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Abstract

The general problem of determining the attitude deterministically, that is, directly with-
out the optimization of a cost function, from measurements of arc lengths and directions is
examined. While there is no continuous degeneracy for the solutions to this problem, be-
cause effectively three data are given, nonetheless, the attitude solution still has generally a
discrete degeneracy which can be removed only by the addition of further data. The only
case escaping the discrete degeneracy has an over-determined solution. Specific algorithms
are developed for all cases, and the nature of the degeneracy is explored in detail.

Introduction

It is customary to divide algorithms for estimating three-axis attitude into two
classes. The first class uses a minimal set of data and then solves three possibly
nonlinear equations to obtain the attitude. This class is generally referred to as “de-
terministic,” a name which has been popularized by Wertz [1]. The other class of
algorithms, generally referred to as “optimal,” determines the attitude by minimiz-
ing an appropriate cost function and using more than a minimal set of measure-
ments. Such algorithms are called for when more than three scalar measurements
are processed to obtain a more accurate estimate of the attitude. Perhaps the best
known deterministic algorithm in current use is the TRIAD algorithm [2, 3], in use
since at least 1964 [2], while the best known optimal algorithm nowadays is cer-
tainly the QUEST algorithm [3], in frequent use for computing spacecraft attitude
for Earth-bound spacecraft since 1979 and throughout the solar system for more
than a decade [4].

The overwhelming prevalence of complete vector data for determining spacecraft
attitude and the availability of the QUEST algorithm for more than two decades
has largely obviated the need to calculate spacecraft attitude from anything but
complete vector data. In fact, even the TRIAD algorithm is used infrequently
nowadays, since the computational burden of the QUEST algorithm and many of
its competitors is hardly much greater. An excellent review of all batch optional
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algorithms for computing quaternions using vector data has been given by Markley
and Mortari [5].

Deterministic attitude-determination algorithms, although in infrequent use, still
find application. An example was the need to determine three-axis attitude for the
Oscar-30 spacecraft from the observed geomagnetic field vector from a three-axis
magnetometer (TAM) and the observed angle between the geomagnetic field vec-
tor and the Sun line from a spinning digital solar aspect detector (SDSAD). One of
the methods developed in this paper is, in fact, the one employed for the process-
ing of Oscar-30 attitude data (see below).

With the exception of studies of the TRIAD algorithm [3], no systematic studies
have been taken of deterministic three-axis attitude determination methods. The
TRIAD algorithm is not truly deterministic in that it uses more than the minimal
number of measurements for the construction of the direction-cosine matrix [6]. It
turns out that truly deterministic algorithms do not, in general, lead to unambigu-
ous results for the attitude. The attitude solution may admit two-fold, four-fold, and
eight-fold discrete degeneracies in the attitude solution. This is the subject of the
present work.

Nature of the Measurements

Static attitude measurements (as opposed to “dynamic” gyro measurements) are
generally of arc lengths or dihedral angles. Thus, for example, the z-component of
a magnetic field vector measurement, when divided by the magnitude of the mag-
netic field yields the direction-cosine of the z-axis of the magnetometer with the
magnetic field vector, which is the cosine of an arc length [7, 8]. Attitude sensors
may also measure a dihedral angle, that is, the angle between two planes. This is
the case for a slit Sun sensor, which measures the angle between the sensor reticule
plane and the plane determined by the Sun position and the sensor slit. In data pro-
cessing, however, this information is generally combined with that from a perpen-
dicular slit and transformed into a direction vector [7, 8]. Conical horizon scanners
provide an arc length (the nadir angle) and a dihedral angle (between the scanner
axis-Sun direction and the scanner axis-nadir direction planes). This information is
used, however, to determine the nadir direction as an effective measurement [9]
rather than directly in the estimation of the attitude. Thus, for practical purposes,
static sensors, no matter what their type, generally furnish as effective measure-
ments either arc lengths or entire directions (i.e., three arc lengths from a set of or-
thogonal axes). In the present work, we treat only static sensors, whose data, we
assume, is simultaneous.

