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QUEST and The Anti-QUEST:
Good and Evil Attitude
Estimation

Yang Cheng' and Malcolm D. Shuster?

Abstract

An attitude determination algorithm, proposed 25 years ago as a back-up algorithm in
case the QUEST algorithm failed to function properly on its maiden mission, is finally com-
pared with the QUEST algorithm. A comparison of the attitude determination accuracies of
both algorithms is carried out using the QUEST measurement model. The back-up algo-
rithm, which we have chosen to call “The Anti-QUEST,” while it lacks the special features
that have made QUEST so popular today and is rather clumsy, slow and deficient in many
ways, works well under the almost ideal conditions of the Magsat mission, but not gener-
ally. Further comparisons of QUEST and The Anti-QUEST provide useful insights into the
different behaviors of optimal and deterministic attitude estimators. This work also presents
useful practical techniques for the covariance analysis of nonoptimal algorithms.

Introduction: QUEST

When the QUEST algorithm [1-3] was first developed between August 1977
and October 1978, no one, especially not QUEST’s author, anticipated that it would
gain the popularity it enjoys today. QUEST came at a critical time in NASA atti-
tude mission support, when accuracy requirements and attitude computation fre-
quency requirements for the proposed Magsat mission threatened to overwhelm the
computational capacity of Mission & Data Operations at NASA Goddard Space
Flight Center. No one had a good idea what to do, and the expectation was that
NASA would spend a lot of time computing spacecraft attitude (on ground-based
main-frame computers) and the project scientists would all have long white beards
by the time they received precisely referenced magnetic field data.

Fortunately, early in the development of the Magsat attitude software an algo-
rithm, QUEST (for QUaternion ESTimator), was developed which was lightning
fast and had other good properties which greatly streamlined attitude mission
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operations. The story of the development of QUEST is an interesting story in itself,
which the reader can find in reference [4].

QUEST used somewhat unfamiliar mathematics to achieve its speed, and be-
cause of this there was some trepidation at NASA?® that it might not perform as well
with real data as in simulation. For that reason, about six months before the Magsat
launch on October 30, 1979, it was decided to have a back-up algorithm just in case.
The back-up algorithm was clumsy, slow, ugly, obviously less accurate than QUEST,
and it could not do half of what QUEST could do, but no one doubted that it would
work. As it turned out, QUEST performed remarkably well from the first frame of
data, and the back-up algorithm, which never had a name, was never exercised with
real mission data and quickly passed into well-deserved oblivion. But there is some-
thing to be learned from the alternative Magsat algorithm. Therefore, for the first
time, we disclose this forgotten algorithm, orphaned at birth, abandoned by NASA-
kind. We have dubbed this forlorn algorithm “The Anti-QUEST” and give it now a
proper evaluation, so that the world may know what might have been.*

Despite a firm desire to be entertaining, this work also provides practical tech-
niques for the covariance analysis of nonoptimal attitude estimation algorithms,
i.e., algorithms for which the attitude-error covariance matrix cannot be calculated
as the inverse of the Fisher information matrix. It also provides new results for the
attitude-error covariance matrix of the TRIAD algorithm, which are much superior
to those presented two decades ago. In addition, one gains important insights into
some of the undesirable properties of nonoptimal attitude estimators. In some
cases, The Anti-QUEST performs badly, because it makes use of more (!) data than
the TRIAD algorithm, on which it is based, although it was expected naively to be
better than the TRIAD algorithm, because it used all of the data. What is most sur-
prising is that for the Magsat sensor configuration, for which The Anti-QUEST was
proposed, it performs nearly as well as QUEST.

The TRIAD Algorithm

Although we will not repeat the derivation of the QUEST algorithm, which has
been presented adequately elsewhere in the literature [2, 3], we will repeat the deri-
vation of the TRIAD algorithm,’ if only to introduce notation and definitions.

In the TRIAD algorithm, one is given two unit-vector measurements (i.e., 3 X 1
arrays of numbers) W, and W,, generally the observed directions of the Sun, a star,
the magnetic field, or the nadir, all represented with respect to the spacecraft body
frame, and their corresponding representations in the primary reference frame (fre-
quently inertial), Vi and Vs, which are the directions of these same objects resolved
along primary reference axes. These must satisfy

W] = AV] + AW1 and Wz = A‘Afz + AWz (lab)

3There was, in fact, more than just “some” trepidation at NASA Goddard Space Flight Center.

