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. . . the merit of service is seldom attributed
to the true and exact performer.

William Shakespeare (1564-1616)
All's Well That Ends Well, Act III, scene vi

Abstract

A detailed study is undertaken of the accuracy and robustness of solutions to the Wahba

problem, the starting point for most modern estimators of three-axis attitude. The importance of

the partial factorization of the Davenport characteristic equation is examined, and the expanded

form of that equation is shown to lead to a complete loss of numerical signi�cance in certain

extreme cases. Recent criticisms of the QUEST algorithm are shown to be without practical

signi�cance and, with a trivial rearrangement of terms, without substance. Improvements for

future versions of QUEST, unchanged for two decades, are presented.

Introduction

One of the active and enduring fields of research in attitude estimation has been the development
of fast optimal batch attitude estimators. The first of these may have been the symmetric TRIAD al-
gorithm [1],3 a modification of Black’s TRIAD algorithm [1–3], which can been shown to optimize
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the least-square cost function

JA(A) =
1
2

n
∑

k=1

ak | 
Wk − A
Vk|
2 (1)

for the special case n = 2 and a1 = a2. Here A is the attitude matrix, 
Wk, k = 1, . . . , N , are
the measured directions as observed in the spacecraft body frame, and 
Vk, k = 1, . . . , N , are
the corresponding reference directions in the primary reference frame, assumed to be noise-free.4

Equation (1) is the famous cost function of Wahba [4], proposed in 1965, which has been the
cornerstone of almost all later work on batch optimal three-axis attitude estimation.

The symmetric TRIAD algorithm was of very limited usefulness, because it was restricted to
only two measurements and could lead to larger root-mean-square (rms) errors than the TRIAD
algorithm when the accuracies of the original input vectors were very unequal (the inaccurate mea-
surement would now corrupt both the “symmetrized” and the “antisymmetrized” inputs) [31]. Even
for equally accurate direction measurements, the improvement in accuracy (expressed as the rms
value of the magnitude of the attitude error increment [5]), of the symmetric TRIAD over the
TRIAD algorithm was less than ten percent. A truly useful fast optimal batch attitude estimation
algorithm would not come until the q-algorithm of Davenport [1, 3, 6] in 1977.

The Wahba problem could be written as

JA(A) =
n
∑

k=1

ak − tr
[(

n
∑

k=1

ak 
Wk

Vk

)T
A
]

≡ λo − tr[BTA]

≡ λo − gA(A) (2)

The matrix B is often called the attitude pro�le matrix, and from it one can construct both the
optimal attitude estimate and the attitude covariance matrix [5]. The function gA(A) is called the
Wahba gain function and is a maximum when JA(A) is a minimum. Equation (2) has been known
to many investigators of the Wahba problem from the time of its proposal [7]. A concise account
of early (and late) work on the Wahba problem can be found in the review of Markley and Mortari
[7].

Davenport’s special and enormous contribution to the Wahba problem was to show that the
Wahba gain function could be written in terms of the attitude quaternion q̄ [5] as

gq̄(q̄) ≡ gA(A(q̄)) = q̄TKq̄ (3)

where

K =
[

S − sI Z
ZT s

]

(4)

with

S ≡ B + BT , s ≡ trB and Z ≡ [B23 − B32, B31 − B13, B12 − B21]T (5abc)

4
We have been lax in labeling variables as random variables or sampled values and trust the reader to make

the proper identi�cation from the context.
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As a result, the minimization of JA(A) or, equivalently, the maximization of gA(A), could be ac-
complished by finding the solution of the eigenvalue problem

Kq̄∗ = λmaxq̄
∗ (6)

where λmax is the largest eigenvalue of the 4 × 4 real-symmetric matrix K. The attitude estimation
problem has now been transformed into a standard problem of Numerical Linear Algebra, which
could be solved by the application to K of Householder’s method [8] for finding the eigenvectors
and eigenvalues (characteristic or proper vectors and values) of a real-symmetric matrix. In this
form Davenport’s q-algorithm was first applied to the HEAO missions [9]. At its birth, Davenport’s
q-method was certainly the fastest optimal batch algorithm in existence for three-axis attitude esti-
mation. Almost all faster algorithms which have succeeded it are simply faster methods of solving
the eigenvalue equation (6).5 However, the succession was rapid and, within a year of its first
publication [6], the seed was planted for a much faster successor.

As a result of Davenport’s discovery, almost all further attention to the Wahba problem was
focused on developing faster methods for evaluating the maximum overlap eigenvalue λmax, after
which the optimization problem became a simple algebraic problem. The first of these faster algo-
rithms was QUEST [3, 7, 10], developed for the Magsat mission [11], whose speed requirements
far exceeded those of the HEAO missions. To accelerate the computation of λmax, it was noted that

λmax = λo − JA(A∗) (7)

For sensor accuracies of around 13 arc-seconds, (as in the Magsat mission), it was expected that
the second term would be smaller than the first by ten orders of magnitude. Thus, for Magsat, λo is
an excellent approximation for λmax, and further refinement of the maximum overlap eigenvalue, if
it were desired, would be possible iteratively by means of Newton-Raphson method [8].

In the QUEST algorithm the characteristic polynomial6 for K

ψ (λ) ≡ det [λ I4×4 −K] (8)

has the form [3, 7, 10]

ψQUEST(λ) = λ4 − (a + b)λ2 − cλ + (ab + cs − d) (9)

with7

a = s2 − tr
(

adjS
)

, b = s2 + ZTZ (10ab)

c = detS + ZTSZ , d = ZTS2Z (10cd)

The function “adj” denotes the matrix adjoint, and “det” the determinant. The quantities a, b, c,
and d enter also into the construction of the QUEST quaternion, further increasing the efficiency of
that algorithm. For the computer resources of 1978, the year in which it was completed, QUEST
was about 1000 times faster than Davenport’s original implementation of the q-algorithm using

5
To distinguish this implementation of Davenport's q-method from later implementations (such as QUEST),

we will refer to the original implementation as q-Davenport

6
We call ψ (λ) = 0 the characteristic equation.

7
It is more accurate numerically to evaluate c = 8 detB, which is identical to equation (10c) for in�nitely

precise arithmetic.
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Householder’s method. Even more than a quarter century after its first implementation in a real
attitude ground support system in 1979, the QUEST algorithm remains the most popular batch
algorithm for estimating three-axis attitude. The human story of the development of QUEST has
also been published [12].