If is some direction fixed in the spacecraft, for example, the axis of a focal-
plane sensor, and if is a direction of some object in space (or of a measurable
vector field at the spacecraft, such as the geomagnetic field) coordinated in the
spacecraft body frame, then the most basic scalar measurement is simply

(1)

where d is the measurement, the cosine of an arc length, and is the measurement
noise. In general, we also know the representation of the partially observed direc-
tion in our reference coordinate system (typically geocentric inertial, which we will
refer to in this work as the space frame). We write the space-referenced vector as

and this is connected to the body-referenced vector by the direction-cosine
matrix A [6]

Ŵ V̂,

�d

d � Ŝ � Ŵ � �d

Ŵ 
Ŝ 
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(2)

Thus, our basic measurement model is

(3)

In general, we assume that is normally distributed with mean zero and variance 

(4)

The measurement d is of a direction-cosine, from which we may unambiguously
obtain the angle (i.e., arc length) between and , if we restrict its value to lie in
the interval For this reason we will refer to d henceforth as an arc length
measurement.

For a vector sensor we are led to the effective measurement model for the direc-
tion measurement

(5)

with (approximately)

(6a)

(6b)

where denotes an expectation. the covariance matrix, must be singular
because of the norm constraint on and satisfy2

(7)

A useful approximate covariance matrix for direction measurements is the QUEST
model [3, 10], which has been used for the covariance analysis of the QUEST and
TRIAD algorithms [3]

(8)

We expect this algorithm to be a particularly faithful representation of the effective
direction-measurement error for a focal-plane sensor with a limited field of view.
Henceforth, we will refer to as a direction measurement.

Since we are interested only in deterministic solutions, we will attempt to con-
struct the direction-cosine matrix from the measurements under the assumption that
we may neglect the measurement noise. We are led, therefore, to consider three
measurement scenarios:

Scenario 1: Two Directions

We wish to determine the three-axis attitude given the two measurements

(9)

Scenario 2: One Direction and One Arc Length

We wish to determine the three-axis attitude given the two measurements

(10ab)d2 � Ŝ 2
TAV̂2 Ŵ1 � AV̂1 ,

k � 1, 2Ŵk � AV̂k 

Ŵ 

RŴ � � Ŵ
2 �I3�3 � ŴŴT�

RŴŴ � 0

Ŵ 
RŴ,E���

E��Ŵ�ŴT� � RŴ 

E��Ŵ� � 0

Ŵ � AV̂ � �Ŵ

[0, ��.
Ŝ Ŵ 

�d � N �0, � d
2�

� d
2�d

d � ŜTAV̂ � �d

Ŵ � AV̂

Deterministic Three-Axis Attitude Determination 407

2This is true, of course, only in the limit that sensor field of view is infinitesimal. It is, however, a good ap-
proximation generally.



Scenario 3: Three Arc Lengths

We wish to determine the three-axis attitude given the three measurements

(11)

These represent the minimum number of measurements of each type (directions
only, directions and arc lengths, arc lengths only) for which the attitude solution
will have at most a discrete degeneracy. We know already that Secnario 1 will
not generally have solution because A is overdetermined, and a deterministic solu-
tion will require that some data be discarded, as we shall see below. For the other
two scenarios a solution will indeed be possible if the have values which are pos-
sible physically. However, the solution may not be unique. Note that when we com-
pute the attitude covariance matrix, the noise terms must be added to the definition
of the measurement vector and taken into account explicitly.

Three-Axis Attitude from Two Directions

Scenario 1 above is simply that of the TRIAD algorithm, whose derivation we
shall repeat here, because it is very short and will be of value in later discussion.

We begin by constructing two dextral (right-handed orthonormal) triads of unit
vectors from the observations and the reference vectors, namely

(12abc)

(12def)

In the absence of measurement noise, these ancillary vectors would satisfy

(13)

or, equivalently

(14)

with

(15ab)

and the right members of equations (15) denote matrices labeled by their
columns. The matrices and are both proper orthogonal, because the two tri-
ads of column vectors are each dextral. Hence, we may solve equation (14) for A
to obtain

(16)

This is the TRIAD algorithm [2, 3].
Although the attitude is overdetermined by the data, the TRIAD algorithm is de-

terministic, as opposed to the QUEST algorithm, which finds an attitude solution
optimally from the same data. To understand the nature of the TRIAD algorithm,
note that it is sufficient to find A which satisfies equation (13) for and 
By construction, the TRIAD attitude satisfies

