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But what likelihood is in that?

William Shakespeare (1564–1616)
Measure for Measure, Act IV, scene ii

Abstract

The TRIAD algorithm is shown to be derivable as a maximum-likelihood estimator. In
particular, using the QUEST measurement model, the TRIAD attitude error covariance ma-
trix can be derived as the inverse of the Fisher information matrix. The treatment here gives a
microscopic analysis of the algorithm and its connection to the QUEST algorithm. It also sheds
valuable light on the origin of discrete degeneracies in deterministic attitude estimation.

Introduction

The TRIAD algorithm [1, 2] in the consciousness of most workers in attitude
estimation is the deterministic attitude estimation algorithm par excellence. This
differentiates it from optimal algorithms, for example, QUEST [2–4], Markley’s
SVD algorithm [4, 5], Markley’s FOAM algorithm [4, 6], Mortari’s many ESOQ
algorithms [4, 7, 8], and the new MRAD algorithm of Bruccoleri, Lee, and Mortari
[9] using the modified Rodrigues parameters [10], which are all solutions of the
Wahba problems [11] and all maximum-likelihood estimators for the QUEST
measurement model [2]. For these the attitude-error covariance matrix can be cal-
culated easily as the inverse of the Fisher information matrix, rather than by the
brute-force method we have believed to be required by deterministic methods like
TRIAD.2 We shall show that every deterministic attitude estimator can be recast as
a maximum-likelihood estimator. Our efforts to do this for the TRIAD algorithm
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will lead to a better understanding of this algorithm, the Wahba problem, and de-
terministic algorithms in general.

The idea that there is a connection between the deterministic TRIAD algorithm
and the maximum-likelihood QUEST algorithm is not new. In the earliest journal
publication of QUEST [2] it was shown that for the case when there are only two di-
rection measurements and in the limit that the weights and satisfy 
(equivalently the QUEST algorithm becomes the TRIAD algorithm.
Naturally, the QUEST attitude error covariance matrix also becomes the TRIAD at-
titude error covariance matrix in that limit. The connection between the TRIAD and
QUEST algorithms that we will examine here will be of a different kind and not
confined to a limiting case.

The arguments used to reach those earlier conclusions about the connection of
TRIAD and QUEST have had one practical consequence. Although not stated in
that work, they were in part the motivation for the SCAD algorithm [12], a subop-
timal algorithm which, for a star tracker, performs almost as well as QUEST.

The methods developed here for recasting a deterministic attitude estimator into
a maximum-likelihood estimator do not lead necessarily to the development of
more practical estimators for deterministic algorithms. For the TRIAD algorithm in
particular, it is hard to imagine constructing a more efficient algorithm than equa-
tions (4) through (6) below. For more general deterministic algorithms, however, it
can certainly simplify the construction of the attitude solution by replacing com-
plicated (and possibly nonexistent) algebraic operations by well-known iterative
approaches. Most importantly, these methods provide a more practical means for
calculating the attitude covariance matrix for deterministic algorithms like TRIAD
and offer important insights into the origin of the finite degeneracies of determin-
istic attitude solutions encountered earlier [13].

The TRIAD Algorithm: Basics

Suppose we are given the values of two direction measurements and 
which are the respective realizations of two direction random variables and

with respective true values and These measurements are assumed
to be the representation of two directions with respect to spacecraft body axes. The
corresponding representations with respect to space axes are and assumed to
be nonrandom.3 Thus, we write for the three types of variables, namely4

(1ab)

(2ab)

(3ab) 

A variable without superscript would denote simply a free (nonrandom) variable.
The true attitude (direction-cosine) matrix [10] is obviously not a random variable, be-
cause it is not sampled from a distribution. The same is not true for the attitude
estimator which is a random matrix, or for the attitude estimate which is its
realization. Estimators (denoted by an asterisk) are always random variables and do
not require an additional superscript “r.v.” Note that it is the true attitude matrix

A*�,A*,

Ŵ2
true � AtrueV̂2Ŵ1

true � AtrueV̂1,

Ŵ2� � AtrueV̂2 � �Ŵ2�Ŵ1� � AtrueV̂1 � �Ŵ1�,

Ŵ2
r.v. � AtrueV̂2 � �Ŵ2

r.v.Ŵ1
r.v. � AtrueV̂1 � �Ŵ1

r.v.,

V̂2,V̂1

Ŵ2
true.Ŵ1

trueŴ2
r.v.,

Ŵ1
r.v.