“The prefix of The Anti-QUEST is the Classical Greek preposition *dvTi, meaning against. Thus, The Anti-
QUEST means the rival of QUEST or, more strongly, the enemy of QUEST.

*The TRIAD algorithm, despite the fact that it constructs the attitude matrix by first constructing righthand
orthonormal triads, does not derive its name from that fact, but from the name of an attitude ground support
system (TRI-axial Attitude Determination System, hence, TRIAD, in upper-case letters, because it was an
acronym), in which that algorithm was implemented in the early seventies, and the earliest occurrence of the
algorithm known to the second author when reference [2] was published. (He might, of course, have named
it the “triad” algorithm because of its use of triads, but then the name would be in lower-case letters.) Harold
Black [5], who first published the algorithm, gave it no name. Gerald Lerner [6] gave it the not very descrip-
tive name, the “algebraic method.”
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with A the attitude matrix and AW, and AW, the measurement noise. These two
equations are generally not solvable, owing to the presence of the noise terms.
The TRIAD prescription for generating a (proper orthogonal) attitude matrix is
as follows:

Define two right-hand orthonormal triads of vectors, {£, £2, £} and {8,,85,8;} ac-
cording to

. ~ Vl X Vz n n o

r =V, L= 7, =5 Xrn (2abc)
Vi X V,

. W, X W.

§ =W, S=—"—"2 5H=8 X% (3abc)

W, X W,|
and then set
ATRIAD = [§1 §2 §3] [f‘l f'z f'3]T = SRT (4)

In equation (4) the brackets denote two matrices labeled by their column vectors,
and the T denotes the matrix transpose.
The matrix A™"P perforce satisfies

AR =8, k=1,2,3 (5)

is always proper orthogonal, and satisfies W, = A™APY, exactly. If there is no
measurement noise, then W, = A™APV, is also satisfied. Otherwise, the equation
83 = A™"Pf; plainly shows that A™'*" exactly aligns the component of V, perpen-
dicular to V; along the component of W, perpendicular to W;.

The TRIAD Covariance Matrix®

We assume for simplicity that V, and V, are free of error. When this is not the
case it creates only a minor complication [2]. The error in the attitude matrix esti-
mate is defined as

AA = A" — A™ = (AS)R" (6)

where A* here denotes the estimate of the attitude matrix (in this case the TRIAD
attitude matrix), and A™ is the true value of the attitude matrix to which, suppos-
edly, A" is infinitesimally close. We define the attitude-error vector A6 by

A" = BA(AG)A™ (7)

where 8A is the direction-cosine matrix of an infinitesimal rotation (with argument
A@), which we may write to linear order in A as

A =1+ [[A€6]] 3)
with [[u]] the 3 X 3 antisymmetric matrix given by [7]

0 us —U>
[ull =|-us 0 u ©)
U —Uu 0

“Although treated at length in reference [2], we repeat much of that earlier material here, because we require
that machinery in the present work and also, because after more than two decades we are able to produce nicer
results. This repetition has also given us the opportunity to correct some errors that appeared in reference [2].
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Thus, to first order in A@
AA = [[AO]]Alme (10)

The attitude-error covariance matrix or simply the attitude covariance matrix is
defined as

Py = E{AOAO"} (11)

where E{-} denotes the expectation. It will be useful to define the attitude-matrix
covariance matrix as

Py = E{AAAAT} = (trng)I — Py (12)
and “tr” denotes the trace operation. Equation (12) may be solved to yield
1
Py = E(UPAA)I — Pu (13)
From equation (6)
3 3
Pay = E{ASAS™} = E{Z AM@Z} = > E{A§.A8]} (14)
k=1 k=1

Because of the simplicity of equation (14), it will be simpler to calculate Py first
and then Py using equation (13).