(17)

exactly. The equation for however is equivalent tok � 3,

Ŵ1 � AV̂1 

k � 3.k � 1

A � Ms Mr
�1 � Ms Mr

T

MsMr

3 � 3

Mr � 	r̂1 r̂2 r̂3�Ms � 	ŝ1 ŝ2 ŝ3�,

Ms � A Mr

k � 1, 2, 3ŝk � Ar̂k,

ŝ3 � ŝ1 � ŝ2ŝ2 �
Ŵ1 � Ŵ2


Ŵ1 � Ŵ2

,ŝ1 � Ŵ1,

r̂3 � r̂1 � r̂2r̂2 �
V̂1 � V̂2


V̂1 � V̂2

,r̂1 � V̂1,

dk

k � 1, 2, 3dk � Ŝ k
TAV̂k ,
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(18)

Thus, equivalently, one of the four equivalent scalar data is discarded by removing
the component of which is in the direction of and similarly for and 
and readjusting the normalization of the two vectors to be unity. On the other hand,
if we examine and which are also perpendicular to and respectfully,
and regard the attitude construction as first rotating into alignment with and
then rotating about until it is aligned with we see immediately that the
only information needed for the second step is the angle between the plane
and the plane. Here is the resultant of the first rotation acting on This
angle, clearly, is a dihedral angle. can be expressed unambiguously by three arc
lengths or one arc length (the azimuthal angle, commonly denoted by 	) and one
dihedral angle (the polar angle, commonly denoted by 
). Thus, of the six com-
ponents of the two unit-vector measurements, the effective data set consists of
two dihedral angles and one arc length. As we have said, however, the dihedral
angle data is never processed as such.

Covariance Analysis of the TRIAD Algorithm

The attitude covariance matrix is defined as the covariance matrix of the attitude
error vector, which is defined as the rotation vector of the very small rotation
taking the true attitude into the estimated attitude. Thus, if denotes the true at-
titude and denotes the estimated attitude, then

(19)

where

(20)

is the formula for a proper orthogonal matrix parameterize by the rotation vector
[6] and

(21)

Note that for we have that 

(22)

The attitude covariance matrix is defined as

(23)

The covariance matrix of the TRIAD algorithm has been computed in refer-
ence [3]. The result, assuming the QUEST Model, is stated most simply as3

(24)�P		
TRIAD��1 �

1

� Ŵ1

2 �I3�3 � Ŵ1Ŵ 1
T� �

1

� Ŵ2

2 ŝ4 ŝ4
T

P		 � E���*��*T�

C���*� � I3�3 � ���*� � O�
��*
2�


��*
 �� 1

��� � 
 0

�	3

	2

	3

0

�	1

�	2

	1

0
�

C��� � I3�3 �
sin�
�
�


�

��� �

1 � cos�
�
�

�
2

���2

A* � C���*�A true

A*
A true

Ŵ1

r̂2.r̂ 2��Ŵ1, ŝ 2�
�Ŵ1, r̂ 2��

ŝ 2,Ŵ1r̂2

Ŵ1V̂1

Ŵ1,V̂1ŝ 2,r̂2

V̂1,V̂2Ŵ1,Ŵ2

� Ŵ2 � �Ŵ1 � Ŵ2�Ŵ1


Ŵ2 � �Ŵ1 � Ŵ2�Ŵ1|
� � A� V̂2 � �V̂1 � V̂2�V̂1


V̂2 � �V̂1 � V̂2�V̂1|
�
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where

(25)

We can write equation (24) equivalently as

(26)

while the inverse covariance matrix (information matrix) of the QUEST algorithm
is given by

(27)

Clearly, one axis’ worth of information has been lost in constructing the TRIAD
attitude solution.

Three-Axis Attitude from One Direction and One Arc Length

Consider now the set of measurements posed by equations (10). To solve for the
attitude in this case we begin by seeking all direction-cosine matrices A which sat-
isfy These are given by

(28)

where is any direction-cosine matrix satisfying is the
rotation matrix for a rotation about the axis through an angle 	, and 	 is any
angle satisfying is given by Euler’s formula

(29)

with defined in equation (21).
To prove the assertion of equation (28), assume that there exist two distinct

direction-cosine matrices, A and satisfying and re-
spectively. Then

(30)

Thus, must be the axis of rotation of the rotation matrix Since 
must be different from the identity matrix, the axis of rotation is well-defined and
unique (within a sign). Hence

(31)

for some angle 	, equation (28) follows. Every direction-cosine matrix given by
equation (28) satisfies Therefore, there is a continuum of solutions
satisfying this equation.

