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Abstract

An earlier algorithm for multiple sensors is extended to provide three-axis attitude from
multiple line-of-sight observations with a single optical sensor, typically a star camera. The
algorithm, called SCAD, is simpler conceptually than either the QUEST, FOAM, or ESOQ
algorithms and, although suboptimal, suffers only imperceptible loss of accuracy for typical
star cameras with limited fields of view. A complete covariance analysis using the QUEST
measurement model is presented.

Introduction: The Wahba Problem

A central problem in Spacecraft Attitude Determination has been that of deter-
mining the three-axis attitude which minimizes the cost function

(1)

where A is the direction-cosine matrix [1], are directions (lines
of sight, observation vectors) observed in the spacecraft body frame,
N, are the corresponding directions known in an inertial frame (the reference vec-
tors) and are a set of positive weights. A caret in this work will be
used to denote a unit vector. This cost function was first proposed by G. Wahba [2]
in 1965 and has been the starting point of many algorithms, of which the most
popular has been the QUEST algorithm [3], although other attractive algorithms
exist [4].

Of particular importance is the fact that the Wahba cost function can be derived
from maximum-likelihood estimation provided one assumes the following meas-
urement model [5], which has been called the QUEST model, because it was first
used in an early accuracy study of the QUEST algorithm [3]

(2)Ŵk � AV̂k � �Ŵk
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with the measurement error having first and second moments2

(3)

(4)

where denotes the expectation, T denotes the matrix transpose, I is the 
identity matrix, and one chooses the weights to be

(5)

with

(6)

The common constant in the numerators of equation (5) is arbitrary, of course, but
the choice of equation (6) makes

(7)

One defines the attitude covariance matrix [1, 3, 5] as the covariance of the
attitude error vector, which is the rotation vector [1] of the small rotation carrying
the true attitude into the estimated attitude. Assuming the QUEST model for the
measurements, this leads to the following expression for the attitude covariance
matrix

(8)

and

(9)

In actual computations we must replace by because the former is not
known in general. Since we will be interested in calculating quantities only to lowest
nonvanishing order in this replacement will not lead to important errors in
general. We assume throughout this work that the uncertainties in are negligible
compared to those in 

In a previous work [6] a method was presented which simplified the attitude es-
timation process for an Earth albedo sensor. In that work, an approximate meas-
urement for the direction of the Earth albedo centroid was determined by taking an
average of the centroid of the directions of individual elements of the Earth albedo
sensor weighted by the measured intensity, which was compared with a simulated
model centroid. The effective vector measurement was combined with a measure-
ment of the Sun direction and used as input to the TRIAD algorithm [3]. It could
equally well have been used as input to the QUEST algorithm, but the miniscule
improvement in accuracy was not justified by the additional computational burden.
Brozenec and Bender [7] used a similar averaging of multiple star directions in a
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star camera to generate a reduced set of measurements for the QUEST algorithm.
A careful covariance analysis of the algorithm of Bender and Brozenec was pre-
sented in reference [8]. In the present work we present a method for retaining full
three-axis attitude information from multiple data from a single optical sensor, typ-
ically a star camera. In addition, rather than relying on heuristic arguments, we will
develop the algorithm in a rigorous manner.

Construction of a Suboptimal Cost Function

Let us reexamine the Wahba cost function, which we write in the form of the
data-dependent part of the negative-log-likelihood function [5], assuming that the
measurement model of equations (2) through (4) is valid, namely

(10)

Let us now introduce vectors and into the cost function as

(11)

and expand the cost function as

(12)

If now and are chosen to have the values

and (13)

with the N, given by equation (5), then the second line of equa-
tion (12) will vanish identically, and the third line will be a minimum (for given
A) leaving

(14)

For a focal-plane sensor with a field of view of per axis (roughly
per axis), we anticipate that the effective contribution of the summation in

equation (14) will be roughly (0.1)2 or one percent of the first term. Thus, the esti-
mation of the spacecraft attitude will be “dominated” by the first term. The second
term, which could be discarded if another vector sensor of suitable accuracy were
present [6, 7], is not unimportant, however, if data from this sensor alone must be
used to construct the three-axis attitude. Minimizing only the first term is not suf-
ficient to determine the spacecraft attitude. If minimizes the first term, then soAo
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does where denotes the direction-cosine matrix for a rotation
through an arbitrary angle � about the direction 