Ŵ�2Ŵ�1

�1��2 l 0�
a2�a1 l 0a2a1
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which appears in each of equations (1) through (3). The attitude matrix as a free
variable will be denoted by A without superscript.

The TRIAD attitude estimate is constructed in the familiar way. One defines

(4abc)

(5abc)

(and similarly for and in terms of and The TRIAD atti-
tude estimate is then 

(6)

and the TRIAD attitude estimator

(7)

The TRIAD attitude estimate satisfies exactly and would satisfy
for Hence, we usually choose to be the measured direc-

tion of greater accuracy.
The TRIAD algorithm is a deterministic algorithm (no figure of merit has been

optimized). Hence, it must compute the attitude by first discarding data beyond
what it requires, accomplished in this case by the construction of the ancillary tri-
ads. We will examine these and the discarded data in more detail below.

Deterministic Estimates as Optimal Estimates

Let be a parameter vector of dimension n and let 
be a set of N scalar random measurements satisfying5

, (8)

where the are zero-mean random noise. Since there is no solu-
tion, in general, to equation (8), because is overdetermined. We can make the
solution determinate6 by choosing n of the N measurements (say 
if the Jacobian determinant does not vanish) and solving
the corresponding equations 

, (9)

for the estimate 7 This is a deterministic algorithm for 
If the measurement noise is Gaussian, and R, the covariance matrix of

is invertible, then we can write the cost function as � v1, v2, . . . , vn �,

*�.*�.

k � 1, . . . , n*��zk� � f k�

��� f1, . . . , fn�����1, . . . ,�n��
k � 1, . . . , n,zk�,

N � n,vk, k � 1, . . . , N,

k � 1, . . . , Ntrue� � vkzk � f k�

k � 1, . . . , N � n,
zk,� ��1, . . . , �n�

Ŵ�1�Ŵ2� � 0.Ŵ2� � A*�V̂2

Ŵ1� � A*�V̂1

A* � � ŝ1
r.v. ŝ2

r.v. ŝ3
r.v. � � r̂1 r̂2 r̂3 �T

A*� � � ŝ1� ŝ2� ŝ3� � � r̂1 r̂2 r̂3 �T

Ŵ2
r.v.�.Ŵ1

r.v.ŝ 3
r.v.ŝ2

r.v.,ŝ1
r.v.,

ŝ 3� � ŝ1� 	 ŝ2�ŝ2� �
Ŵ1� 	 Ŵ2�

�Ŵ1� 	 Ŵ2��
,ŝ1� � Ŵ1�,

r̂3 � r̂1 	 r̂2r̂2 �
V̂1 	 V̂2

�V̂1 	 V̂2�
,r̂1 � V̂1,

A*�
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(10)

with the concatenated measurement vector, and �
the corresponding concatenated measurement function.

Then the optimizing value of for equation (10), is the optimal estimate of
given the measurements and R. It is also the deterministic estimate, since
the cost function will vanish exactly at the deterministic solution. If the measure-
ment noise is Gaussian, then the which minimizes is the maximum-
likelihood estimate and also satisfies equation (9). Voilà!8

The “optimal” character of the deterministic estimate is thus a very banal prop-
erty of the latter. But it is not a property without consequences, because for zero-
mean Gaussian noise we know that the inverse estimate-error covariance matrix

associated with the maximum-likelihood estimate is just the Fisher information
matrix, which we write approximately as9

(11)

or equivalently

(12)

which, theoretically, we should evaluate at the true value of but which, in prac-
tice, we must evaluate at This result for the Fisher information matrix was used
without comment or justification in reference [13].

Clearly, then, we can write the TRIAD algorithm equivalently as

(13)

for arbitrary but positive, or in an infinitude of other forms yielding
the same result, but that does not help us construct a useful expression for the
TRIAD covariance matrix. For one thing the three measurement triad vectors are
correlated with one another (see equation (5c)), so that although the appropriate
maximum-likelihood cost function may be quadratic, it will certainly not have the
form inside the braces of equation (13). The task of much of the remainder of this
work will be to construct the appropriate cost function.

The TRIAD Algorithm: Statistical Analysis

The sampled measurements and are unit vectors and satisfy, therefore 

, (14)

and, with very large probability

(15)��Ŵi�� 
 1

i � 1, 2Ŵi� � �Ŵi� � 0 � O���Ŵi��2�

Ŵ�2Ŵ�1

k � 1, 2, 3,ak,

ATRIAD
*� � arg min

A
 � 1

2
 	3
k�1

 ak �ŝk� � A r̂k�2


*�.