Equation (28) is equivalent to

(32)

with identical and 	. This follows from [6]

(33)AoR�V̂1, 	� � AoR�V̂1, 	�Ao
TAo � R�AoV̂1, 	�Ao � R�Ŵ1, 	�
�

Ao

A � AoR�V̂1, 	�

Ŵ1 � AV̂1.

AAo
�1 � R�Ŵ1, 	�

AAo
�1AAo

�1.Ŵ1

Ŵ1 � A�Ao
�1Ao�V̂1 � �AAo

�1�AoV̂1 � �AAo
�1�Ŵ1

Ŵ1 � AoV̂1,Ŵ1 � AV̂1Ao,

�n̂�

R�n̂, 	� � cos 	 I3�3 � �1 � cos 	� n̂n̂T � sin 	�n̂�

R�Ŵ1, 	�0 � 	 � 2�.
Ŵ1

R�Ŵ1, 	�Ŵ1 � AoV̂1,Ao

A � R�Ŵ1, 	�Ao

Ŵ1 � AV̂1.

 � 
1

� Ŵ1

2 �ŝ2 ŝ2
T � ŝ3 ŝ 3

T� �
1

� Ŵ2

2 �ŝ2 ŝ2
T � ŝ4 ŝ4

T�

 �P		
QUEST��1 �

1

� Ŵ1

2 �I3�3 � Ŵ1Ŵ 1
T� �

1

� Ŵ2

2 �I3�3 � Ŵ2Ŵ 2
T�

�P		
TRIAD��1 �

1

� Ŵ1

2 �ŝ2 ŝ2
T � ŝ3 ŝ 3

T� �
1

� Ŵ2

2 ŝ4 ŝ4
T

ŝ4 � Ŵ2 � ŝ2
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Having found a candidate matrix which satisfies equation (10a), we then deter-
mine the values of 	 for which equation (10b) is also satisfied.

We must first find a single which satisfies Let us look for an 
of the form

(34)

For the special case that the choice of is arbitrary provided we choose
Likewise, for the special case that we may choose to be any

direction perpendicular to and In all other cases, we may chose

(35)

Thus, in every case, we can chose to satisfy

(36)

a fact which will be useful later. Assuming equation (35) we obtain4

(37)

For and are linearly independent, and a unique solution exists
for namely

(38)

where is the function which computes the arc tangent of and in the
correct quadrant. This is just the familiar FORTRAN function ATAN2.

It is a simple matter to show that the corresponding quaternion is given by

(39)

which can now be computed without the need to compute The Rodrigues vec-
tor5 is given obviously by [6]

(40)

and the matrix is given equivalently by

(41a)

(41b)

Given we must now compute 	. Define

(42)Ŵ3
* � AoV̂2

Ao

 � I3�3 � �Ŵ1 � V̂1� �
1

1 � Ŵ1 � V̂1
�Ŵ1 � V̂1�2

 Ao � �Ŵ1 � V̂1�I3�3 �
�Ŵ1 � V̂1� �Ŵ1 � V̂1�T

1 � Ŵ1 � V̂1
� �Ŵ1 � V̂1�

Ao

�o �
Ŵ1 � V̂1

1 � Ŵ1 � V̂1

��

	o.

q̄o � �1 � Ŵ1 � V̂1

2

� Ŵ1 � V̂1

1 � Ŵ1 � V̂1
�

1
�

y�xarctan2� y, x�

	o � arctan2�
Ŵ1 � V̂1
, �Ŵ1 � V̂1��

	o,
V̂1Ŵ1Ŵ1 � �V̂1,

R�n̂ o, 	o�V̂1 � 
cos 	o �
�Ŵ1 � V̂1�

Ŵ1 � V̂1


 sin 	o� V̂1 �
sin 	o


Ŵ1 � V̂1

 Ŵ1 � Ŵ1

n̂ o � V̂1 � n̂ o � Ŵ1 � 0

n̂ o

n̂ o �
Ŵ1 � V̂1


Ŵ1 � V̂1


	o � �.V̂1

n̂ oŴ1 � �V̂1,	o � 0.
n̂ oŴ1 � V̂1,

Ao � R�n̂ o, 	o�

AoŴ1 � AoV̂1.Ao

Ao
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Then 	 is a solution of

(43)