(15)

It is the second term which provides the information on �.
Since the overall weight of the first term in equation (14) will be so much greater

than that of the second term, we can determine an approximate value for the opti-
mal attitude by writing

(16)

and seeking first a value of the (nonunique) proper orthogonal matrix which
minimizes

(17)

and then the value which minimizes

(18)

Given these and we anticipate that

(19)

will be a good approximation for the optimal direction-cosine matrix which mini-
mizes the cost function of equation (10). This is the desired suboptimal algorithm.

Simplification of the Cost Functions

We can simplify the two cost functions, and without loss of accu-
racy. Examine first . Defining

(20)

we write

(21)

and we can recast accordingly in the form

(22)

An optimizing value of will cause to be equal to independently of the
value of . Thus, we will achieve the identical value of if we discard  in equa-
tion (22).

Likewise, substituting equation (21) into equation (18) leads to
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(23)

Expanding equation (23) gives directly

(24)

Only the second term of equation (24) depends on �. The first term, therefore, may
be discarded from the cost function, so that for the purpose of locating the mini-
mizing arguments we may replace and with 

(25a)

(25b)

Note that the simplification of equations (17) and (18) to obtain equations (25)
did not rely on any approximation for the value of . Note, in particular, that we
have discarded an uninteresting factor as well as uninteresting terms to obtain equa-
tions (25). Note also that is equal to but and are
certainly not identical, however, since the latter is a least-squares cost function de-
fined over all of SO(3). Neither nor (nor their sum) has any statistical
significance.

We determine the suboptimal attitude equivalently by minimizing the two cost
functions of equation (25), and in sequence.

Construction of the Suboptimal Attitude

The cost function of equation (25a) can be made to vanish exactly for a con-
tinuum of solutions Except for the special case for which an may
be found trivially [9, 10], a suitable is given by [9, 10]
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This corresponds to the quaternion [1]
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 � Ŵ � V̂

1 � Ŵ � V̂
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and the Rodrigues vector [1]

(29)

The particular that we chose is of no consequence, provided that it satisfies

(30)

It remains only to find the angle which minimizes the cost function of equa-
tion (25b).

The vanishing of the denominator in equation (26) when which re-
quires a rotation through �, is reminiscent of a similar phenomenon in the construc-
tion of the QUEST attitude quaternion [3] and is sidestepped in the same way, namely,
by means of the Method of Sequential Rotations. This is treated in a later section.

To determine we rewrite using techniques developed by Davenport,
which have become part of the development of the QUEST algorithm [3], as

(31)

where denotes the trace operation, and
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Writing Euler’s formula [1] in the form
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we have
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Minimization of leads straightforwardly to
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1 � Ŵ � V̂

396 Shuster



will be indeterminate if both s and c vanish. This is possible, however, only if all of
the are identical.

Note that the evaluation of does not require the computation of 
From equation (37) it follows directly that

(37bc)

which may then be substituted into equation (33). For the evaluation of the Rodrigues
vector and the quaternion for the second rotation see the appendix to this work.

The parallelism of the calculation of in the present algorithm with that of 
in the QUEST algorithm is apparent. However, these methods are applied here to a
single angle variable and not to the four components of the quaternion of rotation.

We call this algorithm SCAD for Star-Camera Attitude Determination.

Covariance Analysis of the Algorithm

We define the attitude error vector by

(38)

and the attitude covariance matrix by

(39)

where denotes the expectation. The choice of the initial reference frame to
which the attitude is referenced, and hence the value of is immaterial to the at-
titude error by this definition, and the attitude error vector depends only on the
measurement errors.3 Thus, if the errors in the reference vectors are very small
compared to those in the observation vectors, we may make the substitutions
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in calculating the attitude error covariance matrix. Here is the true value of
We will then have

and (41)

while the value of will be unchanged. In this case, clearly
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�*.R�Ŵ, �*�
Ŵk
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From equations (26) and (40) it follows immediately that to first order
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where
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Hence
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To determine we write
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and solve for the value of � which minimizes this cost function, which is given by
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The covariance matrix is given now by
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In equation (56) and in the remainder of this section we have not written the su-
perscript “true” on whole vectors, to avoid making our formulae too cumbersome.
In calculating the covariance matrix, we have no recourse but to use the observed
values in any event. Evaluating equation (56) one obtains in succession
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(57a)

