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ABSTRACT

Algorithms are developed for estimating star-tracker precision in space from inight data using the

QUEST algorithm. The QUEST variable TASTE is shown to be a χ2 variable with 2N − 3 degrees of
freedom, where N is the number of stars, and its mean and variance directly related to the star-tracker
measurement variance. These results are used to construct an attitude-independent estimator of star-
tracker precision from inight data. An attitude-independent estimator for the variances of multiple
sensors from inight data developed previously is reviewed and generalized to more than three sensors.

INTRODUCTION

Most attitude determination systems employing star-trackers use an attitude estimation algorithm based

on the Wahba problem (ref. 1) , which minimizes the least-square loss function

L(A) =
1
2

N
∑

i=1

ai |Ŵi − AV̂i|
2 (1)

with attitude estimate3 A∗ given by

A∗ = arg min
AεSO(3)

L(A) (2)

that is, the value of the 3 × 3 proper orthogonal matrix A for which L(A) is a minimum. Here the ai,

i = 1, . . . , N , are a set of N non-negative weights, Ŵi, i = 1, . . . , N , are the observed directions in the

spacecraft body frame, and V̂i, i = 1, . . . , N , are the corresponding vectors in the primary reference

frame (typically inertial). Generally, one assumes that the reference directions are noise-free.
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A number of algorithms were proposed almost immediately for solving the Wahba problem. These

and more recent approaches have been described by Markley and Mortari in their excellent review

(ref. 2) . Of special importance have been Davenport's q-algorithm (ref. 3) and QUEST (ref. 4), which

has received wide application both for Earth-orbiting and interplanetary spacecraft. Of particular interest

in the QUEST work has been the QUEST measurement model, which is

Ŵi = Ŵtrue
i + ∆Ŵi , ∆Ŵi ∼ N (0, Ri) (3ab)

Ri = σ2
i

(

I3×3 − ŴtrueŴtrue T
i

)

, Ŵtrue
i = AtrueV̂i (3cd)

The variances σ2
i , i = 1, . . . , N , are the sole parameters of the model. The individual direction

measurements are assumed to have a circle of error in the tangent plane rather than the more general

(and more realistic) ellipse of error. This approximation is generally adequate for focal-plane sensors

with limited �elds of view (such as a star tracker) but has been employed also for many sensors for which

the truthfulness of its representation of sensor errors may be justi�ably questioned. Nonetheless, it has

led to the development of many practical attitude estimators. The assumption that ∆Ŵi is zero-mean

and Gaussian also cannot be exactly correct (ref. 5) , but is true to good approximation. Deviations in

the attitude estimate due to this approximation are generally on the order of σ2
i , which for σi = 3 arcsec,

leads to an equivalent angle error on the order of 5 × 10−5 arcsec, surely a negligible error.

The Davenport q-algorithm (ref. 3) constructs the optimal attitude estimate A∗′ by �rst constructing

the attitude pro�le matrix B, de�ned as

B ≡
N
∑

i=1

aiŴiV̂
T
i (4)

whence

L(A) =
N
∑

i=1

ai − tr[BTA] ≡ λo − gA(A) (5)

with gA(A) the gain function. From this the following quantities are de�ned

s ≡ trB , S ≡ B + B′ and Z ≡
[

B23 − B32, B31 − B13, B12 − B21

]T
(6abc)

and the 4 × 4 matrix K

K =
[

S − sI3×3 Z

ZT s

]

(7)