It has been shown that for constant λo and assuming the QUEST measurement model [3, 13],
the optimized cost function would be smallest if the weights were chosen to satisfy

ak = µ/σ2
k (11)

[3, 13] for some positive µ with σk the angle-equivalent error level of the k-th direction measure-
ment in the QUEST measurement model [2]. For the Magsat mission, µ was chosen so that λo = 1.
In the present work, for the most part, we choose µ = 1, in which case JA(A) becomes the data-
dependent part of the negative-log-likelihood function [13, 14] of the attitude given the QUEST
measurement model [3, 13], which is


Wk = Atrue
Vk + ∆ 
Wk (12)
with

E{∆ 
Wk} = 0 , k = 1, . . . , n (13a)

E{∆ 
Wk∆ 
W

T
l } = δkl σ

2
k

(

I3×3 = 
W

true
k


W

trueT
k

)

, k, l = 1, . . . , n (13b)

After a decade, other fast algorithms began to appear. The first was Markley’s SVD algorithm
[7, 15], which calculates the optimal attitude estimate by applying the singular value decomposition
(SVD) [8] of Numerical Linear Algebra to the attitude profile matrix B. Like Davenport’s original
implementation of the q-method [3, 6, 7] Markley’s SVD algorithm8 is highly stable and robust,
because, like Davenport’s use of Householder’s method, it too utilizes a mathematical method that
has benefitted from more than a half-century of careful scrutiny and improvement. The price paid
for this reliability is in speed. Both the q-Davenport and the M-SVD algorithms are relatively slow
compared with QUEST and later optimal algorithms, although the difference has been decreasing
over the past two decades.

The next algorithm to appear was Markley’s highly imaginative FOAM algorithm
[7, 16], which, like QUEST, begins with the approximation λmax ≈ λo and then uses Newton-
Raphson iteration to determine a more refined value of the maximum overlap eigenvalue. The
characteristic polynomial for the FOAM problem (identical to that of QUEST for infinitely precise
arithmetic) has the form

ψFOAM(λ) =
(

λ2 − ‖B‖2
F

)2 − 8λ detB − 4 ‖adjB‖2
F (14)

where ‖ · ‖F denotes the Frobenius norm

‖M‖2
F =

n
∑

i=1

n
∑

j=1

|Mij|
2 (15)

and M is any n × n matrix.

8
When �SVD� is not quali�ed by Markley's name, we will refer to his SVD algorithm as M-SVD to avoid

confusion with the general algorithm of Numerical Linear Algebra.
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It has been known for some time that for extremely unbalanced measurement accuracies (equiva-
lently, weights) the FOAM form of the characteristic polynomial is better behaved numerically than
the corresponding QUEST form for extremely unbalanced weights, although the reason for this has
not been understood before the present work. We will investigate the origin and elimination of this
difference in numerical performance in a later section.

Lastly, we have Mortari’s Euler [17, 18] and ESOQ [7, 19–21] families of batch attitude es-
timation algorithms, of which only the ESOQ algorithms will concern us here.9 The important
characteristic (for the present work) of the ESOQ110 [7, 19] and late ESOQ2 [7, 20, 21]11 algo-
rithms is that they calculate λmax by applying the Newton-Raphson method to the FOAM form of
the characteristic equation.12 Recently, Bruccoleri, Lee and Mortari [22] have developed a Wahba
estimator MRAD based on the modified Rodrigues vector [5], whose execution is very similar to
that of ESOQ2. We do not examine this new algorithm here. Mortari [21] has claimed that early
ESOQ2 is faster and more accurate than QUEST.

In the above algorithm descriptions we have avoided all discussion of the manner of construction
of the optimal quaternion from λmax and K. Excellent descriptions can be found in Reference 7,
and it is unlikely that we could improve on them. Rather, our focus in the present study has been
on the characteristic polynomials and their effect on attitude estimation accuracy.

Part I of the present work has two main subparts: (A) the discussion of the results of Refer-
ence 7; and (B) an analysis of the difference in numerical behavior of the QUEST and FOAM
characteristic polynomials in the Newton-Raphson search for the largest root and the elimination
of those differences. Part II of this work [23] will examine the topic of computational speed.

The Review of Markley and Mortari

Summary of the Review

The review of Markley and Mortari [7] is in many ways a superb document, which gives concise
excellent descriptions of all of the solutions to the Wahba problem up to the year 2000. Despite
its title, it describes also the solutions to the Wahba problem which employ the direction-cosine
matrix as the attitude representation. It is, without question, an important resource on the many
solutions to the Wahba problem from 1965 until 2000 and a key paper on attitude estimation.

9
Like many Italian families, these have many members. The Euler family consists of Euler, Euler-2, Euler-n,

and Euler-q, while the ESOQ family proudly boasts ESOQ, ESOQ1, early and late ESOQ2, ESOQ1.1, and

ESOQ2.1.

10
In Reference 7, ESOQ1 is frequently referred to as ESOQ, a very di�erent algorithm, which leads to some

confusion in the nomenclature, since Mortari's ESOQ1.1 did not become ESOQ.1 in Reference 7. We use the

unambiguous designation ESOQ1 in this work. The ESOQ1.1 and ESOQ2.1 algorithms each use a special

procedure for computing λmax to �rst order only and do not use the characteristic polynomial. Their similarity

to ESOQ1 and late ESOQ2, respectively, is in the manner in which the quaternion estimate is constructed

given the �rst-order approximation for λmax. ESOQ2 underwent a similar metamorphosis to that of ESOQ

but the name wasn't changed. Hence, we use the designations early and late ESOQ2.

11
References 20 and [21] really refer to early ESOQ2.

12
This was not always true. The earliest report of ESOQ2 [20] determined λmax from an exact analytic

expression in terms of surds. Later the method was changed to applying Newton-Raphson iteration to the

FOAM form of the characteristic equation without changing the algorithm name or numerical designation.

