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Abstract

Many results in attitude analysis are still meaningful when the attitude is restricted to ro-
tations about a single axis. Such a picture corresponds to attitude analysis in the Euclidean
plane. The present report formalizes the representation of attitude in the plane and applies
it to some well-known problems in a two-dimensional setting. In particular we carry out a
covariance of a two-dimensional analogue of the algorithm OLAE, recently proposed by
Mortari, Markley, and Junkins for optimal attitude determination.

Introduction

I call our world Flatland, not because we call it so,
but to make its nature clearer to you, … who are 
privileged to live in Space.

–A. Square in Flatland [1]

The treatment of attitude, because of the nonlinearity and noncommutivity of the
composition rule, is much more difficult to treat than position, for which components
may be combined by simple addition. The complexity of the attitude composition
rule leads to virtually all attitude problems being intrinsically three-dimensional or,
in the case of the quaternion, four-dimensional. There is, however, a class of attitude
problems which are much simpler, namely, single-axis problems, and the study of
these will in many cases illuminate the more complex problems. The present report
attempts to formalize such a treatment.

Attitude in Flatland

Having amused myself til a late hour with my favourite 
recreation of Geometry, I had retired to rest with an 
unsolved problem in my mind.

Let us imagine that the world, Flatland, has only two dimensions and a constant
isotropic Euclidean metric. Such a world was imagined by Edwin Abbott Abbott [1],
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with the intent of satirizing the social and political foibles of his day as much as of
clarifying the concepts related to the dimensionality of space. Our interest here is
more limited than Abbott’s. We develop the mathematical structure of Flatland
somewhat further in order to better understand those aspects of attitude which do not
depend on the dimensionality of space. The quotations which appear in this report
are from reference [1]. Following Abbott we will refer to our three-dimensional
world as Space.

In Flatland, vectors are, of course, two-dimensional

(1)

The “dot” product takes the usual form

(2)

while the “cross product” is now a scalar

(3)

There is, therefore, no vector product, and as alternate names to scalar and vec-
tor products we might prefer symmetric and antisymmetric products. The lack of
a meaningful vector product in two dimensions was ultimately the cause of many
years of grief for Hamilton [2–4].

The attitude matrix in two dimensions is a proper orthogonal matrix, A,
which transforms column vectors in the usual way

(4)

with

(5)

(6)

where I denotes the identity matrix3

(7)

It is a simple matter to show that in two dimensions the attitude matrix may be
represented as

(8)

and is the angle of rotation. If we define the matrix J according to

(9)

which satisfies

(10)

3Note that we have used a bold sans serif font to designate I, the identity matrix, and J, the “square root” of
�I (q.v. equation (9)), because of their special nature.
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then Euler’s formula becomes simply

(11)

which is much simpler than the three-dimensional form [5]. Note that J acting on
a vector always generates a vector perpendicular to it. The matrices I and J in Flat-
land have an importance similar to that of the identity matrix and the Levi-
Civita symbol in Space [5]. They are, in fact, the representations of these objects in
two dimensions.

If we define now for a scalar a

(12)

then trivially

(13)

which again is much simpler than the three-dimensional variant, and Euler’s for-
mula becomes

(14)

as in Space.
Corresponding to the quaternion in Space, in Flatland we must be content with

the binion (pronounced “BYE-nee-on”).4 The binion of rotation is defined as

(15)

for which

(16)

We continue to use the notation (rather than ) in order to retain a greater resem-
blance to the equations in Space.

A binion of rotation differs from the general binion in that it has unit norm. The
binion differs from a array in that it possesses not only the additive opera-
tion (addition of components) but also the operation of binion multiplication.
The binions of rotation (with domain , the unit circle) form a group under binion
multiplication. The general binions (with domain , the plane) form a field under
binion addition and multiplication. The general quaternions (domain ) form a

4The name binion is, in fact, a hybrid word, like quaternion. The word quaternion is built on the Latin dis-
tributive numerical adjective quaterni, which means literally “by fours” (as in: marching by fours). Thus, a
quaternion is an entity consisting of a grouping of things by fours, an apt descriptor. The corresponding Latin
distributive adjective for two things is bini. Thus, the planar analogue of the quaternion is called a binion (pro-
nounced “BYE-nee-on” (q.v. binary)). In reference [6] below, we consciously rejected binion in factor of the
more vulgar biernion because of the rhyme. In Classical Persian, by the way, a set of four things is a rubai,
a word of obvious Arabic origin, and a collection of rubai, in the sense of four-line poems (quatrains (sic)),
is a rubaiyyat, the most famous being that of the celebrated poet-astronomer Omar Khayyam (1050?–1123). 