In terms of the quaternion (ref. 6) and Davenport's matrix K the gain function may be written as

gq̄(q̄) ≡ gA(A(q̄)) = q̄TKq̄ (8)

which is a maximum (and the loss function a minimum) for q̄ = q̄∗ with

Kq̄∗ = λmaxq̄
∗ (9)

and λmax is the largest eigenvalue of K. This is Davenport's q-algorithm. The earliest implementation

of Davenport's q-algorithm was in SNAPLS (for SNAPshot Least-Squares), the attitude determination

software system for the HEAO (ref. 7) mission (launched 1977, 1978 and 1979). The SNAPLS algorithm

solved for q̄∗ by implementing Householder's method (ref. 8) to determine the four eigenvalues and

eigenvectors of K.
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The QUEST algorithm (ref. 4) , whose details need not concern us in the present work, o�ered a very

fast method for computing λmax and the associated quaternion, the QUEST measurement model ( vide

supra), the method of sequential rotations, a compact and easily calculable expression for the attitude

estimate-error covariance matrix, and a very fast data validation algorithm using a variable called TASTE

(hence the expression �TASTE Test�). In addition, it was also shown in ref. 4 that the cost function

would be minimized for constant λo if one chose

ai = c/σ2
i (10)

In this case it was later shown (ref. 5) that the Wahba attitude estimate was also the maximum-likelihood

estimate of the attitude given the QUEST measurement model of equations (3). Furthermore, if one

chose c = 1, then the loss function of equation (1) became the data-dependent part of the negative-

log-likelihood function (ref. 9) of the attitude given the QUEST measurement model. This gave a �rm

statistical basis for the Wahba problem, rather than its being purely a mathematical curiosity.

The variable TASTE, which is central to the present study, is de�ned as

TASTE ≡ 2(λo − λmax) = 2L(A∗) (11)

with the weights ai being given by 1/σ2
i , that is, c = 1 in equation (10).

THE STATISTICS OF TASTE

Given the above choice for the weights, we write for arbitrary A

L(A) =
1
2

N
∑

i=1

1

σ2
i

|Ŵi − AV̂i|
2 (12)

Note that in equation (12) the Ŵi and hence λmax are random variables. Note also that Atrue minimizes

Ltrue(A) ≡
1
2

N
∑

i=1

1

σ2
i

|Ŵtrue
i − AV̂i|

2 (13)

and

λtrue
max = λo =

1

σ2
tot

≡
N
∑

i=1

1

σ2
i

(14)

We de�ne now the attitude increment vector ξ according to

A = A(ξ) ≡ δA(ξ)Atrue (15)

with

δA(ξ) ≡ exp{ [[ ξ ]]} = I3×3 +
sin |ξ|
|ξ|

[[ ξ ]] +
1 − cos |ξ|
|ξ|2

[[ ξ ]]2

= I3×3 + [[ ξ ]] + O(|ξ|2) (16)
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and (ref. 6)

[[ u ]] ≡





0 u3 −u2

−u3 0 u1

u2 −u1 0



 (17)

The matrix δA(ξ) de�ned by equation (16) is exactly proper orthogonal. We anticipate that ξ∗ will be

on the order of σtot with very large probability. The attitude increment vector is clearly a rotation vector

(ref. 6) . Substituting now equation (15) into equation (12) we obtain after some manipulation 4

Lξ (ξ) ≡ L(A(ξ)) =
1
2

N
∑

i=1

1

σ2
i

∣

∣∆Ŵi + [[ Ŵtrue
i ]] ξ

∣

∣

2
(18)

Let S(Ŵtrue
i ) be any constant proper orthogonal matrix which accomplishes the transformation

S(Ŵtrue
i ) Ŵtrue

i =





0

0

1



 ≡ 3̂ (19)

whence

S(Ŵtrue
i )Ri S

T (Ŵtrue
i ) = σ2

i





1 0 0

0 1 0

0 0 0



 (20)

De�ning

Ûi ≡
1
σi
S(Ŵtrue)Ŵi (21)

we can write

2Lξ (ξ) =
N
∑

i=1

∣

∣∆Ûi + [[ Ûtrue ]] ξ
∣

∣

2
(22)

De�ning further in obvious notation

∆u2i−1 ≡ 1̂
T
∆Ûi and ∆u2i ≡ 2̂

T
∆Ûi , i = 1, . . . , N (23ab)

the projections of Ûi along the two axes perpendicular to 3̂, respectively, and similarly