To compute the expectations in equation (14) we require a statistical model of the
measurement noise, for which we propose the QUEST measurement model [2-3],
namely

E{AW} =0, i=1,....n (15a)

E{AWAWT} = §;07 (1 — WWeT), i j=1,....n (15b)

with n the number of measurements (for TRIAD n = 2, for The Anti-QUEST
n = 3) and §; is the Kronecker symbol. The AW, are further assumed to have a
Gaussian distribution. This measurement model can be only approximately true [3],

but it is certainly adequate for our purposes here.
We introduce also the non-unitized vectors

S = Wl, S = Wl X Wz, S$3=8 X8, S$4= Wz X S (16abcd)

and

§,':S,'/‘S,', i=1,...,4 (17)

Note that |si| = 1, [so] = |ss] = |ss| = |[Wi X W,, and that {W,,8,,8.} is also a
right-hand orthonormal triad. It follows that

§4 = |W1 X W2|§1 + (Wl . W2)§3 (18)
The following relations will also be useful:

1

& =———[(W, - W)W, — W 19

S Wi X Wi [(W) - W)W, 2] (19a)
1 A A A N

§4 = —[Wl - (W] * W2)W2] (19b)

Wi x W
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To compute the errors in the unit vectors of the observation triad, we note
now that’

A§; = é( 88DAs;, i=1,...,4 (20a)
§TAS; =0, i=1,...4 (20b)
and
As; = AW, (21a)
As, = [[WL]]AW, — [[W,]]AW, (21b)
Ass = ([[s2]] + (Wy - Wo)I) AW, + [[W ] AW, (21c)

The evaluation of equation (14) is now lengthy but straightforward.
We have next

E{AsiAsT} = 2 (I — WiWT) = a1 (I — sisT) (22a)
E{ASzASg} = 0'2[1 - Wsz - 5252] + 0'2[1 - W]VVT - SzSz] (22b)

E{AS3AS§} = 01 [|52|2W1WT - (W] Wz) (W]S3 + S3W )
+ (Wi - W1 = WWD] + o3[1 — WWT — sisT] (220

and, consequently, using equation (20a)

E{A8,AST} = o%(l - WiWh = ol (1 - 83D (23a)
E{A§2A§§} | |2 (O’ZS4S4 + 0'25353) (23b)
E{A’S\3A§§} {0’2 |:|Sz|2§1’S\F1F + (Wl Wz)2 SzSz] + 0’%@2@%} (230)

||2

The three equations (23) are easily summed to yield

(1 si8) (24

2
S2

Pay = 0'%{ | E [8.8T + (W, - W,)? 32’5\5]}
Sz

Straightforward substitution of equation (24) into equation (13) leads to

1 PN n on
PIAD = 628,81 + ———— (01 WLWJ) + a3 WWY]) (25a)
W, X W,
1 2
2
| ] [0‘2 (W2W2 + s87) + A W,WT ] (25b)

"In equations (20), and subsequently in expressions containing noise terms or expectations, whole quantities,
as opposed to their errors, should bear the superscript true, since the errors are measured from the true
values. Such a practice, however, would overburden our notation, and we trust the reader to make the correct
interpretation. Note also that all expressions for errors are, as usual, correct only to first order in the meas-
urement noise errors. It is only in first order in A§; that equations (20) are true.



342 Cheng and Shuster

We note in passing the equivalent expressions® from reference [2]
1
P = [ (0 + 03) ————=— — o1 [S$:8]
W, X W,
(W[ ° Wz)

+ 07 (8,87 + 8:87) — of = =
[W, X W,|

(3:87 + 8:8) (26a)
1
=0l + ——=—
W, X W,
+ gt (W, - Wo) (WiWT + W,W1)] (26b)
Equation (26a) may be simplified to

[(03 — o)W, WT

1 1
PP = 3 + (oF + a'%)WASlT - a%ﬂ(é.sl + 8,87) 27)
So S>
Clearly equation (25b) is the most efficient form.
Of interest also is the inverse attitude-error covariance matrix

o3

1 n a 1
(PIRIAD) =1 — ;([ — W,W]) + —8,8% (28)
1

which can be verified most easily by multiplying this expression with that in equa-
tion (25a), (25b), (26b), or (27).

The Anti-QUEST

The Magsat spacecraft, launched on October 30, 1979, was equipped with three
fine-attitude sensors: two Ball Brothers CT-401 fixed-head star trackers (FHST1
and FHST?2) and an Adcole fine Sun senor (FSS). We shall label these sensors with
the indices 1, 2, and 3, respectively. The accuracies (10) of the three sensors were
determined inflight [8] to be 9.2, 8.0, and 11.2 arc seconds per axis, respectively,
with statistical error levels (in the estimated accuracies) on the order of 1 arc sec-
ond. These error levels were consistent with those specified by the vendors before
launch.’ The respective boresight vectors, with respect to Magsat body coordinates,
were approximately

\V/3/8 -\/3/8 0
U=|V3/8|, U=| V38| U=|0 (29)
1/2 1/2 1

Thus, the boresights of any two fine-attitude sensors are separated in angle by at
least 60 deg.