�P��
�1�ij � 	n

k�1
 	n
l�1

 
�fk

��i
 � � �R�1�kl 

�fl

��j
 � �

P��
�1 �

�f T

� T � � R�1 
�f
�

 � �

P��
�1

�J��*�

z1�, . . . , zn�

*�,
n 	 1��T�, . . . , fn�� f1�

�f�n 	 1z� � �z1�, . . . , zn��T

J�� � �
1

2
 �z� � f� ��T R�1 �z� � f� ��
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8The value of this approach may be overstated, since it is seldom more difficult to treat all of the data in a
least-square estimation problem than a subset which makes the algorithm deterministic. For our analysis of
the TRIAD algorithm, practicality is not the overriding issue but understanding.
9We use the convention that the derivative of a scalar with respect to a column vector is a row vector.



For a sensor of accuracy 10 arc seconds

(16)

in angle-equivalent error. Thus, the zero-mean component of lies es-
sentially in the plane perpendicular to If the coordinate axes of this
nonrandom plane are and then the four random components in the
two measurements are to 

and (17a)

For completeness we define as well the “constraint” measurements

(17b)

where is a nonrandom righthand orthonormal triad. The
scalars presented in equation (17b) are not truly measurements, since they are in the
direction of the unit-norm constraint (heuristically, we could imagine them as being
measurements with zero measurement error), but they will be very helpful in un-
derstanding the TRIAD algorithm. Thus, we may decompose the two unit-vector
measurements and into six scalar measurements10

(18a)

(18b)

Note that the true values of and are zero and that the true values of
and are unity. Thus, besides the (nonrandom) constraint measurements, there

are four (random) equivalent scalar measurements, the “true” scalar measurements
(not to be confused with the true values of the scalar measurements), available for
the estimation of the attitude, of which a deterministic algorithm can use only three.
We have still to specify and from which the specification of and 
will follow.

It is possible to construct the TRIAD attitude matrix given only two of and
since the remaining direction can be constructed from the other two using the

vector product. The first measured direction enters the TRIAD algorithm whole
as The triad vector however, satisfies 

(19)

where unit is the function which unitizes a row or column array. Thus, apart from
the adjusted norm and the overall sign, consists of from which the compo-
nent along has been removed. This is the truncation necessary to create a de-
terministic algorithm from a surfeit of data. We recognize in equation (19) the
application of the Gram-Schmidt orthogonalization, as has been remarked earlier in
an examination of the TRIAD algorithm in three or more dimensions [14]. The
transposition of the TRIAD problem to two dimensions is also of interest [15].

As a result of these operations, the random part of the unit random vector 
cannot have any component along either hence not, to order along� 2

2,Ŵ1
r.v. � ŝ1

r.v.,
ŝ 3

r.v.

Ŵ�1

Ŵ�2ŝ 3�
���

ŝ3� � �unit�Ŵ2� � �Ŵ1� � Ŵ2��Ŵ1��

ŝ3�,ŝ1�.
Ŵ�1

ŝ3�,
ŝ2�,ŝ1�,

b̂2b̂1â 2,â 1

z 6z 3

z5z1, z2, z 4,

z 4 � â 2 � Ŵ2
r.v., z5 � b̂2 � Ŵ2

r.v., z6 � ĉ2 � Ŵ2
r.v.

z1 � â 1 � Ŵ1
r.v., z2 � b̂1 � Ŵ1

r.v., z3 � ĉ1 � Ŵ1
r.v.

Ŵ2
r.v.Ŵ1

r.v.

i � 1, 2,ĉi�,b̂i,�â i,

i � 1, 2ĉi � Ŵi
r.v. 
 Ŵi

true � Ŵi
r.v. � 1

i � 1, 2b̂i � Ŵi
r.v.â i � Ŵi

r.v.

O�� 2�
i � 1, 2,b̂i,â i

i � 1, 2.Ŵi
true,

i � 1, 2,Ŵi
r.v.,

E� ��Ŵi
r.v.�2� 
 10�3 arcsec
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10For convenience, we do not write the superscript “true” on which are always nonrandom.
Naturally, in a calculation with real data, we would need to replace these column vectors with 
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, or along To order it can have a single random component only along
which we define to be Following this example, we define to be as

well. This is always possible, since the only requirement on and is that they
be perpendicular to and respectively. Hence,

and Thus, in summary

(20a)

(20b)

On the basis of the above analysis, we take the three equivalent scalar measure-
ments for the TRIAD algorithm to be

and

(21abc)

Thus, we write

and

(22abc)

and

(23abc)

which have mean zero and variances given by

(24abc)

One recognizes directly that the three measurement-noise terms for our effective
scalar measurements are mutually uncorrelated. In fact, all six effective scalar
measurements are uncorrelated, because and are uncorrelated.