H2i−1 ≡ −1̂
T

[[ Ûtrue
i ]] and H2i ≡ −2̂

T
[[ Ûtrue

i ]] (24ab)

we may write the loss function as

2Lξ (ξ) =
2N
∑

i=1

|∆ui −Hi ξ|
2 (25)

The third component of Ûi does not contribute to the loss function, since in our measurement model it

is identically zero and its sensitivity to ξ also vanishes by explicit construction. Note in particular that

the 2N e�ective scalar measurement noise terms are independent and satisfy

∆ui ∼ N (0, 1) , i = 1, . . . , 2N (26)

4If we calculate the di�erence in equation (13) before computing the square, then the O(|ξ|2) term of equation (16) would have

led to a term of order O(|ξ|3) in our evaluation of equation (18), which we discard.
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The maximum-likelihood estimate of ξ is trivially

ξ∗ = P

2N
∑

i=1

HT
i ∆ui with P−1 =

2N
∑

i=1

HT
i Hi (27ab)

and

ξ∗ ∼ N (0, P ) (28)

Writing

2Lξ (ξ) =
2N
∑

i=1

|(∆ui −Hi ξ
∗) −Hi (ξ − ξ∗)|2 (29)

we obtain straightforwardly

2Lξ (ξtrue) = 2L(ξ∗) + (ξ∗ − ξtrue)TP−1(ξ∗ − ξtrue) (30)

The absence of a cross term is a natural consequence of the Luenberger projection theorem (ref. 10) ,

but we obtain it equally well in this trivial example by direct calculation.

By de�nition

ξtrue = 0 (31)

and from equation (25)

2L(Atrue) =
2N
∑

i=1

|∆ui|
2 ∼ χ2(2N) (32)

a χ2 random variable with 2N degrees of freedom. Clearly, from equations (28) and (30) one has that

(ξ∗ − ξtrue)TP−1(ξ∗ − ξtrue) ∼ χ2(3) (33)

Thus,

χ2(2N) = TASTE + χ(3) (34)

Since the two terms in the right member of equation (34) are statistically independent, then by Cochran's

theorem or, equivalently, Fisher's theorem (both ref. 11) equation (34) can be true only if 5

TASTE ∼ χ2(2N − 3) (35)

As an immediate consequence of equation (35) it follows that

E{TASTE } = 2N − 3 and Var{TASTE } = 2(2N − 3) (36)

for the expectation and the variance of TASTE.

THE PRECISION ESTIMATOR

The most obvious method for constructing an estimator for star-tracker precision is by maximum-

likelihood estimation. Keeping also model terms, the negative-log-likelihood function of the attitude

5This simple result has been known to the �rst author since 1981 but was never published, except as a comment in the updated

original FORTRAN code for QUEST and in a internal report in 1993. That author's unpublished result was quoted by Markley

and Mortari (ref. 2) without proof or attribution.
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given the measurements and the value of σ2 the common variance for star-tracker direction measurements

may be written

J (A|σ2) =
1
2

{

1
σ2
L̃(A) + 2N log σ2 + 2 log 2π + 2 logf

}

(37)

where

L̃(A) ≡
N
∑

i=1

|Ŵi − AV̂i|
2 (38)

Note the factors of 2 rather than 3 appear in equation (37). because only two of the components of Ŵi

have statistical signi�cance. The term f is a correction term for the �niteness of the unit sphere (ref. 5)

(a Gaussian distribution extends to in�nity) and may be neglected, even though it depends on σ. The

maximum-likelihood estimate of σ2 will minimize J (A∗|σ2), hence it must satisfy

∂

∂σ2
J (A∗|σ2)

∣

∣

∣

∣

(σ2)∗
= 0 (39)

Since A∗ does not depend on σ2, this leads straightforwardly to

−
1

(

(σ2)∗
)2
L̃(A∗) +

2N
(σ2)∗

= 0 (40)

or

(σ2)∗ =
1

2N
L̃(A∗) (41)

From the known statistical properties of TASTE, it follows that

E{ (σ2)∗} =
2N − 3

2N
(σtrue)2 (42)

so that, as is usually the case for maximum-likelihood estimation of a variance, the estimator is only

asymptotically consistent (that is, as N → ∞). One usually eliminates this embarrassment by simply

multiplying the estimator by a factor 2N/(2N − 3). Thus, a consistent estimator of σ2 is simply

(σ2)∗ =
1

2N − 3
L̃(A∗) (43)

which is certainly a valid estimator if not a maximum-likelihood estimator.