The QUEST algorithm [1-3] was able to handle all three measurements simul-
taneously. The TRIAD algorithm, which had been NASA's tried-and-true algorithm
up to the Magsat launch, could handle only two vectors at a time. Thus, when data

¥Note that equation (23) in reference [2] contains some typographical errors. All s, in that equation should
be §,-,

°The inflight estimation of the sensor error levels was made because errors in the earliest estimated attitudes
were outside specification. After the study of reference [8] was reported, the problem was traced to a soft-
ware coding error.
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from all three fine-attitude sensors were available simultaneously, it was proposed
as a back-up algorithm with the following steps:

e The TRIAD algorithm would be used to compute the attitude matrices A(a),
A(b) and A(c) for each of the three possible pairs of sensors, denoted by a,
b and c. (Note: a, b, ¢ denote measurement pairs, not individual direction
measurements.)

e Each of the attitude matrices would be converted to an appropriate set of
Euler angles {¢(a), }a), p(a)}, {p(b), ¥(b), (D)}, and {e(c), F(c), P(c)}.

e The Euler angles of the estimated attitude would be the average of the Euler
angles sets for each measurement pair.

X" = (xta) + x(b) + x(c))/3 (30)

where Yy is either ¢, ¥ or .
e These averaged Euler angles would be used, finally, to generate the Anti-
QUEST attitude matrix

AAnti-QUEST — A(¢average’ ﬁaverage’ ¢average) (31)

This is the algorithm we call here The Anti-QUEST."

It is certainly not the intent of the authors to offer this algorithm as a candidate
replacement for QUEST. Too much would be lost by that substitution, however
enticing it might be to return to the “Bronze Age” of NASA Attitude Support.
Nonetheless, it would be interesting to know how it would have performed com-
pared to QUEST. Thus, the main part of this work will be taken up in developing
expressions from which the Anti-QUEST attitude-error covariance matrix can be
calculated.

Let us note first that there is no need in our forthcoming analysis of the Anti-
QUEST attitude-error covariance matrix to duplicate exactly the steps of The
Anti-QUEST. Since our attitude-error covariance matrix is defined with respect to
true body axes, we may refer the (asymmetric set of ) Euler angles also to these, so
that the true value of each of the Euler angles will be zero."' (Equivalently, we may
choose A™¢ = I.) Then for each pair of vectors, the errors in the corresponding
1-2-3 Euler angles will be simply the three components of the attitude-error vector
for that pair, and their average will be simply the Anti-QUEST attitude-error
vector. All the same, for the development of this work we will retain A in our
mathematical expressions for clarity. However, because the attitude-error covari-
ance matrix, as we have defined it, will not depend on the attitude, any “virtual”
dependence on the attitude cannot be explicit in the final expressions, which will
depend only on body-referenced direction measurements.

Given that the measurements are all of about the same accuracy, we do not ex-
pect a great difference in the performance of The Anti-QUEST for different choices
of which is the first measurement vector in each measurement pair. Therefore, we
will choose our three ordered pairs of measurements to be

a=(1,2), b=1(2,3), c=(3,1) (32abc)

"Officially, the attitude output was the three Anti-QUEST Euler angles (and, perhaps, the three sets of Euler
angles for each pair). Later in the mission, after people became comfortable with quaternions, the attitudes
on the attitude output tapes were expressed as the four components of the quaternion in integer format.

"In actual mission support, of course, one does not know the directions of the true body axes and must cal-
culate “whole” Euler angles.
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again with literal rather than numerical labels to avoid confusion of the measure-
ment pairs with the measurements. In each pair of equations (32abc) the first index
is that of the measurement vector chosen to be §;. In each pair the measurements
have been chosen to be in cyclic order, and the three pairs themselves are also cycli-
cally ordered, which will lead to further simplification of our task in the sequel. We
could equally well have chosen the anticyclic pairs

a =(2,1), b' = (3,2), ¢ =(1,3) (32def)

or any combination of cyclic and anticyclic measurement pairs can be used pro-
vided they correspond to the same set of three unordered pairs. We will have cause
to make use of this greater generality in a later section.