One could also have constructed the third measurement from in which case
one would have obtained

(25)

and, like is uncorrelated with and has mean zero and variance The
advantage of this alternate measurement set is that all effective scalar measure-
ments are projections of the triad vectors, emphasizing the statement that the
TRIAD attitude matrix is the maximum-likelihood estimate of the attitude given
the triad of ancillary vector measurements. We prefer, for greater clarity, to project
our scalar measurements from the original measurement vectors, and 
Note the relationship of to in which the character of random vector and non-
random vector are interchanged for the two vectors in the scalar product. Likewise,
one could have projected the third effective scalar measurement from 

The above development suggests that we take as the cost function, i.e., the data-
dependent part of the sampled negative-log likelihood function [16], the function

(26)

J��A� �
1

2
 � 1

� 1
2 �z1� � ŝ�2

T A r̂1�2 �
1

� 1
2 �z2� � ŝ�3

T A r̂1�2 �
1

� 2
2 �z 4� � ŝ�2

T AV̂2�2


ŝ3.

v4
�2�v4

Ŵ2
r.v..Ŵ1

r.v.

� 2
2.v2,v1v4

�2�v4,

z 4
�2� � Ŵ 2

true � ŝ2
r.v. � Ŵ2

trueTA r̂2 � v4
�2�

ŝ2�
Ŵ2

r.v.Ŵ1
r.v.

E�v1
2� � � 1

2, E�v2
2� � � 1

2, and E�v4
2� � � 2

2

v1 � ŝ2
true � �Ŵ1

r.v., v2 � ŝ 3
true � �Ŵ1

r.v., and v4 � ŝ2
true � �Ŵ 2

r.v.

z 4 � ŝ2
trueT AtrueV̂2 � v4

z1 � ŝ2
trueT AtrueV̂1 � v1, z2 � ŝ 3

trueT AtrueV̂1 � v2,

z 4 � ŝ2
true � Ŵ2

r.v.

z1 � â 1 � Ŵ1
r.v. � ŝ2

true � Ŵ1
r.v., z2 � b̂1 � Ŵ1

r.v. � ŝ 3
true � Ŵ1

r.v.,

â 2 � ŝ2
true, b̂2 � Ŵ2

true 	 ŝ2
true � ŝ 4

true, ĉ2 � Ŵ 2
true

â 1 � ŝ2
true, b̂1 � Ŵ1

true 	 ŝ2
true � ŝ 3

true, ĉ1 � Ŵ1
true

ŝ2
true 
 ŝ 4

true.b̂2 � Ŵ2
true 	 â2 � Ŵ2

true 	Ŵ1
true 	 ŝ2

true � ŝ3
true

b̂1 � Ŵ1
true 	 â 1 �Ŵ2

true,Ŵ1
true

â 2â 1

ŝ2
trueâ 1â 2.ŝ2

true,
� 2

2ŝ3
true.ŝ1

true
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The effective sampled measurement values and will all vanish. This cost
function, while instructive, is not quite adequate, as we shall see.

The TRIAD Fisher Information Matrix

Examine a typical term of the cost function of equation (26), which we can write
in obvious notation as

(27)

Each term has the general (sampled) form

(28)

Writing11

(29)

equation (28) becomes

(30)

The partial derivatives with respect to � are now carried out easily. The contribu-
tion of this term to the Fisher information matrix is then simply (recalling that the
Fisher information matrix is evaluated at the true values of the measurements)

(31)

Making the appropriate substitutions in equation (31) now yields 

(32)

which is the familiar expression [2].12

Degeneracy of the Solutions

As pointed out in reference [13], a least-square cost function in terms of three in-
dependent arc lengths (or, equivalently, the cosines of three independent arc
lengths) will lead to an eight-fold degeneracy in the solutions. While there is no
continuous degeneracy of the attitude estimate, there is a discrete degeneracy. In the
present case, where the reference directions for two of the arc-length measurements