For clarity we denote the version of ESOQ2 using the expression for λmax in terms of surds as �early ESOQ2�

and the version using the Newton-Raphson method as �late ESOQ2.�
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Unfortunately, while the algorithm descriptions are excellent, the performance comparisons are
marred by incomplete information about the performance of the QUEST algorithm, which may
give a false impression of the performance of QUEST, perhaps even make some readers think that
the use of QUEST may be dangerous, which is certainly not the case.

The assertions of Reference 7 about QUEST are :

• QUEST is less accurate and less robust than the algorithms developed by the authors
of Reference 7 and does not necessarily converge.

• QUEST requires more floating-point operations than some of the algorithms of the
authors of Reference 7.

The quick response to the first assertion is that QUEST appears to be less accurate and less robust
only if (1) the algorithm is tested for an extremely unphysical case (scenario 2 of Reference 7)
which cannot occur in the real world, and (2) the QUEST algorithm is executed in an unnecessary
and undesirable manner. Only if both of these conditions are met, will the performance of the
QUEST algorithm be degraded. In addition, if a minor rearrangement of terms is made in the
QUEST characteristic polynomial,13 there will be no degradation in the performance of QUEST,
not even in the far-fetched scenario 2 of Reference 7. The detailed examination of the accuracy and
robustness of the various fast optimal batch algorithms is the principal subject of the present work
(Part I).

The quick response to the second assertions is that the examples reported in Reference 7 are
indeed true, but that these represent only a minority of the cases. For most cases, QUEST requires
fewer floating-point operations than the other algorithms and in terms of execution time, the only
true measure of algorithm speed, QUEST is even slightly faster within MATLAB than any of the
other other fast algorithms in all cases. Reference 7 divides the algorithms into robust or non-robust
according to their behavior under iteration. Because QUEST showed problems in the far-fetched
scenaro 2, Reference 7 classifies it as non-robust, and compares it only with no iterations of ESOQ
and ESOQ2 and with ESOQ1.1 and ESOQ2.2 and finds it require the greatest number of Matlab
floating-point operations of the zeroth or first order algorithms for the cases considered. As Part
II of this work [23] will show, it should be classified as the robust algorithm requiring the fewest

number of MATLABr floating-point operations. A more general and more careful treatment of
floating-point operations and as well as a general treatment of execution time are the subject of Part
II of this work [23].

Performance of the Fast Attitude Estimators in the Review of

Markley and Mortari

Reference 7 considered among others the following test scenario (scenario 2). A star tracker of
accuracy σ1 = 1 arcsec measures a single star direction 
W1 along its boresight (the body x-axis),
while two coarse sensors, each of accuracy σ2 = 1 deg, measure directions, 
W2 and 
W3, in the
xy-plane offset from the negative boresight by an angle ±α with α ≈ 4.35 deg. The exact value of
α was chosen so that sin α and cos α would have finite decimal representations. Thus,


W1 =





1

0

0



 , 
W2 =





−0.99712

0.07584

0



 , and 
W3 =





−0.99712

−0.07584

0



 (16abc)

13
This rearrangement is that of simply replacing λ4 − (a + b)λ2 + ab by (λ2 − a)(λ2 − b).
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and all three vectors have unit norm exactly. The values of the reference directions will depend
on the attitude.14 This particular symmetric choice of measurements insures also that the attitude
estimate-error covariance matrix will be diagonal with respect to the star-tracker axes. The errors
were assumed to be modeled by the QUEST measurement model [3, 10, 13]. Thus,

P−1
θθ = diag

[

2 sin2 α

σ2
2

,

(

1

σ2
1

+
2 cos2 α

σ2
2

)

,

(

1

σ2
1

+
2

σ2
2

)]

(17)

In the present study one thousand samples were computed for the q-Davenport, M-SVD, FOAM,
QUEST, ESOQ1, ESOQ1.1, late ESOQ2 and ESOQ2.1 algorithms, which led to the results of
Table 1.15 The weights have been chosen (as in Reference 7) to be ak = 1/σ2

k. "Iterations"
in Table 1 refers to the number of Newton-Raphson iterations in the calculation of λmax; “∆ cost
function” denotes the root-mean-square16 value of the difference of the computed cost function from
the value computed by the q-Davenport algorithm;17 “x” denotes the root-mean-square (rms) value
of the incremental error angle (in degrees) of the attitude estimate for the given algorithm about
the star-tracker x-axis; “yz” denotes the rms value (over the one thousand samples of the rss value
(over the two axes) of the incremental angles about the y- and z-axes). We have written QUESTMM

in Table 1, because Reference 7 has implemented a slightly different version of QUEST than that
developed in References [1] and [2]. QUESTMM is actually slightly faster than QUEST [23].18 In
the remainder of this report QUEST without a superscript will always denote the version of QUEST
as created in 1978 by the second author of the present work. The distinction will be important in
the sequel work [23], since it affects the execution time. The results in Table 1 should be compared
with the attitude estimation accuracies about these axes computed from equation (17)19

σx ≈ 9.32 deg and σyz ≈ 1.41 arcsec (18ab)

14
Since one wishes to maintain the same values of the observations in every sample, one must add Gaussian

random noise to the reference directions, which was what was done in Reference 7.

15
For greater readability we use the notation 3 e-5 rather than the 3 × 10−5

of Reference 7, and we seldom

present more than three signi�cant digits. Unlike Reference 7 we present the results of the �rst �ve iterations

of the iterative algorithms. Reference 7 also presents results for the maximum error, a �gure of merit of

questionable value [24].

16
Mislabeled root-sum-square (rss) in Reference 7

17
Barring inadequacies in the algorithms, the expected value of the Wahba cost function (with µ = 1) should

be 3/2, as shown in Reference 25. Clearly, except for QUEST, all iterative algorithms in Table 1 are seen to

converge e�ectively to the value 3/2 in no more two steps. The di�erence in performance for the convergence

of the cost function (equivalently, for λmax) are due to di�erences in numerical precision. Note that many

entries for the cost function are identical for many algorithms since they all calculate a Newton-Raphson

sequence for the largest root of the same characteristic polynomial. If the (optimal) weights are chosen

instead to have unit sum, the expected value of the cost function (with in�nite-precision arithmetic) is (3/2)σ2
tot

with σ2
tot = (1/arcsec2 + 2/ deg2)−1 ≈ 2.350× 10−11

, so that the cost function for this choice of the weights (with

exact arithmetic) is 3.525 × 10−11
. The sampled mean and variance of the cost function for one-thousand

sampled values (with µ = 1) gave J (q̄∗)sampled = (3/2)(1.027±0.857), consistent with the statistical model. (Note

equations (7), (19) and (20).)