The expressions in equations (22) through (28) have a hybrid appearance given
the simultaneous use of s-vectors and W-vectors. We can impose a more uniform
style by defining ss = W, i.e., §s is the second direction in an (ordered) measure-
ment pair. Then we can always make the substitutions in these equations: W; — §;,
W, — 85, W, X W, —s,, and W, - W, — §; - 85. Such a formula will be particu-
larly advantageous when a measurement pair is not the canonical (W;, W,), even if
it is simplest to derive an expression originally with these specific numerical values
for the indices.

The Anti-QUEST Covariance Matrix

The relationship connecting P4 and Py that was useful for the analysis of the
TRIAD algorithm also holds with minor modification for The Anti-QUEST. We
write for the error in the Anti-QUEST attitude matrix

AA = %[AA(a) + AA(D) + AA(c)] (33)
and
Pu = E{AAAA™} = % > E{AA()AAT(B)} = % > Pula, B) (34)
a, B a, B

The Greek indices o and B range over the three pairs a, b and c. Clearly, Pu(a, )
is just the TRIAD result from a previous section with the proper choice of indices
for the measurement vectors, and

Pula, B) = E{AA(a)AAT(B)} = PIA(B, @) (35)
Note that
Pi(a, B) = (trPoo(B, @) — Poo( B, @) (36)

with a transposition of arguments, and likewise

Poo(a, B) = %(trPAA(B, )l — Piu(B, @) (37)

We are led, therefore, to examine
Pu(e, B) = E{AA(2)AAT(B)} = E{AS(a)R"()R(B)AST(B)} (38)

Evaluation of the expectation is hampered by the presence of R'(a)R() in the cen-
ter of the expression. For the TRIAD case, this expression was R"(a)R(a) which
was equal to the identity matrix and, therefore, disappeared.
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To eliminate the presence of the reference orthogonal matrices, we note from the
orthogonality of the attitude matrix that

AA = —A™(AA)TA™ (39a)
AA(a) = —A™(a)(AA()"'A™ () (39b)
Substituting these expressions into equations (12) and (34), respectively, yields
Piy = A™E{AATAA}A™T (40a)
Pu(a, B) = A™ () E{AAT () AA(B)IA™(B) (40b)
and further substituting equations (4) and (6) leads to
Piy = S™E{ASTAS}S"™T (41a)
P, B) = S™ () E{AS ()AS(B)}S™"(B) (41b)
where we have used"?
A" = §™(a)R"™ (a) = S™(b)R™"(b) (42)
Our task now becomes the evaluation of
M(e, B) = E{AS™()AS(B)} (43)
whence
Pu(a, B) = S(@)M(e, B)S™(B) (44)

(Henceforth, when no confusion can arise, we no longer write the superscript “true”
on whole quantities.) Clearly

M(B,a) = M'(a, B) (45)

Since we have conveniently chosen the order of vector indices in each measure-
ment pair to be in cyclic order and have defined the pairs a, b and c to be in cyclic
order as well, we need develop expressions only for M(a,a) and M(a,b). The ex-
pressions for the remaining seven terms can then be obtained from these by cyclic
permutation of the pairs and indices and matrix transposition. In fact, it is suf-
ficient to develop expressions for the corresponding Psla,a) and Pu(b,a)
in terms of the W;, i = 1,2, 3, and then apply the appropriate transformations to
obtain the remaining seven components of Py. This makes our task simpler still,
because Pyla, a) is just the expression for attitude-error covariance matrix of the
TRIAD algorithm presented in equation (25). We are left, therefore, with only one
further expression to develop in order to obtain an expression for Py, namely,
that for M(a, b).