 �
1

� 1
2 �I3	3 � ŝ 1

true ŝ 1
trueT� �

1

�2
2 ŝ 4

true ŝ 4
trueT 

 F�� � �P��
TRIAD��1 �

1

� 1
2 ŝ 3

true ŝ 3
trueT �

1

� 1
2 ŝ 2

true ŝ 2
trueT �

1

�2
2 ŝ 4

true ŝ 4
trueT

f�� �
1

� 2 �p̂
true 	 �Atrueq̂�� �p̂true 	 �Atrueq̂��T

� �1�2�� T��p̂��� ��Atrueq̂��� �2j�� � �
1

� 2 �z� � p̂�TAtrueq̂ � p̂�T��Atrueq̂���

A � �I3	3 � ��� �� � ��� ��2�2� Atrue � O� �� �3�

j��A� �
1

� 2 �z� � p̂�T A q̂�2

J�A� � j1�A� � j2�A� � j4�A�

z 4�z 2�,z1�,
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through second order in � . 
12For additional equivalent expressions see reference [17].



are the same, the degeneracy will be only four-fold. Thus, the cost function of equa-
tion (26) is insufficient for the determination of a unique attitude estimate. It yields
the correct Fisher information matrix, as we have seen, but that is because the
Fisher information matrix is the same for each of the four minima (here zeros) of
the cost function.

The inference to be drawn here is that we have removed too much from the orig-
inal measurement model. Obviously, we must remove at least one of the true meas-
urements, or our estimator would yield the QUEST and not the TRIAD attitude
solution. But there are six components of and and the remaining two of
these, the constraint measurements, must be able to remove the degeneracy.

Consider one of these, namely for which the contribution to the (sampled)
cost function is

(33)

The weight in is left unspecified for the moment. Heuristically, it would
seem to be zero since the constraint provides no statistical information. We shall see
that we can choose its value at our convenience. 

The quantity will be zero when Its Fisher information
matrix with respect to � , calculated analogously to equation (31), will be the ex-
pectation of the Hessian matrix whose sampled values are 

(34)

This expression vanishes identically when A is the TRIAD attitude estimate
Thus, this term does not affect the value of the Fisher information matrix,

as should be expected since it contains no statistical information. However,
does make a positive contribution to the cost function when A is different from the
TRIAD attitude, so it does affect the degeneracy. Since the Fisher information is not
affected, we choose, for convenience, This means that we can combine

and in the (sampled) cost function to obtain

(35)

The effective measurements for the estimation consist now of one direction and one
arc length, also examined in reference [13]. Hence, the degeneracy of the attitude
solution is now only two-fold, as reference [13] has shown. Equation (34) holds
analogously for the constraint measurement Thus, setting the sampled
cost function combining and becomes

(36)

and yields the TRIAD attitude unambiguously and with the correct Fisher infor-
mation matrix.13

JTRIAD��A� �
1

� 1
2 �Ŵ1� � A V̂1�2 �

1

�2
2 ��z 4� � ŝ�2

T A V̂2�2 � �z 6� � Ŵ2�
T A V̂2�2�

j6��A�j4��A�,j3��A�,j2��A�,j1��A�,
�6 � �2,z6.

J��A� �
1

� 1
2 �Ŵ1� � A V̂1�2 �

1

�2
2 �z 4� � ŝ�2

T A V̂2�2

j4��A�j3��A�,j2��A�,j1��A�,
� 3 � �1.

j3��A�
A*�TRIAD.

�j3��� �
�� T��

 �
�   �0

�
1

� 3
2 �Ŵ1� 	 �A V̂1�� �Ŵ1� 	 �A V̂1��T

Ŵ1� � A*�TRIADV̂1.j3�A�

j3�A�1�� 3
2

j3��A� �
1

� 3
2 �z3� � Ŵ1� � A V̂1�2

z3,

Ŵ2,Ŵ1
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13The construction of the attitude solution would not lead directly to equation (6) but to an equivalent ex-
pression much like the SCAD algorithm [12]. Small additional terms will arise in the Fisher information for
this solution because of the appearance of and but these will be of higher order in than the usual
terms and always discarded. 
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The inclusion of these extra terms in the TRIAD cost function is similar to the
transformation of negative-log-likelihood function for and in reference [3]
to obtain the Wahba cost function [18] and the unit-vector filter [19]. 

