a realistic mission environment, we see

that the di�erences in execution times become smaller still and the relative di�erences are

greatly dependent on the choice of compiler and mathematics library. The di�erence is

dependent also on the choice of platform, the operating system, and what other programs

are running simultaneously. From the standpoint of implementation in a real mission,

there is no signi�cant advantage of one fast implementation of a solution to the Wahba

problem over another.

In 1978 using the EISPACK [19] library function EIGRS for Householder's method

written in FORTRAN IV and executed using the G compiler on an IBM-360 Model-75

mainframe computer running under IBM OS 360, Davenport's q-Method was 1000 times

longer in execution time than QUEST.
11

Today, for stand-alone executable C compilations

of q-Davenport and QUEST running under the Microsoft Windows XP operating system

on a Pentium D processor, that ratio has dropped to only 60.

11
Myron Shear, Computer Sciences Corporation, System Sciences Division, Silver Spring, Maryland, 1978 (private

communication).



The Speed of Attitude Estimation 115

While a factor of 60 in speed between QUEST and q-Davenport may seem large, it

must be recalled that the q-Davenport algorithm is much more stable and robust than

QUEST or any of the other algorithms (except for M-SVD). Also, for the q-Davenport

algorithm there is no need to exercise the method of sequential rotations [2, 4, 21], which

can increase overall execution time. The computation of the attitude-error covariance

matrix or the TASTE test [2, 4, 21] is no more burdensome in conjunction with the q-

Davenport algorithm than with QUEST. The number of lines of code in on-board mission

software devoted to the attitude computation is probably less than one percent except

for the most primitive spacecraft. In the great scheme of things makes the burden of

attitude computation unimportant. Now may be the time to abandon QUEST in favor of

standardizing on the q-Davenport algorithm. QUEST has had a long and useful career

in attitude estimation. Perhaps, it is time for QUEST to retire.

Acknowledgment

The authors are very grateful to F. Landis Markley, creator of the M-SVD and FOAM algorithms,

for generously supplying them with the MATLAB
r

m-�les used in Reference [8] and for helpful

comments. The authors are especially grateful to Grant Martin of The Mathworks, Inc., for much

kind help and good advice concerning the execution-time tests.

References

[1] CHENG, Y. and SHUSTER, M. D., �Fast Optimal Attitude Estimators : I. Factorization,

Accuracy and Robustness,� submitted to The Journal of the Astronautical Sciences .

[2] SHUSTER, M. D. and OH, S. D. `Three-Axis Attitude Determination from Vector Observa-

tions,� Journal of Guidance and Control , Vol. 4, No. 1, January�February 1981, pp. 70�77.

[3] WAHBA, G. �Problem 65�1: A Least Squares Estimate of Spacecraft Attitude,� SIAM Review,

Vol. 7, No. 3, July 1965, p. 409.

[4] MARKLEY, F. L. and MORTARI, M. �Quaternion Attitude Estimation Using Vector Mea-

surements,� The Journal of the Astronautical Sciences , Vol. 48, Nos. 2 and 3, April�September

2000, pp. 359�380.

[5] GOLUB, G. H. and VAN LOAM, C. F. Matrix Computations, The Johns Hopkins University

Press, Baltimore, 1983.

[6] FARRELL, J. L. and STUELPNAGEL, J. C. �Solution to Problem 65�1,� SIAM Review,

Vol. 8, No. 3, July 1966, pp. 384�386.

[7] WESSNER, R. H. �Solution to Problem 65�1,� SIAM Review, Vol. 8, No. 3, July 1966, p. 386.

[8] BROCK, J. E. �Solution to Problem 65�1,� ibid.

[9] KEAT, J. Analysis of Least Squares Attitude Determination Routine DOAOP , Computer Sciences

Corporation, CSC/TM�77/6034, February 1977.

[10] MARKLEY, F. L. �Attitude Determination Using Vector Observations and the Singular Value

Decomposition,� The Journal of the Astronautical Sciences , Vol. 36, No. 3, July-September 1988,

pp. 245�258.

[11] MARKLEY, F. L. �Attitude Determination Using Vector Observations: a Fast Optimal Matrix

Algorithm,� The Journal of the Astronautical Sciences, Vol. 41, No. 2, April-June 1993, pp. 261�

280.



116 Cheng and Shuster

[12] MORTARI, D. �Euler-2 and Euler-n Algorithms for Attitude Determination from Vector

Observations,� Space Technology, Vol. 16, Nos. 5�6, 1996, pp. 317�321.

[13] MORTARI, D. �Euler-q Algorithm for Attitude Determination from Vector Observations,�

Journal of Guidance, Control and Dynamics , Vol. 12, No. 2, March-April 1998, pp. 328�334.

[14] MORTARI, D. �ESOQ: A Closed-Form Solution to the Wahba Problem,� The Journal of the

Astronautical Sciences, Vol. 45, No. 2, April-June 1997, pp. 195�204.

[15] MORTARI, D. �ESOQ2 Single-Point Algorithm for Fast Optimal Attitude Determination,�

Paper AAS-97-167, Advances in the Astronautical Sciences , Vol. 97, Part II, 1997, pp. 803�816.

[16] MORTARI, D. �Second Estimator for the Optimal Quaternion,� Journal of Guidance, Control

and Dynamics, Vol. 23, No. 4, September�October 2000, pp. 885�888.

[17] BAI, Z., BISCHOF, C. and BLACKFORD, L. S. LAPACK User's Guide, The Society for

Industrial and Applied Mathematics, 2000.

[18] The MATHWORKS, �MATLAB incorporates LAPACK increasing the speed and capabilities

of matrix computation,� Cleve's Corner in MATLAB News and Notes (a quarterly Internet

newsletter), Winter 2002.

[19] GRAHAM, B. S. Matrix Eigensystem Routines	EISPACK Guide , Springer, New York and

Berlin, 1977.

[20] SHUSTER, M. D. and FREESLAND, D. C. �The Statistics of TASTE and the Inight

Estimation of Sensor Precision,� Proceedings (CD), NASA Flight Mechanics Symposium , NASA

Goddard Space Flight Center, Greenbelt, Maryland, October 18�20, 2005.

[21] SHUSTER, M. D. �In Quest of Better Attitudes� (Dirk Brouwer lecture), Paper No. AAS-

01-250, Advances in the Astronautical Sciences , Vol. 108, 2001, pp. 2089�2117.

[22] CODY, W. J. Jr. and WAITE W. Software Manual for the Elementary Functions , Prentice-Hall,

Englewood Cli�s, New Jersey, 1980.

[23] The MATHWORKS, "Function Reference: det," http://www.mathworks.com/access/helpdesk/

help/techdoc/ref/index.html?/access/helpdesk/help/techdoc/refdet.html&.

[24] The MATHWORKS, �The MATLAB JIT Accelerator,� Technology Backgrounder (an Internet

newsletter), September 2, 2000.

dquestC_2q 28 Feb 2007