The derivation up to now has assumed a single-frame of simultaneous data. In the case where one has

n frames of (simultaneous) data, each with Nk star-direction measurements, one write the σ2 estimator

as

(σ2)∗ =
1

2Ntot − 3n

n
∑

k=1

L̃k(A∗k) (44)

with

Ntot ≡
n
∑

k=1

Nk (45)

Note that for L̃k(Ak)
ai = 2, i = 1, . . . , Nk and λo,k = 2Nk (46)
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Hence, one can write the σ2 estimator equivalently as

(σ2)∗ =
1

2Ntot − 3n

n
∑

k=1

(2Nk − λmax,k) (47)

This estimator is obviously consistent and has variance

Var{ (σ2)∗ } =
2

2Ntot − 3n
(σtrue)4 (48)

whence,

σσ∗ =
1
2

√

2
2Ntot − 3n

σtrue (49)

with σ∗ ≡
√

(σ2)∗.

APPLICATION TO AUTONOMOUS STAR TRACKERS

Additional steps may be required for application of these algorithms ot autonomous star trackers. 6

Currently, autonomous star trackers generally output the QUEST attitude quaternion, the number of

stars, and the star positions. Some may output as well the attitude-error covariance matrix computed

using the QUEST formula

P−1
θθ =

N
∑

i=1

1

σ2
i

(

I − ŴiŴ
T
i

)

(50)

where the vendor will have used a universal value σvend for σi in his software. None of these star trackers,

however, output λmax as well.

For the �rst star-trackers one has no choice but to compute λmax from the individual star positions,

a laborious process if one wished to implement the TASTE test in real time. For the second, however,

we can compute λmax from (ref. 1)

λvend
max =

1
2
tr(P vend

θθ )−1 (51)

where �tr� denotes the trace operation.7 λvend
o is then given by

λvend
o =

N

σ2
vend

(52)

Equation (51) yields λmax, because it uses the observed positions of the stars in the star-tracker frame.

If it used the true positions, the result would have been λo.
The estimation of σ2 can be obtained from

TASTEvend = 2(λvend
max − λvend

o ) (53)

6The authors are grateful to Dr. David R. Haley for making them aware of these special needs for autonomous star trackers.
7Note that one must have the entire (P vend

θθ )−1 in order to calculate both λvend
max and P vend

θθ (or even the diagonal elements of the

latter). λvend
max cannot be calculated knowing only the diagonal elements of P vend

θθ , because the cancellations in equation (53) below

are very sensitive and can easily result in the loss of ten signi�cant �gures.



8

The derivation of the estimator is straightforward and leads to

(σ2)∗ =
σ2

vend

2Ntot − 3n

n
∑

k=1

TASTEvend
k (54)

with

E{(σ2)∗} = σ2 and Var{(σ2)∗} = 2
σ4

2Ntot − 3n
(55)

NUMERICAL EXAMPLE

To test the algorithm we have simulated 100 frames of star-tracker data, each with 6 star-direction

measurements. Thus, for this data set 2Ntot − 3n = 900. We have chosen σtrue = 3 arcsec, typical of

modern CCD star-trackers. Thus, we anticipate a standard deviation of the estimate of the star-tracker

variance of σσσ∗ = σtrue/
√

1800 ≈ .071 arcsec, and the estimator for such a data set should satisfy

σ∗ ≈ 3.0000 arcsec ± 0.0707 arcsec ≡ σtrue ± σσ∗ (56)

and have a Gaussian distribution according to the central limit theorem.