It might be mentioned that quaternion is also a barbarism of sorts, since it combines a Latin adjective with
a Greek noun suffix. A more consistent name, totally Latin in character, would have been quaternium, which
has the misfortune of sounding like the name of a metal, lost somewhere, one might suppose, among the rare
earth elements. This may have been Hamilton’s reason for the hybrid nomenclature, since he was also a re-
markable linguist, proficient by age 16 not only in many modern European languages, Latin, Greek, and He-
brew, but also in Old Irish, Arabic, Sanscrit, and Classical Persian. Ancient Greek did not possess numerical
distributive adjectives. If one had been at Hamilton’s disposal, perhaps we would be speaking now of some-
thing like tetrakons (built here on the Greek numerical adverb ) or tettarons (built here on the Greek
cardinal number , ) instead of quaternions.��́��	
	��́��	
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non-commutative field (division ring, skew field) under quaternion addition and
multiplication. A binion created from a array a will sometimes be denoted
by .

In terms of the binion Euler’s formula becomes

(17)

The binion may be extracted from the attitude matrix in a manner similar to the
method for extracting the quaternion from the attitude matrix in Space through

, if (18ab)

or

, if (18cd)

Here

(19)

Binion composition follows directly from the trigonometric formula and reads

(20)

where, as in equation (17)

(21)

Note that binion composition is commutative, as is the multiplication of attitude
matrices in two dimensions.

The binion propagation matrix has several interesting and useful properties,
which are listed in the appendix.

The Gibbs scalar or Rodrigues scalar is given by

(22)

Thus

(23)

and Cayley’s formula takes the familiar form

(24)

The composition of Gibbs scalars is given by
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g� � g

1 � g�g

A �
I � 
 g �
I � 
 g �

q̄ �
1

�1 � g2 �g

1�
g � q1�q2 � tan���2	


 q̄ �


 q̄ � � � q2

�q1

q1

q2
� � q2 I � q1 J

q̄� � q̄� � q̄ � 
 q̄�� q̄ � 
 q̄ � q̄�

tr A � A11 � A22

q1 � 0q2 �
1

4q1
�A12 � A21	q1 �

1

2
�2 � tr A

q2 � 0q1 �
1

4q2
�A12 � A21	q2 �

1

2
�2 � tr A

 � 
 q̄�2

 � �q2 I � q1J	2

 � �q2
2 � q2

1	 I � 2q2 
q1�
 A�q̄	 � �q2

2 � q2
1	 I � 2q2q1J

ā
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in complete analogy to the formula for the Gibbs vector in Space.
The Cayley-Klein parameters are

and (26ab)

and the superscript c denotes complex conjugation. These obviously satisfy

(27)

It follows that

(28)

Attitude Kinematics in Flatland

Restraining my impatience— for I was now under a 
strong temptation to rush blindly at my visitor and 
precipitate him into Space …

The kinematic equation for the attitude matrix is given as usual by

(29)

which, in fact, defines . If we define the binion analogue

(30)

then the kinematic equation for the binion is simply

(31)

where

(32)

Likewise, we can partition defined by equation (21) in terms of column ma-
trices as

(33)

which leads to

(34a)

and

(34b)

The kinematic equation for the Gibbs scalar becomes finally

(35)
d
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while that for the angle of rotation is just

(36)

Euler’s equation for rigid-body dynamics is simply

(37)

where N, the torque, is a scalar and I, the moment of inertia, another scalar, is
given by

(38)

Attitude Errors in Flatland

If Fog were non-existent, all lines would appear equally 
and indistinguishably clear.