To compute M(a,b) we note that the elements of this matrix are given by

[M(a,b)]; = E{ASi(a)A8,(b)} = tr(E{AS;(D)AS! (a)}) (46)

The second expression will be more useful, because it places the measurement
errors in immediate proximity. It follows immediately that

Mu(a,b) = M(a,b) = Mis(a,b) = Mx(a,b) =0 47

"Note that in general §™(c) # §"™*(B) for a # B.
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so that there are at most five nontrivial elements for which we must develop ex-
pressions. These are:

M h) = ) SN 80D s
M) =~ Gl SO) G S0)  (4sh)
M;i(a,b) = —ﬁ (48c¢)
M) = s 60 800 0 - 30) (@8d)
Mlah) = - —2@a) - )Rka) X SBP (40)

Jsa()]]s:b)]

The reader must be cautioned against applying equation (45) naively. The spe-
cific form of the matrix elements of equations (47) and (48) depends on the fact that
b is the cyclic follower of a. If one attempted to calculate M;(b, a) simply by inter-
changing a and b, one would not obtain, necessarily, a correct result.

On the other hand, if one were to make the substitutions (b,c) or (c,a) for
(a,b), the form of equations (48) would be maintained with the appropriate cyclic
substitutions.

Had we chosen our measurement set to be the anticyclic pairs ¢’, b’ and a’, then
the elements of M(a, 8) would have expressions very similar in form to those of
equations (48) provided that the pairs are also in anticyclic order, that is, we calcu-
late the values M(b',a’), M(a’,c") and M(c',b’).

From equations (47) and (48) we can calculate Psa(a, b) and by transposition and
cyclic permutation of the measurement indices and by using the expression for the
TRIAD attitude-error covariance matrix developed earlier the entire P44 and thence,
Pyo. It will be generally easier, however, to calculate first the portion of Py4 arising
from the six cross terms alone, convert this to the corresponding portion of Py, and
then add the TRIAD terms using equation (25b). A simple closed-form expression
is likely an unattainable goal and certainly of limited applicability.

This complicated procedure should be compared with the simplicity of comput-
ing the attitude-error covariance matrix for the QUEST algorithm

3

PVEST = [2 %(1 - vAvivAva)] (49)

i=1 Oi
QUEST Versus The Anti-QUEST: Magsat, the First and Final Contest

We have computed the attitude-error covariance matrix for the QUEST and the
Anti-QUEST algorithms for the Magsat mission assuming that the three measure-
ment directions are along the sensor boresights and the measurement accuracies are
as mentioned earlier with the results

40.18 —3.53 -=-3.72
PYVEST = | =353  46.41 19.14 | arcsec? (50a)
—=3.72 19.14 56.61
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50.70 —12.58 —4.86
PRiQUEST — | 1258 5446 19.42 | arcsec? (50b)
—4.86 19.42 65.21

The results are remarkably similar. The QUEST algorithm must do better, of course,
because of the Cramér-Rao theorem [9]. Not a great deal of accuracy was gained
for Magsat by using QUEST rather than The Anti-QUEST, only 20 percent in vari-
ance or 10 percent in standard deviation, but QUEST was certainly a far faster al-
gorithm and easier to implement, as well as providing other extremely important
benefits, such as the readily calculable figure of merit TASTE.

The Two Faces of the Anti-QUEST

In the above study of The Anti-QUEST, we arranged the data in pairs a, b, and
c. However, if the variances satisfy o} = o3 < o3, then a more accurate estimate
would have been obtained using the three pairs a, b and ¢’. We will call The Anti-
QUEST with this arrangement of the data The Arch Anti-QUEST (from the Classi-
cal Greek prefix ’alpx-, which means chief, and the prototype version presented
earlier in this paper The Proto-Anti-QUEST (from Classical Greek wp®Tos, -1, -ov,
which means first)."

Because the accuracies of the Magsat fine attitude sensors were so close in value,
there will be little difference in the value of the attitude-error covariance matrix for
the two forms of The Anti-QUEST. We examine these two variations of The Anti-
QUEST and compare them with QUEST for several general scenarios in the next
section.

Some Simple Examples: The Attitude-Axis Measurement Model

Previous sections, while developing useful methods and providing a result of his-
torical interest, have not provided much in the way of physical insight. We hope in
the present section to remedy this deficiency.

Consider again a set of three direction measurements Wl, Wz and VAVz with meas-
urement errors described by the QUEST measurement model with respective vari-
ances o, o3 and o3. Without loss of generality, we will assume that

ol = 03 = o3 (51

To simplify the calculation of the attitude-error covariance matrices we will assume
further that

1 0
Wre=|[0|l=1, Wie=|1[=3 W=|0[=3 (52abo)
0 1

For this very simple configuration we can obviate all of the machinery of the pre-
vious section developed for the general case. We call the above model the Attitude-
Axis Measurement Model. Its usefulness extends, obviously, beyond the present
examples.