18
In fact, while the FORTRAN mission code of 1979 used an expanded expression for the determinant, the

second author's MATLAB
r

implementations have always used a function call for the determinant, the sole

di�erence between QUEST and QUEST
MM

. Thus, QUEST
MM

is not an innovation of Reference 7.

19
The di�erences between the results in equations (18) and the last two columns of Table 1 are consistent

with the expected variation of the rms sampled errors.
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The numerical results in Table 1 are very similar to those of Table 2 of Reference 7, except, alas,
those for QUEST, which are somewhat worse even than those reported by Reference 7. How-
ever, only the attitude estimate errors about the star-tracker boresight for iterated values of λmax in
QUESTMM show a significantly greater error level. Without iteration the increase in error level is
less than two percent, hardly a significant difference when the best one can do is 9 deg and for a sce-
nario which is not realizable physically (see below). Thus, the QUEST estimate without iteration
of λmax has all the accuracy one could desire.

The Very Unrealistic Test Scenario 2 of Reference 7

We make the following remarks concerning scenario 2 of Reference 7 :
(1) Scenario 2 of Reference 7 is impossible with existing sensors . The variance ratio of
fine and coarse attitude sensors in scenario 2 of Reference 7 is 12,960,000. For a typical star tracker
(accuracy = 3 arcsec) and for typical coarse attitude sensors (accuracy = 0.5 deg), the variance ratio
is only 360,000. The variance ratio of scenario 2 for 3-arcsec star trackers is realizable only if the
coarse sensors are vector magnetometers operating near a magnetic pole. The Earth has only one
geomagnetic field, not two geomagnetic fields separated in angle by 2α ≈ 8.7 deg. Scenario 2 of
Reference 7 is not of this Earth.

(2) Scenario 2 of Reference 7 uses the coarse attitude sensors unrealistically . Even
if scenario 2 of Reference 7 used only a single vector magnetometer, and, therefore, were phys-
ically realizable, it would still be using magnetometer data at magnetic latitudes in which such
data are generally discarded as useless for attitude determination. Generally, one discards vector
magnetometer data at magnetic latitudes greater than 70 deg in magnitude.

(3) Scenario 2 of Reference 7 relies on a very unrealistic star tracker. It is extraordi-
narily unlikely nowadays (and when Reference 7 was being written) that a star tracker will observe
only a single star. Consider, for example, the star tracker of the Wilkinson Microwave Anisotropy
Probe (WMAP, launched June 2001) [26]. The Lockheed AST-201 autonomous star tracker of the
WMAP spacecraft can track up to 50 stars simultaneously. During the first few years of the WMAP
mission it never observed fewer than 15 stars at a time. The average number of simultaneous star
observations per frame in that mission is about 25. In normal operation the Lockheed star tracker
even lacks the capability to output individual star directions but only the attitude quaternion, be-
cause the observation of only a single star is so impossibly unlikely, and the amount of output data
would be uncomfortably large. The Sun sensor on WMAP, the “coarser” sensor, has an accuracy
not of 1.0 deg, the accuracy of the coarse sensors in scenario 2 of Reference 7, but 20 arcsec (1
sigma), a more reasonable complement to a star tracker with a single-star standard deviation of
about 10 arcsec (1 sigma). The variance ratio for the WMAP sensors is not 12,960,000 but 4.20

20
During the late 1970s, when QUEST was being developed, star trackers, speci�cally the NASA standard

star tracker (the Ball Brothers Research Corporation's CT-401) were capable of observing only a single star at

one time. If two simultaneous star-direction measurements were needed, then two star trackers were included

in the attitude determination system, as was the case of Magsat. In 1990, star trackers existed which could

observe �ve stars simultaneously, so that only a single star tracker was needed in the attitude determination

system, but the likelihood that only a single star (or no star) would be observed in a given data frame was

still not negligible. In 2000, as illustrated by the Lockheed AST-201 for WMAP, this was obviously no longer

the case.
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TABLE 1. Estimation Results for Scenario 2 of Reference 7 (after Table 2 of Reference 7)

Algorithm Iterations ∆ Cost Function x (deg) yz (arcsec)

q-Davenport (q) — — 9.30 1.43

M-SVD — 1.40 e-5 9.30 1.43

FOAM 0 — 9.42 1.41
1 0.102 9.42 1.41
2 0.952 e-3 9.30 1.43
3 1.40 e-5 9.30 1.43
4 1.37 e-5 9.30 1.43
5 1.38 e-5 9.30 1.43

QUESTMM 0 — 9.47 1.43
1 749 106. 1.43
2 3900 101. 1.43
3 2100 99.1 1.43
4 2890 99.3 1.43
5 2500 98.4 1.43

ESOQ1 0 — 9.25 1.43
1 0.102 9.29 1.43
2 0.952 e-3 9.30 1.43
3 1.40 e-5 9.30 1.43
4 1.37 e-5 9.30 1.43
5 1.38 e-5 9.30 1.43

ESOQ1.1 1 334 49.0 1.43

ESOQ2∗ 0 — 9.42 1.43
1 0.102 9.30 1.43
2 0.952 e-3 9.30 1.43
3 1.40 e-5 9.30 1.43
4 1.37 e-5 9.30 1.43
5 1.38 e-5 9.30 1.43

∗
In the tables ESOQ2 will always mean late ESOQ2

ESOQ2.1 1 64.1 37.4 1.43

(4) QUEST
MM

, in fact, works well in scenario 2 of Reference 7 . There is no requirement
that QUEST perform iterations of the Newton-Raphson method to calculate λmax. It has been shown
[25] that

λr.v.
max = λo

[

1 − (1/2) σ2
tot χ

2(2N − 3)
]