The representation of attitude errors in Flatland follows that in Space, with obvi-
ous simplifications. The error in the attitude matrix, since it has only a single degree
of freedom, can be written as

(39)

with a random variable, usually an attitude estimate, and is the (multiplica-
tive) attitude error

(40)

with , th attitude error angle, generally an infinitesimal quantity assumed to have
zero mean. The attitude variance is defined to be

(41)

where denotes the expectation.
The modeling of vector measurement errors follow a similar pattern. We write

(42)

where is a zero-mean random variable with variance . In general, we assume
the reference vector to be error free. (This may not be true, in fact, since for
measurements of the geomagnetic field direction for example, it is the reference
vector error which dominates the measurement error, but it simplifies the presenta-
tion of algorithm development.) In linear approximation this may be written as

(43)

with

(44)

and we have defined with vector argument to be

(45)
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Thus,

(46a)

(46b)

(46c)

(46d)

(46e)

It is easy to show that

(47)

Note that in Flatland is not a square matrix as it is in Space.

Batch Attitude Determination in Flatland

I answer that though we cannot see angles, we can 
infer them, and this with great precision.

We can now examine some well-known algorithms in their Flatland setting.
These are the DYAD algorithm, the two-dimensional analogue of the TRIAD al-
gorithm [7, 8], and the BEST algorithm, the two-dimensional analogue of the
QUEST algorithm [8]. The development of these algorithms in two dimensions
is very similar to that of their forbears in Space. As can be expected, the results
are much simpler in the smaller dimension.

The DYAD Algorithm

For the DYAD algorithm5 we seek an attitude matrix which satisfies

(48)

where V and W are arbitrary vectors. In a space of n dimensions, linearly
independent vector measurements are required to uniquely determine the atti-
tude matrix [9]. In two dimensions, therefore, a single measurement suffices. (In
one dimension, zero measurements are sufficient.)

To construct the attitude matrix we first construct orthonormal dyads of reference
and observation vectors as

and (49ab)

and

and (49cd)

From

(50)

it follows that

and (51ab)
5F. Landis Markley has suggested that the DYAD algorithm be renamed the BAD algorithm in contrast
with BEST.
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J3 � �J
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Ŵ
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n � 1
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Hence,

, (52)

Defining now orthogonal matrices (labeled by their columns)

and (53)

it follows that

(54)

whence

(55)

The development of the DYAD attitude variance follows almost identical steps as
in the calculation of the TRIAD attitude covariance in Space [8] with the result

(56)

The BEST Algorithm

The BEST (Binion ESTimator) algorithm in Flatland is only slightly less com-
plicated than the QUEST algorithm in Space. As usual, we seek an attitude matrix
which minimizes the Wahba cost function [8, 10, 11]

(57)

where the , , , are a set of positive weights, whose sum, we will
assume, is unity. As in the Space we define a gain function, , such that

(58)

which is a maximum when is a minimum, and, as before, the attitude profile
matrix is given by

(59)

Substituting equation (17) in equation (58) leads straightforwardly to

(60)

where

(61a)

(61b)

Thus

(62)

with

(63)

The maximization of leads to the familiar eigenvalue problem
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ak �Ŵk � AV̂k�2

PDYAD � � 2
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but in Flatland can be calculated in closed-form as

(65)

and

(66)

The attitude variance of the BEST algorithm is calculated most easily from the
Fisher information matrix using the fact that the BEST algorithm is a maximum-
likelihood estimator [12]. Assuming the errors to have a Gaussian distribution, the
calculation is straightforward and leads to

(67)

The optimal angle of rotation can also be computed directly by noting that the
gain function can be written in the form

(68)

which is obviously a maximum when , with

and (69)

We write the solution of equation (69) more conveniently as

(70)

where is the same function as ATAN2 in FORTRAN. Equation (69) leads
directly to a solution for the optimal attitude matrix, namely

(71)

Substitution of equation (66) into equation (17) leads somewhat less directly to
the same result, which should be compared with the construction of the optimal
attitude matrix in Space developed by Markley [13]. Markley’s FOAM algo-
rithm [14] carries over with little change into Flatland and yields necessarily the
same result as equation (71). BEST (created in 1992) actually presages the al-
gorithms of Mortari [15, 16], in that it computes the overlap eigenvalue 
from an analytical expression.6

The OIVAE Algorithm

It is high time that I should pass from these brief 
and discursive notes about things in Flatland to 
the central event …