(57b)

(57c)

with the result that4

(58)

with

(59)

In deriving the above formulae we have made liberal use of the result

(60)

Model Covariance Analysis

It follows from the Cramér-Rao Theorem [11] that

(61)

The important question is: how large is the difference between the two attitude co-
variance matrices? To answer this question, we examine the two covariances in a
simple model, in which the star camera is assumed to have a circular field of view
of angular radius �, and the stars are assumed to be distributed uniformly (in the
probabilistic sense) over the field of view of the sensor. We will assume for con-
venience that the star camera has its boresight along the spacecraft z-axis. We as-
sume in addition that the covariance matrix of every line-of-sight observation is
characterized by the same variance 

In the limit that N is large we may replace the summation over the observations
by an integral. Thus, if is any function of an observed direction, we may write
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 f�Ŵ��, ��� sin � d� d�

f�Ŵ�
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SCAD—A Fast Algorithm for Star Camera Attitude Determination 399

4When no subscript appears in the covariance matrix P, the latter may be assumed to mean P�� .



With these substitutions we obtain
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where
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Note that as we have that and 
From these results we may compute the covariance matrix for the QUEST and

SCAD algorithms given by equations (8) and (58) to obtain
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The two covariance matrices are both diagonal in the model case examined.
We note first that the standard deviation about the boresight is identical for this

example for both the QUEST and the SCAD algorithms

(69)

where the subscript b stands for “boresight.” Thus, not only do we recover the in-
formation on the attitude about the boresight, we recover it completely.

The ratio of the standard deviation of the SCAD algorithm to that of the QUEST
algorithm for attitude errors about axes normal to is

(70)

where the subscript t stands for “transverse.” Note that the boresight variance for this
special case, receives its entire contribution from the second term of equation (58),
while the transverse variance arises entirely from the first term.

Since we are interested in this algorithm primarily for a sensor of limited field of
view, we define
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Then

(72)

As � increases from 0 to �, � increases from 0 to 2. For narrow fields of view we
have approximately and we obtain

(73)

For limited fields of view, the relative loss in accuracy compared to the QUEST al-
gorithm is imperceptible. Table 1 gives the relative loss of accuracy for several
fields of view. Note that star cameras with fields of view greater than 
would require multiple heads, similarly to full-sphere vector Sun sensors, a situa-
tion very unlikely ever to occur. Nonetheless, the entries for the fields of view in
the above table which are greater than 90 deg express a geometric truth if not a
practical one.

Sequential Rotations for SCAD

The special case noted just before equation (26) corresponds to a
rotation through an angle of � about an axis perpendicular to Thus, SCAD
has the same singularity in the construction of the attitude solution as does the
QUEST algorithm [3], and it is sidestepped in the same way, namely, by the method
of sequential rotations [3]. The implementation of sequential rotations is simpler
for SCAD than for QUEST. Define the four matrices ac-
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TABLE 1. Comparison of the SCAD and QUEST Algorithms

Field of View

	 6 deg 1.000004 1.000000
	 12 deg 1.00007 1.000000
	 30 deg 1.003 1.000000
	 60 deg 1.06 1.000000
	 90 deg 1.33 1.000000
	120 deg 2.50 1.000000
	150 deg 9.67 1.000000
	168 deg 19. 1.000000
	174 deg 75. 1.000000
	179 deg 2650. 1.000000
	180 deg � 1.000000

� b
SCAD�� b

QUEST� t
SCAD�� t

QUEST



corresponding respectively to rotations through � about the x-, y-, or z-axes or
the null rotation. We then examine successively

(75)

and compute

(76)

For at least one of the four values of i, say j, we must have [12]

(77)

We then compute from equation (26) with replaced with The desired
is then given by

(78)

The calculation of is as before.