(19a)
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with
1

σ2
tot

=
N
∑

k=1

1

σ2
k

(19b)

and where λr.v.
max denotes the random variable (a function of the random 
Wk, k = 1, . . . , N) whose

sampled value is λmax. Thus, for scenario 2 of Reference 7 we have roughly21

λmax/λo ≈ 1 − (3/2)
(

(1.0 arcsec)2 ± 2.45 (1.0 arcsec)2)

≈ 1 − 3.53 × 10−11 ± 8.64 × 10−11 (20)

The maximum overlap eigenvalue λmax differs from λo only by terms of (relative) order 10−10;
hence, without Newton-Raphson iteration of the characteristic equation should be an accurate ap-
proximation of λmax to ten signi�cant digits. From the beginning (1978) QUEST possessed an
input NEWT, which controled the number of Newton-Raphson iterations. Thus, when there is
only one star direction—easily detected in flight—one simply sets NEWT = 0, and QUEST (and
QUESTMM) will yield an accurate and robust result.22

The statement in Reference 7 that “the only useful results of QUEST are obtained by not per-
forming any iterations for λmax” is thus misleading. It would have been more justified to say that all
of the useful attitude information can be obtained from QUEST (i.e., QUESTMM) without perform-
ing any iterations, rather than the disparaging wording of Reference 7. λmax is generally computed
to higher numerical accuracy than simply as λo not for attitude estimation but for the TASTE test,
which uses the value λo − λmax. However, λo − λmax can be obtained almost as efficiently by other
means23 as demonstrated in the previous footnote.

(5) Scenario 2 of Reference 7 presents a very unwise system design . From the point of
view of system design the choice of sensor accuracies simply does not make sense. What reason-
able attitude-determination-system designer would couple a one-arc-second sensor with one-degree
sensors if it were anticipated that all sensors would be needed for attitude determination? What sys-
tem designer would spend millions of dollars for a star tracker in an attitude determination system
which will provide attitude accuracy no better than 9 deg? The WMAP attitude determination
system (sic) [26] exhibits a sensible design choice. Duh?
(6) In real life one would never use a batch algorithm for scenario 2 of Reference 7 .
For an attitude determination system, when the highest possible accuracy is a priority, when a CCD
star tracker is part of the attitude sensor suite, so is a three-axis gyro assembly. Such systems with
CCD star trackers and three-axis gyro assemblies, invariably compute the attitude by means of a
Kalman filter.24 Thus, if rare situations, similar to that of scenario 2 of Reference 7 are encountered,

21
In fact, equation (19) has been known since 1980 and noted in Reference 7. The �rst proof published in

the open literature, however, was only in 2005 [25].

22
The only loss in this situation is that one can no longer calculate the �gure of merit TASTE by computing

the �rst iteration of λmax. But TASTE can be computed just as well from λmax ≈ s + ZTY∗(0) with Y∗(0) the

estimate of the Rodrigues vector based on λo.
23
This provision was not in the original QUEST FORTRAN code of 1978, because its �rst application was to

the Magsat mission, for which the three �ne attitude sensors were nearly equal in accuracy and the angular

separation between the sensors was large. The version tested in Reference 7 was based on a modi�cation of

that QUEST code made in 1987 by Markley to improve numerical signi�cance.

24
It is typically as a preprocessor for the Kalman �lter that QUEST now has its most frequent application

[27, 28].
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it is better simply to use only the single star-direction measurement, gyro outputs and the previous
attitude estimate to estimate the attitude.25

Thus, the statements of Reference 7 that QUESTMM performs poorly are simply not true as far
as the attitude-estimation accuracy is concerned and create an unnecessary distraction. Nor would
one wish to exercise either QUEST or late ESOQ2 in a situation like scenario 2 of Reference 7.
QUEST performs poorly only if implemented in an unwise manner in this far-fetched scenario.

The QUEST and FOAM Characteristic Polynomials

The Two-Vector Case

Although we have seen that the poor or non-convergence of the λmax iteration in the QUEST
algorithm for certain extreme, unrealistic, and unrealizable cases is not of practical concern, it is,
nonetheless, true that the QUEST form of the characteristic polynomial is less accurate numerically
than the FOAM form in these physically unrealizable situations. The original QUEST algorithm
developed for Magsat included the method of sequential rotations [2] simply to avoid a problem
that might occur once every 20,000 years for that mission [10, 12]. It will repay us to pay the same
attention to the convergence issue. It will turn out that the numerical problem of the QUEST form
of the characteristic polynomial in the ultra-bizarre scenario 2 of Reference 7 can be eliminated
entirely by a very simple rearrangement of terms. In this section, we examine a very simplified
case of two measured directions, which will provide simple insights into the cause of the problems
of the QUEST form in the Newton-Raphson iteration for the maximum overlap eigenvalue. We will
treat scenario 2 of Reference 7 specifically and in detail in the next section.

The Overlap Eigenvalues

We have said that the QUEST characteristic polynomial is not as well-behaved numerically as
that for FOAM for extremely unbalanced measurements. We will investigate here the reason for this
difference in performance. Let us consider the simplest case of only two measured directions, one
with accuracy σ1 = 1 arcsec and the other with accuracy σ2 = 1 deg, the error levels of scenario 2
or Reference 7. Let the angle between the observed directions be θW and that between the reference
directions θV . Then the analytic solutions for the four eigenvalues of K are26

λ4 =
√

a2
1 + 2a1a2 cos(θW − θV ) + a2

2 = −λ1 (21a)

λ3 =
√

a2
1 + 2a1a2 cos(θW + θV ) + a2

2 = −λ2 (21b)

with
cos(θW ± θV ) = ( 
W1 · 
W2)(
V1 · 
V2) ∓ | 
W1 × 
W2| |
V1 × 
V2| (22)

25
It is worth noting that scenario 2 of Reference 7 is the perfect candidate for the application of the SCAD

algorithm [29] (�nally, an application for the SCAD algorithm!), which e�ectively in this case �nds the rotation

that satis�es 
W1 = A
V1 exactly and optimizes the overlap for the two coarse vectors. If there were only a

single coarse measurement, then scenario 2 of Reference 7 would be the perfect candidate for the TRIAD

algorithm [3].