To test this, 160,000 trials of each test were simulated and the estimate of σ computed for each trial.

Calculating the statistics of the samples we anticipate

µ
sampled
σ∗ = σtrue ± σσσ∗/

√

N = 3.0 arcsec ± 0.00035 arcsec (57a)

σ
sampled
σ∗ = σσσ∗ ±

√

2/N σσσ∗ = 0.0707 arcsec ± .0005 arcsec (57b)

The result of the sampling was

µ
sampled
σ∗ = 2.99199 arcsec and σ

sampled
σ∗ = 0.07089 arcsec (58ab)

In good absolute agreement with the expected results. However, we note that the agreement of the

sampled mean value of σ∗ over the 160,000 trials agrees with the true mean to within 0.0080 arcsec

or σσ∗/9, which is adequate agreement from a practical standpoint. However, we had anticipated a

disagreement on the order of σσ∗/200. (For 10,000 samples of σ∗, the sampled mean was 0.299220.)

This discrepancy is being investigated.

VARIANCE ESTIMATORS FOR MULTIPLE SENSORS

The estimation of star-tracker precision from star-tracker data alone was possible, because typically

the star-tracker yields simultaneous measurements of more than one star. This is not the case for most

sensors, such as a Sun sensor, an Earth horizon sensor, or a vector magnetometer. There is only one

Sun, one Earth, and one geomagnetic �eld. For these sensors a di�erent strategy is needed. In fact,

such a strategy was developed more than two decades ago (ref. 12) . For completeness, and because

this estimator has much in common with the algorithm for estimating star-tracker precision, it will be

reviewed briey here.8 This will also give us the opportunity to present the mathematics of that algorithm

is somewhat more detail.

8The reader is cautioned to avoid the treatment of inight sensor alignment estimation in ref. 11. That work was very primitive

and has been superceded by more mature work for both batch (refs. 13, 14) and Kalman �lter (ref. 15) implementations.
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Suppose the spacecraft is provided with M single-direction sensors and consider the pair-wise cost

function

L̃ij(A) =
1
2

{

ai|Ŵi − AV̂i|
2 + aj|Ŵj − AV̂j|

2} i 6= j = 1, . . . , M (59)

It follows (ref. 4) that

λmax, ij = λo, ij − L̃ij(A
∗
ij)

=
√

a2
i + 2aiaj cos(θW, ij − θV, ij) + a

2
2 (60)

where

cos(θW, ij − θV, ij) ≡ (Ŵi · Ŵj)(V̂i · V̂j) + |Ŵi × Ŵj| |V̂i × V̂j| (61)

The quantity θW, ij is the angle between Ŵi and Ŵj, while θV, ij is the angle between V̂i and V̂j. Clearly,

the latter is equal to the angle between Ŵtrue
i and Ŵtrue

j , which we write as θtrue
W, ij. Thus, we write

∆θij ≡ θW, ij − θ
true
W, ij (62)

and, equivalent to equation (60),

λmax, ij =
√

λ2
o, ij − 4aiaj sin2(∆θij/2)

= λo, ij −
aiaj

2(ai + aj)
∆θ2

ij + O(|∆θij|
4) (63)

and we de�ne as the elemental e�ective measurement

zij ≡
2(ai + aj)

aiaj
(λo,ij − λmax, ij) = ∆θ2

ij (64)

The similarity to the star-tracker precision estimator (σ2)∗ is evident. Our estimation problem reduces

largely to determining the statistical properties of ∆θ2
ij.