Bt is interesting to note that the two Classical Greek roots *cipx- and mp@To- can each have the meaning first

in time, as we see from the English words Archaeology and prototype. Note also Latin principium “begin-
ning” and princeps “chief, prince.”
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Since the attitude-error covariance matrix has been defined in such a way that it
does not depend on the attitude, we may assume that the true attitude is null, i.e.

Atrue — I (53)
Thus, we have that
Vk = W}:ue, = §}<rue, k=1,2,3 (54)

This and the special choice of the Wi make it easy to calculate the error in the at-
titude matrices AA(a) directly from

AA(a) = (A31(a))f1(a) + (ASx(@)PX(@) + (A83(a))fi(a) (55)
One establishes readily that
A3i(a) = (AW)),2 + (AW));3 (56a)
A8y(a) = —(AW): T — (AW,),2 (56b)
A8;(a) = _(AWI)Z:i + (AW2)3§ (56¢)

where (AW])Q denotes the second component of AW,, and similarly for the other
terms. Evaluating equation (55) yields

AA(a) = _(AW2)3 [[i]] + (AW1)3 [[é]] - (AWI)Z [[3]]

0 —(AW), —(AW));
= | (AW)), 0 —(AW,); (57)
(AW1);  (AW,); 0
from which we can read the rotation angles to obtain
Ab(a) = [~(AW2);, (AW))s, — (AW)).]" (58)

Proceeding in similar fashion for AA(b) and AA(c) leads to

| (AW;), — 2(AW,);

AoPmto-Anti»QUEST I (AW1)3 _ 2(AW3)1 (59)
(AW,), — 2(AW)),
and
) 1
Py AnQUEST — 3diag[0% + 403, 0f + 403, 03 + 401] (60)
where
a O O
diag[al,az,ag] =0 a O (61)
0 0 as

By a similar path (after calculating AA(c")) we find
. 1
Piych-Anti-QUEST — Ediag[a% + 403, 401 + 03, 03 + 407] (62)

Note that Py A"-QUEST differs from Py A" QUEST only in the (2,2) element. From
equation (49)

1 1\ 1 1\! 1 1\!
PQUEST — 45 —+—=] ,(=+=]) . [=+= 63
» ‘ag[<o% a%> <o% a%> (o% a%> ] (©3
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Case 1: Equally Accurate Measurements

Consider now the special case that o} = 03 = 03 = 0>. We have immedi-
ately that

5

Plgléolo-Anti-QUEST — P?{l)‘ch—Anti-QUEST — _0_21 (643)
1
PRt = 0l (64b)

Both versions of The Anti-QUEST are only ten percent less accurate in variance,
which is similar to our more realistic example above. The Anti-QUEST does so
well in this case because the perpendicularity of the measurements attenuates the
ill-effects of the correlations.

Case 2: Two Levels of Accuracy

Sensors today fall into two broad classes: (a) coarse sensors with accuracies
around 0.5 deg; and (b) fine sensors with accuracies around a few arc seconds. One
can find poorer sensors, such as the Earth albedo sensor on the Thrusted-Vector
Mission, which was made to do double duty as an attitude sensor [10] and had an
effective error level as an attitude sensor of about 7 deg, and more accurate sensors,
like the fine guidance sensors of the Hubble Space Telescope which have a preci-
sion of about one thousandth of an arc second. The accuracy of a fine guidance sen-
sor as an attitude sensor, however, is limited to about 0.3 arc second, because that
is the accuracy of star directions in star catalogs. For this reason, our examples treat
only the cases of sensors with a common level of accuracy (Case 1 above) and sen-
sors with one of two levels of accuracy. We do not consider the case that the levels
of accuracy of all three sensors may be qualitatively different.

Thus, the more realistic cases are Case 2-A with

ol=03=0" and 03 = Ac? (652)
and Case 2-B with

ol =0 and 03 =03 = Ac? (65b)
Given the current sensor technology, A = 300,000.