26
Equation (21a) can be found in Reference 3.
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Thus, for θV not too small27

λ0 ≥ λ4 ≥ λ3 ≥ λ2 ≥ λ1 ≥ −λo (23)

. Likewise,

θW = arctan2

(

| 
W1 × 
W2|, 
W1 · 
W2

)

(24a)

θV = arctan2

(

|
V1 × 
V2|, 
V1 · 
V2

)

(24b)

Here, arctan2(y, x) returns the arc tangent of y/x in the proper quadrant. In the present case, θW
and θV will have values in the interval [0, π]. We assume, as usual, that the reference directions are
noise-free, in which case


W

true
k ≡ Atrue 
Vk , k = 1, 2 (25)

whence,
θV = θtrue

W , and θW = θtrue
W + ∆θW (26ab)

and we can write equivalently

cos(θW ± θV ) = cos(θW ± θtrue
W ) (27)

A more revealing form of equations (21) is

λ4 =
√

λ2
o − 4a1a2 sin2[(θW − θtrue

W )/2] = −λ1 (28a)

λ3 =
√

λ2
o − 4a1a2 sin2[(θW + θtrue

W )/2] = −λ2 (28b)

For simplicity we choose µ = σ2
tot in equation (11) so that λo is unity. Approximating the sine

function above for small angles θW and θV and making the usual approximation for the square root
when the argument is close to unity, we obtain then

λ4 = 1 − (1/2) a1a2 |∆θW |2 = −λ1 (29a)

λ3 = 1 − (1/2) a1a2 |2θ
true
W + ∆θW |2 = −λ2 (29b)

Comparing equation (29a) with equation (19) we obtain

|∆θr.v.
W |2 = (σ2

1 + σ2
2 ) χ2(1) (30)

where ∆θr.v.
W is the random variable which has the sampled value ∆θW . Thus, within terms of order

10−8 we have
(∆θW )rms = 1 deg (31)

27
For small θV it may not be true that λ4 ≥ λ3. We will assume it to be true, however. Whether λ4 or λ3 is

largest is not important to our discussion in this section.
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The Characteristic Polynomial and the Newton-Raphson Method

The characteristic polynomial for the Davenport matrix K when there are only two measure-
ments is simply

ψ (λ) = (λ − λ4)(λ − λ3)(λ − λ2)(λ − λ1) (32a)

= (λ2 − λ2
4)(λ2 − λ2

3) (32b)

= λ4 − (λ2
4 + λ2

3) λ2 + λ2
4λ

2
3 (32c)

For obvious reasons, we will call the form of equation (32b) the factored form, ψfac(λ), and the
form of equation (32c) the expanded form, ψexp(λ). In infinitely precise arithmetic, of course,
ψfac(λ) = ψexp(λ). The expanded form of the characteristic polynomial is analogous to that for
QUEST, and the factored form to that for FOAM. The two forms of equations (32) are much
simpler than those for QUEST and FOAM, as presented in equations (9) and (14), respectively
because of the restriction to only two measurements. The Newton-Raphson iteration for λmax will
take the form28

λ
(o)
max = λo (33a)

λ
(i+1)
max = λ

(i)
max − ψ (λ(i)

max)/ψ ′(λ(i)
max) (33b)

with ψ ′(λ) the derivative of ψ (λ).
Examine first the expanded form. Following equations (29) we may write

λ4 = 1 − ε4 , and λ3 = 1 − ε3 (34ab)

with ε4 and ε3 very small quantities. If we chose29

∆θW = ∆θrms
W = 1.0 deg and θtrue

W = 2.0 deg (35ab)

then
ε4 ≈ 1.175 × 10−11 and ε3 ≈ 2.938 × 10−10 (36ab)

Given these values, we have to second order in ε4 and ε3

ψexp(λ) = λ4 − (2 − δ1) λ2 + (1 − δo) (37)

with
δ1 = 2(ε4 + ε3) − (ε2

4 + ε2
3) and δo = δ1 − 4ε3ε4 (38ab)

28
We use k as a data index and i as an iteration index.

29
The value for θtrue

W has been chosen heuristically. Crudely, following the form of equation (30), we might

anticipate for three vectors that

|∆θr.v.
W |2 ≈ (σ2

1 + 2σ2
2 ) χ2(3)

so that θtrue
w ≈ 4.35 deg is nearly twice ∆θrms

W ≈ 2.45. Therefore, we have chosen θtrue
W to be approximately twice

∆θrms
w in our two-vector example. The same arguments apply if we choose θW = π − 2.0 deg.
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Numerically,

δ1 = 6.111150996221957 × 10−10 (38c)

δo = 6.111150996083843 × 10−10 (38c)

The difference in these two numbers are much less than their accuracy. Thus,

ψexp(1) = ©× 10−20 (39)

in IEEE double-precision arithmetic. We have used “©” to denote a number of order unity but
with no significant digits. Since the precision of an IEEE double-precision floating-point number
is approximately 10−16.8, the cancellations in ψexp(1) cause all numerical significance to be lost.
Similarly,30

ψ ′
exp(λ) = 4λ3 − 2(λ2

4 + λ2
3) λ

= 4 − 2(2 − 6.111 × 10−10 + 8.646 × 10−20)

≈ 1.222 × 10−9 for λ = 1 (40)

so that the denominator in the Newton-Raphson iteration retains about seven significant digits, since
we have achieved this numerical result by subtracting quantities of order unity.

Examining now the factored form we obtain to second order

ψfac(λ) = [λ − (1 − 2ε4 + ε2
4)] [λ − (1 − 2ε3 + ε2

3)] (41)

Numerically,

ψfac(1) = [1 − (1 − 2.350 × 10−11 + 1.381 × 10−22)] [1 − (1 − 5.876 × 10−10 + 8.632 × 10−20)]

= 1.381 × 10−20 (42)

and now one retains six significant digits (not all displayed) in the numerator of the first Newton-
Raphson iteration, because we never subtract quantities which differ by more than 11 orders of
magnitude. Likewise,

ψ ′
fac(1) = 2[1 − (1 − 2.350 × 10−11 + 1.381 × 10−22)]

+ 2[1 − (1 − 5.876 × 10−10 + 8.632 × 10−20)]

= 1.222 × 10−9 (43)

and ψ ′
fac(1) retains, in fact, six significant digits (not all displayed).