Substituting Euler’s formula and rearranging terms leads to

(44)

with

(45a)

(45b)

From equation (44) we see that a necessary condition that a solution exists is that

(46)

If this condition is satisfied, then 	 has the solutions

(47)

and the inverse cosine is indeed two-valued. Given and 	 we can now construct
the two direction-cosine matrix solutions according to equations (28) and (41).
Other criteria must be brought to bear to choose the correct attitude solution. This
is the algorithm that was developed in support of the Oscar-30 mission.

Covariance Analysis for the Case of One Direction and One Arc
Length

The two direction-cosine matrices constructed by the above algorithm solve
equations (10) exactly. Therefore, if attitude solutions exist, they each certainly
minimize the negative-log-likelihood function

(48)

where and are standard deviations defined earlier.6

The calculation of the Fisher information is tedious but straightforward. The
result for the attitude covariance matrix is

(49)

Note that generally

(50)

even in the absence of measurement noise. Note also that will not exist unless

(51)

or, equivalently, unless

(52)Ŝ2 � �Ŵ1 � �AV̂2�� � �AV̂2� � �Ŝ2 � Ŵ1� � 0

Ŵ1 � �Ŵ3
* � Ŝ2� � 0

P		

Ŵ3
* � Ŝ2

P		
�1 �

1

� Ŵ1

2 �I3�3 � Ŵ1Ŵ1
T� �

1

� d2

2 �Ŵ3
* � Ŝ2� �Ŵ3

* � Ŝ2�T

�d2� Ŵ1

J�A� �
1

� Ŵ1

2 
Ŵ1 � AV̂1
2 �
1

� d2

2 
Ŝ2 � AV̂2 � d2
2 

Ao

	 � � � cos�1
�Ŝ2 � Ŵ1� �Ŵ1 � Ŵ3
*� � d2


Ŝ2 � Ŵ1
 
Ŵ1 � Ŵ3
*
 �


�Ŝ2 � Ŵ1��Ŵ1 � Ŵ3
*� � d2
 � 
Ŝ2 � Ŵ1
 
Ŵ1 � Ŵ3

*


 � � arctan2 �Ŝ2 � �Ŵ1 � Ŵ3
*�, Ŝ2 � �Ŵ1 � �Ŵ1 � Ŵ3

*���
 B � 
Ŝ2 � Ŵ1
 
Ŵ1 � Ŵ3

*


B cos�	 � �� � �Ŝ2 � Ŵ1� �Ŵ1 � Ŵ3� � d2

Ŝ2 � R�Ŵ1, 	�Ŵ3
* � d2
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Even though the direction-cosine matrix may be defined in this case the geometry
represents an extremum situation in which the sensitivity of the attitude to the
measurements vanishes along one direction in parameter space.

Note that although the covariance matrix may be small, the actual uncertainty in
the attitude can be large because of the finite degeneracy. Thus, given only a single
direction and a single arc length as measurements, then with probability roughly

(the one-sigma probability) we know only that the attitude (in terms of, say, the
rotation vector) will lie in the interior of either of two error ellipsoids whose axes
are determined from the attitude covariances matrices calculated above and whose
centers lie at the two possible estimates of the attitude.

A TRIAD-Like Algorithm from One Direction and One Arc Length

Instead of first calculating the direction-cosine matrix from the data and then de-
termining a vector which satisfies equation (42), we might try instead to calcu-
late this directly, without first determining the attitude, and, once this vector has
been determined, calculate A using the TRIAD algorithm [3].

To compute we write

(53)

which is possible provided that It then follows that

(54a)

(54b)

(54c)

The solution for a and b is immediate and is given by

(55a)

(55b)

The solution for c is then given by

(56)

This last calculation can be simplified by noting that

(57)

The lack of a unique solution is now obvious from equation (56). Although the
TRIAD algorithm [3] can now be used to calculate the attitude from the four vec-
tors and , the measured unit vectors are no longer uncorrelated and
the attitude covariance matrix is still that computed earlier (equation (49)).