In 1992, when the preceding text was first presented [6], the specific large ap-
plication which followed was the study of the “additive” and “multiplicative” up-
dates in the Kalman filter, a subject of some controversy at the time. It would no 
6For a masterly survey of solutions to the Wahba problem in Space the reader is directed to the paper of
Markley and Mortari [17].
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g��	 � s cos � � z sin �
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2
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�max � �s2 � z2
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Attitude Analysis in Flatland: The Plane Truth 203



longer be appropriate to present that example in an archival journal, since a fuller
account of the study in “Space” has already appeared [18–20]. Therefore, in order
to illustrate the power of working in Flatland and the insights to be gained there-
from we examine instead a more recent application, the Optimal Linear Attitude
Estimator (OLAE7) of Mortari, Markley, and Junkins [21]. That work contained
some minor defects, chiefly in testing the algorithms. Firstly, the modeling of a uni-
formly random attitude followed what may be termed the “common wisdom” rather
than sampling from a truly uniformly random attitude distribution [22–24]. Sec-
ondly, the figure of merit chosen to judge the efficacy of the algorithm was based
on the farthest outlier and therefore diverges as the number of simulated tests be-
come infinite. Both of these defects are inconsequential for the OLAE algorithm
and easily repaired. On the other hand, the attitude estimator proposed was re-
markably simple, original, and inventive. Missing from the presentation of that al-
gorithm, however, was an analytical study of its covariance. The present work seeks
now to remove that lacuna, at least in Flatland.

Let us now examine the Optimal Ingenious Vainglorious Attitude Estimator
(OIVAE8), the Flatland counterpart of OLAE. In Space and in Flatland we may write

(72)

where g is the Gibbs vector in Space and the Gibbs scalar in Flatland (where, to be
rigorous, it should not be written in boldface). We can write this equivalently as

(73)

which can be rearranged as

(74)

This suggests that we obtain the optimal attitude from the minimization of

(75)

with the optimal choice of the , , still to be determined. The mini-
mization of the cost function of equation (75) is trivial both in Space and in Flat-
land. In Space this minimization yields the OLAE algorithm; in Flatland it yields
OIVAE. Regrettably, the authors of reference [18] did not provide a model covari-
ance matrix for OLAE. We now develop the covariance matrix (really variance)
for OIVAE.

Equation (75) is remarkable in that without any geometric approximation, we
have achieved a cost function which is linear in an unconstrained representation of
the attitude. What is also special about OLAE is that the measurement noise also
depends on the attitude. In fact, for angles of rotation close to the measurement
covariance is infinite. Thus, we might expect that OLAE may exhibit unpleasant
behavior for very large angles.

7Pronounced “olay” as in Spanish: ¡olé!.
8Pronounced “oy vay” as in Yiddish:

�

k � 1, . . . , nak

J�g	 �
1

2
�n
k�1

ak�Ŵk � V̂k � 
 g � �Ŵk � V̂k	�2

Ŵk � V̂k � 
 g � �Ŵk � V̂k	 � �I � 
 g �	�Ŵk

�I � 
 g �	Ŵk � �I � 
 g �	V̂k � �I � 
 g �	�Ŵk

 �
I � 
 g �
I � 
 g �

V̂k � �Ŵk

 Ŵk � AV̂k � �Ŵk
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For OIVAE equation (75) is equivalently in Flatland

(75�)

with the matrix J defined in equation (9). Minimization of equation (75�)
leads straightforwardly to

(76)

where is the value of g which minimizes . Here we have defined the 
notation

(77)

assuming, as usual, that the , , have unit sum.
To begin the construction of a covariance matrix for OIVAE we write

(78)

where is the error Gibbs scalar and is the true value of g. Then, recalling the
composition rule for the Gibbs scalar, we have

(79)

and since is assumed to be much smaller than we may expand equation (79)
to first order in as

(80)

expanding the right member of equation (76) to linear order in then leads to

(81)

As usual, we assume for the sake of argument that the error in may be neglected
in comparison with that in , although this need not be the case.