Thus, all significance is lost in the Newton-Raphson iteration of the expanded form of the char-
acteristic equation, but seven significant digits are retained in the Newton-Raphson iteration of the
factored form of the characteristic equation. This is the origin of the differences in precision of the
characteristic polynomials of the QUEST and FOAM algorithms, as we shall see in detail in the
next section.

30
When we are not subtracting numbers very close in value, we display no more than four signi�cant �gures.
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The QUEST and FOAM Characteristic Polynomials	

Scenario 2 of Reference 7

From equations (9) and (14) we see that the characteristic polynomial for the QUEST algorithm
in common use is in expanded form, and that for the FOAM algorithm is in what we shall call
partially-factored form. We shall label these characteristic polynomials henceforth as ψQUEST-exp(λ)
and ψFOAM-fac(λ). By direct substitution, we find for scenario 2 of Reference 7 that

a = 0.9999999974609042 and b = 0.9999999971236696 (44ab)

c = 0 (exactly) and d = 5.946137136732494 × 10−18 (44cd)

s = 1.285462824336719 × 10−6 (44e)

whence,

a + b = 1.999999994584574 and ab + cs − d = 0.9999999945845738 (45ab)

and, finally,

ψQUEST-exp(1) = 1 − 1.999999994584574 − 0 + 0.9999999945845738

= ©× 10−20 (46a)

ψ ′
QUEST-exp(1) = 4 − 3.999999989169 − 0 = 1.0830853 × 10−8 (46b)

The variable c vanishes exactly when the measurements are coplanar, because detB vanishes
identically in that case. To show this for the QUEST form requires a bit of work, but from the
FOAM form we see that the coefficient of the term linear in λ is −8 detB. With infinite-precision
arithmetic the QUEST and FOAM forms of the characteristic polynomial must be identically equal.
The tremendous loss of significance in the evaluation of the expanded form of the QUEST charac-
teristic polynomial is clear.

For the FOAM cost function, on the other hand,

‖B‖F = 0.999999986461434 and detB = 0 (exactly) (47ab)

‖adjB‖F = 1.222146568006809 (47c)

so that

ψFOAM-fac(1) = 7.3317106 × 10−18 − 0 − 5.974568934763287 × 10−18

= 1.3571416 × 10−18 (48a)

ψ ′
FOAM-fac(1) = 1.08308527 × 10−8 − 0 = 1.08308527 × 10−8 (48b)

and eight significant digits remain in the calculation of λmax.
We now note that we may factor the QUEST characteristic polynomial partially as

ψQUEST-fac(λ) = [λ2 − a] [λ2 − b] − cλ + (cs − d) (49a)

ψ ′
QUEST-fac(λ) = 2λ [2λ2 − a − b] − c (49b)
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so that

ψQUEST-fac(1) = (2.5390958 × 10−9) (2.8763304 × 10−9) − 0

− 5.946137136732494 × 10−18

= 1.3571414 × 10−18 (50)

and retains eight significant digits.
In a similar manner we may write the FOAM characteristic polynomial in expanded form to

obtain
ψFOAM-exp(λ) = λ4 − 2‖B‖2

F λ2 − 8(detB) λ + (‖B‖4
F − 4 ‖adjB‖2

F ) (51)

and it is easy to demonstrate that all significance is lost in ψFOAM-exp(1).
As a further demonstration, we have repeated the calculations of Table 1 of the present work with

the forms of the characteristic polynomials reversed. Thus, the QUEST characteristic polynomial is
now in partially-factored form and the FOAM characteristic polynomial is now in expanded form.
The results are shown in Table 2.

With this minor rearrangement of terms in the QUEST characteristic polynomial the alleged
(but not real) robustness and inaccuracy problems of QUEST disappear. Poof! To demonstrate
more clearly that the numerical precision of the characteristic polynomial is the cause of the poorer
performance of QUEST in scenario 2 of Reference 7 we have recalculated the attitude estimates
for scenario 2 with the QUEST characteristic polynomial in partially-factored form and the FOAM
characteristic polynomial in expanded form. The results are shown in Table 2. We see that QUEST
now performs as well as any of the other algorithms did in Table 1 but the other algorithms perform
in a manner similar to that of QUEST in Table 1. Whee!

Discussion and Conclusions

The QUEST algorithm, virtually unchanged since its first implementation in 1978, has been
shown, if executed properly, to be as accurate as any batch optimal attitude estimator. With a minor
rearrangement of the terms of the characteristic polynomial, it will perform accurately and robustly,
even for the unrealizable scenario 2 of Reference 7. As we shall see in a later work [23], assessment
of the speed of QUEST and the many ESOQ algorithms is much more complex than presented in
Reference 7. Overall, all algorithms (except ESOQ1.1 and ESOQ2.1, which are approximate by
design) are equal in accuracy, and QUEST is slightly faster in MATLAB when it comes to speed.31

Assertions that another algorithm is the most robust, the most accurate, the fastest, or the state of
the art must be discredited. Given the smallness of the differences, the fairest statement would seem
to be that QUEST, FOAM, ESOQ1, late ESOQ2, M-SVD and q-Davenport are equal in accuracy;
that q-Davenport and M-SVD are more robust but slower; and that QUEST, FOAM, ESOQ1, and
late ESOQ2 are faster. There seems to be little justification for an Olympic Games of the Wahba
problem.