While the present algorithm is clearly more efficient than that developed above,
it also suffers from some numerical problems. In particular, in extreme cases measure-
ment error may cause the argument of the square root in equation (56) to be negative.

Ŵ3
*Ŵ1,V̂2,V̂1,

� 
1


Ŵ1 � Ŝ2
2
	d 2

2 � 2d2�V̂1 � V̂2� �Ŵ1 � Ŝ2� � �V̂1 � V̂2�2�

a2 � 2ab�Ŵ1 � Ŝ2� � b2

c � ��1 � �a2 � 2ab�Ŵ1 � Ŝ2� � b2�

 b �
1


Ŵ1 � Ŝ2
2
�d2 � �Ŵ1 � Ŝ2� �V̂1 � V̂2��

 a �
1


Ŵ1 � Ŝ2
2
��V̂1 � V̂2� � �Ŵ1 � Ŝ2�d2�

 Ŵ3
* � Ŵ3

* � a2 � 2ab�Ŵ1 � Ŝ2� � b2 � c2 � 1

 Ŝ2 � Ŵ3
* � a�Ŵ1 � Ŝ2� � b � d2 

 Ŵ1 � Ŵ3
* � a � b�Ŵ1 � Ŝ2� � V̂1 � V̂2

Ŵ1 � �Ŝ2.

Ŵ3
* � aŴ1 � bŜ2 � c

Ŵ1 � Ŝ2


Ŵ1 � Ŝ2


Ŵ3
*

Ŵ3
*

Ŵ3
*

2�3
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Three-Axis Attitude from Three Arc Lengths

We now seek a direction cosine matrix which satisfies equations (11). In general,
there will be an eight-fold degeneracy for this problem. To see this, let us define

(58)

and consider the special case

(59)

Substituting equation (29) into this equation leads to three equations for the axis
and angle of rotation

(60)

where denotes the n-th component of This leads immediately to the solution
for 	

(61)

The inverse cosine is two-valued, but only the principal value need be taken, since
	 can be restricted without loss of generality to the interval assuming

Solving for the components of then leads to

(62)

revealing the sign ambiguity in each component of The attitude computed from
three arc lengths, therefore, will generally display an eight-fold ambiguity.

To construct the attitude we must distinguish two cases: (1) that two of the 
are identical, and (2) that the three are distinct. The case that all three

are identical may be excluded as that case is equivalent to knowing only the di-
rection cosines of a single unit vector, which leads to a continuous degeneracy in
the attitude solution.

Case 1: Two Reference Vectors Identical 7

If, say, then we can construct defined by equation (42) from

(63)

We therefore know two direction cosines of and we can write in a manner
similar to the earlier calculation above

(64)

with

Ŵ3
* � aŜ1 � bŜ2 � c

Ŝ1 � Ŝ2


Ŝ1 � Ŝ2


Ŵ3
*

Ŝ1 � Ŵ3
* � d1 and Ŝ2 � Ŵ3

* � d2

Ŵ3
*,V̂1 � V̂2,

V̂k

k � 1, 2, 3,
V̂k,

n̂.

nk � ��dk � cos 	

1 � cos 	

n̂�1 � dk � 1.
0 � 	 � �

	 � cos�1� 1

2 
�3k�1
 dk � 1��

n̂ .nk

k � 1, 2, 3cos 	 � �1 � cos 	�nk
2 � dk

k � 1, 2, 3û k
TAû k � dk

û3 � 
0

0

1
�û2 � 
0

1

0
�,û1 � 
1

0

0
�,
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(65a)

(65b)

(65c)

and

(66)

There are two possible solutions for Apart from this two-fold degeneracy, the
problem now reduces to Scenario 2. Therefore, in this case, there are four possible
solutions, from which the true attitude solution can be determined only on the basis
of additional information.

The above case includes also the situation where since one may
simultaneously change the signs of and without changing the attitude.