Discussion

Despite its good properties, it is hard to imagine that SCAD will ever displace
QUEST from the favored position it now holds or that it will displace any of the
more recent optimal estimators for the Wahba Problem [4]. However, it is interest-
ing as an estimator, and it gives us important insights to the workings of the opti-
mal estimators. But SCAD is nonetheless a solid algorithm for star-camera attitude
determination. For speed SCAD must be in the same ballpark as QUEST since the
operations it performs are so similar (Markley finds that it runs somewhat slower
than QUEST) and it is certainly much faster than some of the optimal estimators of
reference [4].

The restriction of SCAD to star-cameras with fields of view less than 90 deg is
hardly a disadvantage, since few star-cameras have a field of view which exceed a
quarter of that. Fields of view even close to 90 deg are unlikely ever to appear since
such a field of view would require optical systems that would lead to significant
distortion at such large angles.

SCAD possesses a figure of merit like TASTE in QUEST for judging the qual-
ity of the fit achieved between the reference vectors and the observation vectors.
Such a figure of merit has shown itself to be much more important in mission sup-
port than the speed of the attitude computation [13]. One constructs the figure of
merit for SCAD from equations (24) and (34) through (37), namely

(79)

which is no more unaesthetic than the computation of in QUEST. The ran-
dom variable should have a distribution.

In summary, we have developed a suboptimal algorithm for estimating the atti-
tude which is almost as accurate as QUEST for calculating three-axis attitude from
star-camera observations and which avoids the iterative process for the overlap
eigenvalue.

� 2�2N � 3�J�Ao
*, �*�

1 � �max

J�Ao
*, �*� �

1

� tot
2 � Ŵ TBŴ � �c2 � s2

�0
*

A0
* � A0

*� j� Rj

A0
*

V̂ � j�.V̂ A0
*� j�

�j � �cos���3� � �1/2

i � 1, 2, 3, 4�i � Ŵ � V̂�i�,

i � 1, 2, 3, 4V̂�i� � RiV̂,
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Appendix: Implementation of SCAD

The following are the steps for computing the optimal attitude using the SCAD
algorithm:

• From the input data, the corresponding reference vectors,
and the sensor variances, compute: (1)

according to equation (6); (2) the weights according to
equation (5); (3) and according to equation (13); and (4) the matrix C
according to equation (32).

• From these quantities compute the unit vectors and according to equa-
tion (15) for and similarly for .

• Compute F according to equation (55) using, of course, for Ŵ true.Ŵ
V̂Ŵ

V̂Ŵ

VW
k � 1, . . . , N,ak,� tot

2
k � 1, . . . , N,� k

2,k � 1, . . . , N,V̂k,
Ŵk, k � 1, . . . , N,

SCAD—A Fast Algorithm for Star Camera Attitude Determination 403



• Compute and verify that it is does not vanish. If is close to
vanishing, then the attitude is not observable from the data and the computa-
tion is terminated. Otherwise, continue.

• Compute according to the following method:
— If for some predetermined value of , set 

where and is the representation of
the sensor coordinate axis for which is smallest.

— Otherwise, use any of equations (26a) through (29) to generate 
either directly or via the quaternion or Rodrigues vector.

• Compute B according to equation (32), and Z, s, and c according to equa-
tion (35).

• Compute according to equation (37) and according to equation (19).

• Compute according to equation (58) or using the formula for the
QUEST covariance matrix, to which it is exceedingly close.

This completes the SCAD algorithm.
The above implementation was given with a mind to generating the direction-

cosine matrix as final output. If it is desired to generate instead either the quater-
nion or the Rodrigues vector as final output, one requires the formulae:

and (A1)

whence

and (A2)

and combining these directly with and according to the prescriptions in [1].� o
*q̄ 0

*

��Ŵ, �*� �
sin��*�2�
cos��*�2�

 Ŵq̄�Ŵ, �*� � sin�� *�2� Ŵ 

cos��*�2� �

sin��*�2� �
sin �*

2 cos��*�2�
cos��*�2� � �1 � cos �*

2

P��
SCAD

A*�*

Ao
*

�m̂ � Ŵ �
m̂n̂ � m̂ � Ŵ��m̂ � Ŵ �,R�n̂, ��,

Ao
* �Ŵ � V̂ � �1 � 

Ao
*

ŴTF Ŵ  ŴTF Ŵ 
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