The poorer convergence of λmax in QUEST for very imbalanced sensor accuracies, although
nothing like the absurd behavior of an incorrectly configured QUEST for the unphysical scenario 2
of Reference 7 (i.e., INEWT 6= 0 for scenario 2 of Reference 7), had, in fact, been known for
more than a decade before the appearance of Reference 7, and had been observed even for the more

31
As determined by execution time; the result for the number of MATLAB

r

oating-point operations is less

clear-cut.
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TABLE 2. Estimation Results for Scenario 2 of Reference 7 with Reversed Characteristic

Polynomials

Algorithm Iterations ∆ Cost Function x (deg) yz (arcsec)

q-Davenport — — 9.30 1.43

M-SVD — 1.40 e-5 9.30 1.43

FOAM 0 — 9.42 1.43
1 471 108. 1.43
2 6620 109. 1.43
3 3430 105. 1.43
4 5950 104. 1.43
5 3470 104. 1.43

QUESTMM 0 — 9.47 1.43
1 0.102 9.29 1.43
2 0.953 e-3 9.30 1.43
3 1.33 e-5 9.30 1.43
4 1.34 e-5 9.30 1.43
5 1.33 e-5 9.30 1.43

ESOQ1 0 — 9.25 1.43
1 471 57.0 1.43
2 6620 56.3 1.43
3 3430 56.4 1.43
4 5950 56.2 1.43
5 3470 56.5 1.43

ESOQ1.1 1 334 49.0 1.43

ESOQ2 0 — 9.42 1.43
1 471 108. 1.43
2 6620 109. 1.43
3 3430 105. 1.43
4 5950 104. 1.43
5 3470 103. 1.43

ESOQ2.1 1 64.1 37.4 1.43

physical accuracies of a 3.0 arcsec star tracker and a coarse sensor of accuracy 0.5 deg (variance
ratio = 360,000). This situation for a more reasonable scenario (including also less extreme values
for the angle α) was encountered in practice during the design of the on-board attitude determination
software for the Mid-Course Space Experiment mission (MSX) (launched 1996), in which the
second author of the present work played a large rôle. The MSX on-board computer (Harris 1750)
followed the IEEE standard for double-precision word length. In cases when only a single star
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direction was observed, single-frame attitude was determined using the single star and the outputs
of the Barnes Engineering infrared horizon scanner (not the decision of the second author of the
present work). It was discovered that the values of λmax in the Newton-Raphson iterations in those
cases sometimes did not converge rapidly but exhibited a damped oscillation, converging sometimes
only after five or six iterations to the correct λmax. Since there was excess CPU time available for
onboard calculations, but not excess research time for investigations, the modification (in 1993 and
due officially to the second author of the present work) was to replace the QUEST characteristic
polynomial with that from FOAM, which under more normal circumstances would have made
QUEST slower.32 The QUEST algorithm so modified performed well in flight.33

The ESOQ1.1 and ESOQ2.1 also show poor performance in scenario 2 of Reference 7. These
algorithms do not use the characteristic polynomials to calculate their single iteration of λmax.
We have not sought a modification which will correct the poor performance of the ESOQ1.1 and
ESOQ2.1 algorithms for scenario 2 of Reference 7. It is not clear what the need is for such algo-
rithms, since they can be only approximate.

Most of the competing fast attitude estimators are not very different from QUEST. The more im-
portant features of QUEST as developed over the past three decades have been the recognition that
λmax = λo to extremely high accuracy [3, 10], the use of Newton-Raphson iteration to refine the cal-
culation of λmax [3, 10], the method of sequential rotations [3, 10], the QUEST measurement model
[3, 13], the choice of optimal weights [3], the simple expression for the attitude covariance matrix
[3], the exact expression of λmax for two direction measurements [3], the TASTE test [25], the con-
nection of QUEST and TRIAD [3], and the realization that QUEST was the maximum-likelihood
estimator for the QUEST measurement model [13]. All of these aspects, when appropriate, have
been adopted by the fast algorithms which came after QUEST. Thus, to a very large degree, these
“competing” fast algorithms, especially ESOQ1 and to almost as great as extent ESOQ2, are mostly
QUEST.

In two works currently in preparation [23, 30] we shall discuss the implementation of the method
of sequential rotations in QUEST and how this can be made more efficient [30] and the complexity
of determining the speed of execution of QUEST and the other Wahba algorithms [23]. We will
present results not only for the algorithms presented here, but also for better optimized implemen-
tations of the ESOQ1 and late ESOQ2 algorithms.

With the exception of ESOQ1.1 and ESOQ2.1, which by design are only first-order approxima-
tion, all of the fast solutions to the Wahba problem are excellent candidates for mission support
in general, including the relative slowpokes, q-Davenport and M-SVD, which, when computers
become still faster, may someday become the only reasonable choices [12].

32
The elimination of all iterations and the use of other means to calculate λmax for the TASTE test, a

preferable approach in the opinion of the second author of the present work, was also considered but not

accepted.

33
Of course, the frames of data containing only one star direction were su�ciently infrequent that an accurate

attitude estimate could have been obtained simply by propagating the previous estimate forward using gyro

data and performing a single-vector update with the Kalman �lter. This was, in fact, the second author's

original suggestion, but there was a strong desire to have a single-frame attitude estimate available in all

possible cases for frame-by-frame data checking using the TASTE test [25]. It was this hybridization of the

QUEST and FOAM algorithms which prompted the second author to pose the rhetorical question in his Dirk

Brouwer lecture [12]: Is QUEST still QUEST if it uses the FOAM form of the characteristic polynomial?

With the partially factored form of the QUEST characteristic polynomial, that question is no longer of even

rhetorical interest.
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Our work here has also suggested some improvements which should be made to
QUEST : (1) the implementation of the partially-factored form of the QUEST characteristic poly-
nomial equation (49a) rather than the expanded form of equation (9); and (2) to compute the
coefficient c of equation (9) as

c = 8 detB (52)

rather than according to equation (10c). In addition, the present authors plan to include (3) a more
efficient means for detecting the need for a sequential rotation during the execution of QUEST [30].
These improvements will make QUEST (possibly renamed QUEST2000 or QUEST2007) a much
more formidable attitude estimation tool.

In summary, Markley and Mortari presented a genuine case in which the performance of QUEST
was poorer than that for competing algorithms. However, that case is unphysical and unlikely to
occur unless one has a very stupid attitude system design. With a very minor rearrangement of
terms in one equation, however, that bad case disappears entirely. As a result, QUEST has been
shown to be at least equal in accuracy and robustness to any other fast optimal batch estimator. In
a succeeding work we shall discuss the question of algorithm speed in great detail. Again, QUEST
will appear among the best performers. To modify a famous quote of the American author and
humorist Mark Twain, the rumors of the death of QUEST are highly exaggerated.
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