Case 2: Reference Vectors Distinct

To construct a solution in this case,8 we note first that the attitude matrix may be
written in terms of Davenport angles [12, 13] as

(67)

provided that

(68)

Assuming that we can order our inputs so that we can choose

(69)

In analogy with Scenario 2, we have now that

(70)

whence

(71)

where

(72)

It is easy to show for the Davenport angles [12, 13] that

(73)

This equation has an obvious corresponding result for the 3-1-3 Euler angles. Thus,
and each furnish equivalent parameterizations of the attitude.9��������

R�Ŝ3, �� R�m̂ o, ����� R�V̂3, �� � R�Ŝ3, � � �� R�m̂ o, ����� R�V̂3, � � ��

� � arctan2�Ŝ3 � V̂3, 
Ŝ3 � V̂3
�

� � � � arccos d3 � ����

Ŝ3
TR�m̂ o, ��V̂3 � d3

m̂ o �
Ŝ3 � V̂3


Ŝ3 � V̂3


Ŝ3 � �V̂3,

Ŝ3 � m̂ o � V̂3 � m̂ o � 0

A � R�Ŝ3, �� R�m̂ o, �� R�V̂3, ��

Ŝ2V̂2

V̂1 � �V̂2,

Ŵ3
*.

a2 � 2ab�Ŝ1 � Ŝ2� � b2 �
1


Ŝ1 � Ŝ2
2
	d 1

2 � 2�Ŝ1 � Ŝ2� d1d2 � d 2
2�

 c � ��1 � �a2 � 2ab�Ŝ1 � Ŝ2� � b2�

 b �
1


Ŝ1 � Ŝ2
2
�d2 � �Ŝ1 � Ŝ2� d1�

 a �
1


Ŝ1 � Ŝ2
2
�d1 � �Ŝ1 � Ŝ2� d2�
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8If ever an engineer designs an attitude determination system like this, shoot him!
9This fact was not understood in reference [11].



Let us define
(74)

where � may be either or 
The remaining two equations of equation (11) may now be written

(75)

If we define now
(76)

Then equations (75) become

(77)

eliminating one rotation. We are now left with two nonlinear equations to solve in
two unknowns.

Let us define the matrices

and (78ab)

Rewriting equation (29) as

(79)

we define matrices with elements

(80)

and is the usual Kronecker symbol, which is unity when the two indices are equal
and zero otherwise. With this new notation equations (77) takes the form

(81)

which can be solved iteratively for the two variables � and �. The numerical search
of these equations for all eight possible solutions is tedious and uninstructive and
will not be presented here.

Figure 1 presents the numerical solution of the eight values of for the case
of equation (59). The graph shows the value of

for and Here a and b are chosen simply to make the
most attractive looking graph and the form to be plotted has been chosen, because
peaks are easier to see than valleys. The eight solutions are very much in evidence.

Covariance Analysis for the Case of Three Arc Lengths

The covariance matrix may be calculated straightforwardly using the results of
Scenario 2.

(82)P		
�1 � �3

k�1
 

1

� dk

2  �Ŝk � AV̂k� �Ŝk � AV̂k�T

0 � � � 2�.0 � � � 2�

a

b � J��, ��

��, ��

k � 1, 2�T M�k� � � 0

�ij

k � 1, 2Mij�k� � Ŝk
TFi�Ŝ3�Fj�Û3�Ûk � dk�i1�j1

M�k�3 � 3

 � F1�n̂� � sin 	 F2�n̂� � cos 	 F3�n̂�
 R�n̂, 	� � n̂ n̂T � sin 	�n̂� � cos 	�I3�3 � n̂ n̂T�

� � 
 1

sin �

cos �
�� � 
 1

sin �

cos �
�

3 � 1

k � 1, 2Ŝk
TR�Ŝ3, �� R�Û3, ��Ûk � dk

k � 1, 2, 3Ûk � AoV̂k

k � 1, 2Ŝk
TR�Ŝ3, �� AoR�V̂3, ��V̂k � dk

����.����

Ao � R�m̂ o, ��
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whose calculation requires, of course, that we know the correct value of A. Note
that the covariance matrix above takes account only of random noise and not of the
errors due to choosing the wrong attitude solution.

Dihedral Angles

We have largely sidestepped the issue of dihedral angles, passing them off as
only an intermediate step to the computation of arc lengths. This is generally a
practical necessity, but it belies the fact that important information is discarded in
the process.