Case 2-A: Two Fine, One Coarse Sensor

When there are two accurate direction measurements, the results for the three
attitude-error covariance matrices are

. o’
Phroto-Ani-QUEST _ 5diag[4 + A, 1+ 44, 5] (66a)
. o
P/jrch-Ani-QUEST 5 diag[4 + A, 4 + A, 5] (66b)
A A 1
PQUEST _ fng| —2 — 66
% Ozdlag[1+)\’l+/\’2:| (66¢)

In this case, we have once again that

P%){}JEST = P/g(gch-Anu-QUEST = Plg};olo-Antl-QUEST (67)
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consistent with our naive expectation and the Cremér-Rao lower bound [9]. Two of
the attitude-error variances for the Anti-QUEST algorithms can become very large
as A increases.'* Only the attitude error of the Anti-QUEST algorithms about one
axis is bounded as A increases without bound.

Case 2-B: One Fine, Two Coarse Sensors

When there is only one accurate direction measurement, the results are

_ a
Phipto-Ant-QUEST — 3diag[S)\, 1 +4)4 + A] (68a)
_ a
Pijyeh-Anti-QUEST — 3oliag[S)\, 4+ A4+ A] (68b)
oA A
PQUEST — 24; =, 68
b lag[z 1+/\1+A] (080

In this case, all three attitude-error variance of the Anti-QUEST algorithms
are unbounded and only one attitude-error variance of the QUEST algorithm is
unbounded as A increases without bound. The relative accuracy of the Arch-
Anti-QUEST and Proto-Anti-QUEST algorithms is again what one would expect
naively.

Discussion

As we have seen, in very auspicious cases when the three measurements are well
separated in angle, the accuracies are all approximately at the same level, and there
are only three measured directions, the estimate error levels of the Anti-QUEST atti-
tude are not much greater than those of the QUEST algorithm. In fact, in our
attitude-axis measurement model, the Anti-QUEST algorithm captures ninety per-
cent of the accuracy improvement (in standard deviation) of the QUEST algorithm
(with three measurements) above the TRIAD algorithm with only two measure-
ments! However, when the attitude system provides measurements of widely dif-
fering accuracies, the deficiencies of The Anti-QUEST become obvious.

The case where there are three measurements only is common nowadays only for
low-accuracy missions, in which the attitude sensor configuration may consist of a
coarse vector Sun sensor, an infra-red Earth horizon scanner, and a three-axis mag-
netometer. When the spacecraft is equipped with a star tracker, then there may be
as many as 25 measured directions. Would anyone in his right mind construct an
Anti-QUEST-type algorithm with n(n — 1)/2 pairs for n = 25? Fortunately, if 7 is
an even number, one really need consider only n/2 pairs to achieve attitude-error
covariance matrices which will have approximately the same magnitude. But even
three pairs are too many. Trade-offs between QUEST and The Anti-QUEST might
have received serious consideration twenty-five years ago (they did not from the
second author of this work), when attitude estimation was still a primitive art. We
have come a long way since that time, and such trade-offs no longer merit our
serious consideration.

It is too easy to forget that the great value of QUEST for Magsat lay not in its
lightning speed but in its capacity to recognize outliers immediately using the TASTE
test [4]. This led to a great streamlining of ground attitude operations for Magsat,
"“An interesting occurrence in the case where there are at least two very different levels of accuracy of the

three attitude sensors is that for A sufficiently large, the Anti-QUEST variances can be larger (!) than the cor-
responding variances for the TRIAD algorithm with only two of the measurements.
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for which data editing would otherwise have been the most time-consuming seg-
ment. In fact, NASA had half expected the data processing with “hands-on” data vali-
dation and editing to take as long as two days for each day of attitude data, which
would have meant nearly a year-and-a-half of data processing for the eight months
of Magsat data. As it turned out, with QUEST's automatic data validation and the
consequent avoidance of frequent analyst intervention in the data validation and ed-
iting, only four hours were required for one day of attitude data. Once fine-attitude
data processing was well underway [4], the definitive attitude tapes were ready for
the scientists in nearly real time.

The computation time needed by QUEST for the attitude is of limited importance
nowadays when every student has a computer which is more than 1000 times faster
and more capacious than NASA mainframes of twenty-five years ago. Nonetheless,
explorers of new solutions to the Wahba problem [11] still use speed as the chief
figure of merit."”

Requiescat in pace Anti-QUEST.
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