Let be the (true) angle of rotation. Then in Flatland (but not in Space) we
must have

and (82ab)

and

(83)

Note that is the Gibbs scalar of an infinitesimal rotation. Hence, it is related to
the attitude error angle of equation (40) by
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1 � �g true�2
�
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�
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�Ŵ k

true � V̂k�
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�
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� Fk � � �n
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Combining equations (81) through (84) now leads to

(85)

It follows now that the variance of is given by

(86)

Assuming the BEST measurement model, which was given by equations (42)
through (44) and especially by equation (47), we find straightforwardly

(87a)

(87b)

(87c)

We have assumed in reaching equations (87) that the are a white sequence.
Thus

(88a)

(88b)

With the constrained to have unit sum, the minimum value for the summation in
equation (88) (minimized over the ) is

(89)

with and with defined in equation (67). Thus, finally

(90)

Discussion

… my Lord has shewn me the intestines of all my 
countrymen in the Land of Two Dimensions …

The representation of attitude in two dimensions has been described in detail.
Two-dimensional analogues have been presented for the well known TRIAD and
QUEST algorithms. The writer hopes that he has demonstrated the efficacy of
studying attitude algorithms in only two dimensions, where closed-form expres-
sions are usually available for the results, rather than insisting always on working
in three dimensions, where a closed-form solution is usually horribly difficult or
impossible to obtain.
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k�1

a 2
k � 2

k

�
E
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The unexpected result of this work is that OIVAE performs as well as BEST,
from which it might be inferred that OLAE performs as well as QUEST. This
has not been demonstrated, however, and a full three-dimensional study is now
called for. Had OIVAE shown a larger estimate error variance for large angles,
or even diverged as the angle of rotation approached , this writer would have
been better satisfied. Not only would the value of Flatland studies have been bol-
stered, but one would then have abandoned OLAE, whereupon the writer, with
unbearable smugness, would have boasted to OLAE’s supposedly crestfallen
creators of the clear superiority of QUEST. Instead, he finds that OLAE merits
further attention.

A serious deficiency of the OLAE algorithm is that there is not as yet an obvious
figure of merit, like TASTE in QUEST, for quickly judging the goodness of fit and
setting the alarm for outliers in the data. (Ahah! QUEST and the other algorithms
based on Davenport’s q-method [8, 11], some even by OLAE’s creators [13–16],
are superior!) For actual mission operations, such a figure of merit is a more im-
portant attribute of an attitude determination algorithm than the speed of attitude
computation [25]. As it stands, the only figure of merit suggested by the problem is

, the value of the cost function for the optimal Gibbs vector, whose interpreta-
tion is not obvious, owing to the presence of the factors in the noise term.
One could, of course, just as easily calculate the value of the Wahba cost function,
but that still imposes a large computational burden. Of equal concern is the appar-
ent absence of an easily calculable indicator for OLAE in order to know when one
is near rotations of , so that the method of sequential rotations [26] can be invoked
if needed. Despite possible drawbacks of the algorithm, OLAE certainly merits fur-
ther study.

Attitude studies in Flatland are by no means the innovation of the present writer,
although he is almost certainly the first person to call it thus in print. In Spacecraft
Attitude Control, for example, single-axis attitude control laws can be found even
in undergraduate textbooks [27]. In Spacecraft Attitude Estimation Farrenkopf’s
celebrated single-axis study of steady-state Kalman filter performance with gyros
[28] (updated recently by Markley and Reynolds [29]) is now a quarter century old.
Still, the study of attitude estimation algorithms via two-dimensional analogies
does not seem to have received the attention it deserves. Perhaps, the time has come
for a blossoming of studies of Planecraft Attitude Estimation.
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Appendix A: Properties of the Binion Propagation Matrix

Let a and b be the representations of any two arrays and and the re-
spective binions.

(A1a)

(A1b)

(A1c)

(A1d)

with (A1e)

(A1f)

For a binion 

(A2)

It is useful also to define

(A3)

Hence

and (A4ab)ā� � ā � ��a�2ā� � ā � 0

ā� � J ā � � a2

�a1
�

ā�1 � � ā ��2 ã̄

ā


 ā �T b � �b � a, b � a�T
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 ā �T � 
 ã̄ �
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 ā �T
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 ā � b � 
 b̄ � a


 ā � 
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 b̄ � 
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b̄ā2 � 1
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