The Missing Piece

Of the six components of the two direction measurements only a single compo-
nent remains, namely 

(37)

This is the only component which cannot be constructed from the three ancillary
triad vectors. It is simply not there. It is a simple matter to show that has mean
zero and variance Following equations (28) through (31), the Fisher informa-
tion associated with this term is just 

(38)

Adding this term to the Fisher information matrix of equation (32) yields 

(39)

which was to be expected, since is now the Wahba cost function.
It is instructive to make a table of the results of the estimation process for sev-

eral of the possible measurement sets treated above. The first column of Table 1
gives the set of measurements to be considered, the second column gives the atti-
tude estimator which results from the application of maximum-likelihood estima-
tion to this measurement set, and the third column gives the multiplicity
(degeneracy) of the attitude solution. The table is meant to be illustrative rather than
exhaustive. For example, the measurement set also yields the
QUEST attitude with multiplicity two. 

We can summarize the maximum-likelihood cost functions which lead to non-
degenerate solutions as 

(40a)

(40b)JQUEST��A� � J��A�Ŵ1�, Ŵ2�� � J��A�z1�, z2�, z3�, z 4� , z5�, z6� �
JTRIAD��A� � J��A�Ŵ1�, ŝ2�� � J��A�Ŵ1�, ŝ 3�� � J��A�z1�, z2�, z3�, z 4� , z6� �

�z1, z2, z3, z4, z6�

J�A�

 �
1

� 1
2 �I3	3 � Ŵ1

trueŴ1
trueT � �

1

�2
2 �I3	3 � Ŵ2

trueŴ2
trueT � � �P��

QUEST��1

 F�� � �P��
TRIAD��1 �

1

�2
2 ŝ 2

true ŝ 2
trueT

f�� �
1

� 2
2 ŝ2

true ŝ2
trueT 

� 2
2.

v5

z5 � ŝ4
true � Ŵ2 � ŝ4

trueT A V̂2 � v5

Ŵ�2Ŵ�1
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TABLE 1. Estimation Results for Different Scalar Measurement Sets

Measurement Set Attitude Estimator Multiplicity

TRIAD 4
TRIAD 2
TRIAD 1
QUEST 4
QUEST 2
QUEST 1z1, z2, z3, z4, z5, z6

z1, z2, z3, z4, z5

z1, z2, z4, z5

z1, z2, z3, z4, z6

z1, z2, z3, z4

z1, z2, z4



Conclusions

We have seen that it is possible to treat deterministic attitude estimators as
maximum-likelihood estimators, and this is especially easy to accomplish if the mea-
surement noise is linear and Gaussian. This equivalence with maximum-likelihood
estimators is, in fact, a common property of deterministic estimators. Its value is that
it allows us an easier way to compute the attitude covariance matrix for the algo-
rithm if the minimal set of measurements can be identified easily. To see that this
method is easier to implement for the computation of the attitude covariance ma-
trix of the TRIAD algorithm than the brute-force method, one need only examine
the procedures of references [2] and [17]. This method, in fact, was employed with-
out formal justification in reference [13]. 

We have seen also the connection of the ambiguity of deterministic solutions to
the constraint portions of the measurements, not appreciated before reference [13].
While these constraint measurements have no continuous information, they permit
the removal of the degeneracy. To a large degree, the present work expands refer-
ence [13] by relating the discrete degeneracies to the amputation of the constraint
measurements (metronotomy).14

In truth, the methods developed here do not have practical value for constructing
the attitude estimator. In order to remove the inherent degeneracy of a determinis-
tic attitude solution, we need to construct the constraint measurements. But a con-
straint measurement like (in its sampled form) is equivalent to

a vector measurement. For the TRIAD algorithm we know but if we
are given only scalar measurements from the start, we do not. The only way to elim-
inate the degeneracy then is to include more “true” measurements, which makes the
attitude estimation problem no longer deterministic.

Unless we are fortunate, as in the TRIAD algorithm, to have an algebraic solu-
tion method which yields a unique solution, we may have no choice but to calcu-
late all eight possible degenerate “deterministic” solutions and use additional
constraints to eliminate the unwanted seven. However, to construct these con-
straints, in general, we must have more than just the minimal three data. For the
construction of the TRIAD solution, as we saw, we really used five “data” to re-
move the degeneracies and, in general, we may require six or more. Some day we
may be able to show that in the strictest sense (i.e., free of degeneracy) there really
aren’t any deterministic solutions at all from only three scalar measurements.

The practical value of the material here thus lies chiefly in the simpler calcula-
tion of the attitude covariance matrix rather than the attitude itself. For this opera-
tion, certainly, it has real value.

Very likely, the TRIAD algorithm has still further mysteries to reveal.
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