Since ∆θij is an in�nitesimal quantity, we can write to O(|∆θij|3)

∆θij ≈ sin(∆θij) = ∆|Ŵi × Ŵj| = ŝTij ∆(Ŵi × Ŵj) (65)

with

ŝij ≡ (Ŵtrue
i × Ŵtrue

j )/|Ŵtrue
i × Ŵtrue

j | (66)

the unit vector normal to the plane of Ŵtrue
i and Ŵtrue

j . From equation (3a) this becomes

∆θij = (Ŵtrue
j × ŝij)

T ∆Ŵi − (Ŵtrue
i × ŝij)

T ∆Ŵj (67)

Equation (67) makes the statement that only the components of ∆Ŵi and ∆Ŵj in the plane of Ŵtrue
i

and Ŵtrue
j contribute to ∆θij. The calculation of the statistical moments of ∆θij is now straightforward

and yield (for i, j, m and p distinct indices)

E{zij} = σ2
i + σ

2
j (68a)

Var{ zij } = 2(σ2
i + σ

2
j )2 (68b)

Covar{zij, zim } = 2σ4
i |ŝij · ŝim|

2 (68c)

Covar{zij, zmp } = 0 (68d)
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For the direction data at time tk we can de�ne a measurement vector

Zk = [z12, k, z13, k, . . . , z1n, k, z23, k]T (69)

a parameter vector ΣΣΣ
ΣΣΣ ≡ [σ2

1 , σ
2
2 , . . . , σ

2
n]T (70)

and a measurement sensitivity matrix Hk

Hk ≡ [HT
12, k H

T
13, k · · · H

T
1n, k H

T
23, k]T (71)

where Hij, k is a 1× (n+ 1) array in which all elements vanish except for the ith and jth, which are unity.

Given these quantities the measurement equation for the variances at time tk becomes

Zk = HkΣΣΣ + ∆Zk (72)

where ∆Zk is zero mean and with covariance matrix easily constructed from equations (68). The

estimation of the sensor variances is now a trivial exercise in least-square estimation.

The above algorithm was actually applied to real data. In 1981, reanalysis of attitude data for the

Magsat mission (launched October 1979) led to the suspicion that the �ne attitude sensors (two Ball

Brothers CT-401 �xed-head star trackers and an Adcole precise Sun sensor, all with precisions in the

neighborhood of 13 arcsec) might have larger error levels than had been claimed by the vendors. The

above algorithm, however, indicated that the three sensors all performed within the vendors' speci�cations.

The problem was later determined to arise from a software error. Reference 11 contains more details

of the speci�c application and numerical results.

RECOMMENDATIONS FOR MANUFACTURERS OF AUTONOMOUS STAR TRACKERS

Based on our results above, we recommend that manufacturers of autonomous star trackers include

not only the estimated attitude quaternion in their outputs, but the full inverse covariance matrix as

well, since this contains much additional information, not only for calculating TASTE but also for

understanding the correlations in the attitude quaternion errors, which may be high in cases of poor

observability. The inverse covariance matrix is preferable to the covariance matrix, since the inverse

covariance matrix is the more fundamental quantity, and the inversion of the matrix onboard may result in

loss of signi�cance. Output of only the diagonal elements of the covariance matrix or inverse covariance

matrix is not adequate for post-launch analysis. It would also be a good idea to include TASTE and σvend
among the outputs also, since the latter quantity may be di�erent from star tracker to star tracker (as

technology improves) and the manufacturer's speci�cation literature may not always include the latest

value, especially if units are individually calibrated before delivery. Needless to say, the number of stars

observed for each quaternion calculation, should also be output, which seems to be currently the case.

DISCUSSION

While the algorithms presented in the paper for the estimation of precision estimation perform well,

the simulation results, naturally, are unrealistically good, because they do not take into account sensor

and environmental modeling errors, which are not expected to be zero-mean or Gaussian. In addition,

the estimated σ's will also include random errors in the environmental models. However, even if the

estimated precisions do not reect the true instrumental precision of the star tracker, they do provide an

e�ective sensor variance which can used to establish the performance of the instrument and the resulting
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attitude estimator. In a more realistic setting one would estimate not only sensor error-level parameters

but calibration parameters as well. The present treatment assumes, e�ectively, that calibration parameters

have already been estimated with an accuracy much better than that of the sensor error level.

Current researches are directed to estimating more realistic noise parameters.
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