A unit vector may be represented with respect to right-hand orthonormal axes
either by three arc lengths (the direction cosines) or by two spherical angles. These
last consist of the declination �, also called the coelevation (an arc length), and the
right-ascension �, also called the azimuth (a dihedral angle). This nomenclature has
its origin in the pointing of telescopes and artillery. Thus, an arc length and a dihe-
dral angle accomplish the task of three arc lengths in describing a direction, so we
may say roughly that one dihedral angle is worth two arc-lengths. This makes
further sense when we consider that the useful range of an arc length is 
while that for a dihedral angle is Of course, for the pointing of a telescope
or an artillery piece two arc lengths suffice, because the false direction would point
unphysically to the back of the device. However, mechanical necessities dictate that
the direction be instrumented as a dihedral angle and an arc length. One could
not, however, determine the direction of the magnetic field from the knowledge of
two arc lengths.

	0, 2��.
	0, ��,
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FIG. 1. Attitude Solutions from the Measurement of Three Arc Lengths.



The attitude can be described unambiguously by three Euler angles (although the
angles themselves may be ambiguous). Hence, if the Euler angles are measured
directly, by, say, a three-axis gimballed gyro, then the attitude is uniquely specified
(within statistical error) by three angle measurements. From the usable range of
these angles, it is clear that the outer Euler angles must be dihedral angles, and the
middle Euler angle an arc length.

In spin-axis attitude estimation, the Earth-width measurement, a dihedral angle,
is used only to construct the nadir angle, with loss of information. This is done for
no other reason than to avoid the computational complexity of using a dihedral
angle measurement directly in the estimator. To see this, examine the Sun-Earth
dihedral angle, the angle from the plane containing the spin-axis and the Sun vec-
tor to the plane containing the spin-axis and the Earth vector. In obvious notation

(83a)

(83b)

with the spacecraft spin axis. The denominators can be calculated directly from
measurements of the Sun and nadir angles, leaving us with a linear measurement
for but a quadratic measurement for The use of the quadratic meas-
urement in the estimator would cause enormous computational hardship, so we dis-
card it and put up with the loss of accuracy.

Discussion

We have examined three minimum data cases for constructing spacecraft attitude
deterministically when the measurement consists of directions or arc lengths. The
simplest case, when the data consists of two directions, is that of the well-known
TRIAD algorithm. The case when the data consist of one direction and one arc
length is only slightly more complicated and shows a two-fold degeneracy in the at-
titude solutions. The case when the data consist of three arc lengths is much more
complicated. The attitude solution in this case is more elaborate and displays, in
general, an eight-fold degeneracy. While the case of one direction and one arc
length has been implemented in actual mission support, it is unlikely that this will
ever be the case when only three arc lengths are measured.

In extreme cases, we have seen, the degeneracy may be of a lower order. For ex-
ample, in the case where the measurement set consists of one direction and one arc
length or of three arc lengths, there will be no ambiguity in the solution if the
arc length is 0 or �. Likewise, the degeneracy is of lower order in the case of three
arc lengths when the reference vectors are the same for two of the measurements.
How many additional arc length measurements are needed to remove the degen-
eracies is also not easy to determine. One can easily construct cases where the mea-
surement of two arc lengths leads to a unique attitude (for example, if the two arc
lengths are each 0) or even an overdetermined attitude (for example, if the two
arc lengths are each 0 or �) as well as cases where a unique attitude cannot be
constructed from the measurement of five arc lengths, all of which are essential,
but an unambiguous attitude solution is obtainable if a sixth arc length measured is
introduced.

cos �SE.sin �SE

n̂

cos �SE �
�Ŝ � n̂� � �Ê � n̂�

�1 � �Ŝ � n̂�2 �1 � �Ê � n̂�2

sin �SE �
�Ŝ � Ê� � n̂

�1 � �Ŝ � n̂�2 �1 � �Ê � n̂�2
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For example, consider the case where we are given four geometrically and sta-
tistically independent arc-length measurements, three of which have the same
reference vector and the fourth with a different reference direction This is
equivalent to being given a direction measurement and an arc-length measure-
ment. The attitude estimate, therefore, will have a two-fold degeneracy. A fifth arc-
length measurement, even with reference direction will not necessarily remove
the degeneracy, because the reconstructed observation will still have a two-fold
degeneracy. It may be possible, however, to decide which one is correct if the
two reconstructed directions are separated by much more than measurement error
level in equivalent angle or if the measured arc-length is 0 or �. The question of op-
timality and degeneracy for this case is treated in detail in a recent work in con-
nection with an unconventional analysis of the TRIAD algorithm as a maximum
maximum likelihood estimator [14].
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