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Abstract

Formulas for the observed distortions of star directions due to the motion of the space-
craft are developed within a framework suited to attitude determination activities. In par-
ticular, the expressions for these distortions are given in terms of a direction-cosine matrix
and a rotation vector. Different mechanizations of the stellar aberration and parallax effects
and their correction are discussed, as are details and trade-offs in the implementation of the
algorithms in attitude determination.

Introduction

The use of star cameras2 in spacecraft attitude determination requires that ac-
count be taken of the effect of the motion of the spacecraft on measured star direc-
tions. To ignore such effects for Earth-orbiting spacecraft is to introduce errors as
large as 26 arc seconds into the attitude estimate. Unfortunately, while most three-
axis attitude-determination methods nowadays require vector inputs, the effect on
these vectors from the aberration of starlight and of parallax are usually presented
in books on Observational Astronomy [1] in terms of scalar quantities, for which
the correct interpretation of signs is not always transparent. Also, the correct deri-
vation of stellar aberration is possible only within the framework of Special Rela-
tivity, which requires a familiarity with Physics usually foreign to aerospace
engineers.

A purely Newtonian computation of the aberration of starlight will, in fact, yield
the same result (to order v�c) as Special Relativity. The classical Newtonian
result has been known since 1727 [2]. A Newtonian derivation appears also in
the Explanatory Supplement to the Astronautical Almanac3 [3]. Such an approach,
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unfortunately, rests on intermediate steps which contain physical errors as large as
the stellar aberration effect itself. For example, while Newtonian Mechanics gives
the correct direction of the velocity for the aberrant photon, it also gives a value for
the magnitude of that velocity which can be wrong (fractionally) by the same
amount as the real effect on the direction. This writer does not wish to present in-
correct intermediate results simply because one final result happens to agree with
the correctly derived expression. Such an approach in 1727 can be excused but not
the application of that approach a century after the development of Special Rela-
tivity. Some physicists may even argue that the correct calculation requires General
Relativity. However, the additional improvements due to General Relativity are of
order , which can be ignored in attitude if not in orbit work.

The present work derives the effect of the aberration of starlight from very sim-
ple considerations and presents this effect in terms which are immediately relevant
to attitude determination, that is, as a direction-cosine matrix and a rotation vec-
tor. For completeness, the much simpler effect of parallax is presented in a simi-
lar fashion. The phenomena of aberration and parallax are given a more rigorous
and detailed treatment than is usual for these topics in an Engineering publication.
This article is tutorial, but it is not necessarily elementary. Beyond greater rigor
and detail, this note makes little claim to originality except that it makes maximal
use of attitude representations rather than the older conventions of Observational
Astronomy and addresses implementation issues specific to attitude determination
systems.

The presentation of stellar aberration takes the Lorentz transformation as given
and does not derive this transformation. The formula is simple enough, and ele-
mentary books abound which derive this equation from first principles, one of the
best of which, by Einstein himself [4], is listed among the references.

There are two approaches to dealing with parallax and aberration effects in atti-
tude determination. Either one removes the effects from the star-camera data or one
adds them to the star-catalog directions, which are free of these effects due to the
painstaking efforts of observational astronomers. Since one begins, naturally, with
a derivation of the effects themselves, it makes more sense to begin with the sec-
ond alternative.

Reference Frames

Generally, three-axis attitude is determined by comparing the matrix
representations , of a set of directions with respect to some inertial
reference frame with the matrix representations , of this
same set of directions with respect to a reference frame fixed in the spacecraft
(the body frame) [5, 6]. A caret will always denote a unit vector. When the atti-
tude determination system includes a star camera, a convenient “fixed” inertial
frame is the frame of the star catalog, whose origin and axes are determined
from astronomical observations [7]. The (non-inertial) spacecraft body frame
frequently has its origin at the center of mass (the barycenter) of the spacecraft.
Thus, both the position and the velocity of the origin of the spacecraft body
frame as well as its attitude change with time.

Ŵi, i � 1, . . . , N3 � 1
V̂i, i � 1, . . . , N

3 � 1

v 2�c2
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Consider the following four inertial reference frames:

1. is the inertial reference frame of the star catalog.4 Here
is the origin of � at , and is the velocity of (which, of course, makes

sense only with respect to some unspecified position). are the direc-
tions of the coordinate axes, assumed to be right-hand orthonormal. It would
have been more consistent to write , but the axis directions appear fre-
quently in the text, and a lighter notation has been chosen for them.5

2. (the superscript “d” (for “displaced”)
will be used at times to avoid possible confusion with a representation with respect
to an unspecified basis) is the inertial frame whose axes are parallel to the axes of
� at the given epoch, but whose origin is at the origin of the spacecraft frame at
time , and whose velocity is the same as that of the star-catalog frame. � differs
from � by a simple translation.

3. is the inertial frame whose axes are parallel to the
axes of � at the given epoch, whose origin at time coincides with the position
of the spacecraft at time , and whose velocity coincides with the velocity of the
spacecraft at time (relative to the star-catalog frame). differs from � by a
simple boost, i.e., an instantaneous change of velocity.

4. is the inertial frame whose origin coincides with that of
the spacecraft body frame at time , whose velocity is that of the spacecraft at
time , and whose axes are parallel to those of the spacecraft at time . � dif-
fers from by a rotation, namely the attitude rotation. � is not the spacecraft
body frame, which may have angular motion and linear acceleration.6

4Without an origin, the position space, with typical elements O and P, is an affine space. An affine space is
not a vector space; there is no addition rule for positions. However, with every ordered pair of positions 
can be associated an abstract vector r which satisfies , and we can write symbolically ,
the relative position of P with respect to O. The relative positions constitute an abstract vector space. These
concepts are reminiscent of the conventions of Euclidean Geometry, in which O and P denote points, and 
denotes a directed line segment from O to P. Thus, the typical element of an affine space has the form ,
where O is any member of the affine space (serving as the origin) and u is an element of the vector space.
Given a basis of axis directions and a scalar product, the abstract vector u can be associated with the (nu-
merical) matrix , where the superscript T denotes the matrix transpose. One
cannot assign a numerical value directly to elements of the affine space, which is equivalent to the statement
that there are no absolute positions or velocities in Special Relativity (or in Newtonian Mechanics). However,
if O is fixed, there is a one-to-one correspondence between the affine quantities and abstract vectors (between
P and r) and vice-versa, and once the basis is fixed, a similar correspondence between the vector space and

, the three-dimensional continuum of real numbers. The abstract vector space is useful, because it permits
the study of vectors without reference to a particular basis, the affine space is useful, because it permits the
study of positions without reference to a particular origin. Note that abstract velocity “vectors” do not form
a vector space, because the composition rule for finite velocities  (“addition of velocities,” see below) in Spe-
cial Relativity is not commutative. This is not surprising, because finite (Lorentz) boost transformations do
not commute unless the boost velocities are parallel, just as finite rotations do not commute unless the axes
of rotation are parallel. (See below.)
5These axes are abstract (physical) vectors and not numerical (representations), and are set, therefore, in a
bold italic typeface. Representations of vectors, such as and , are set in bold (non-italic) typeface. Both
of these (apart from measurement noise) are representations of the direction of the same star. Matrices, for
the most part, are denoted by non-bold upper-case italic letters.
6This quasi body frame has been introduced instead of the actual (non-inertial) body frame, because Special
Relativity treats only transformations between inertial coordinate frames. This subterfuge is obviously a self-
delusion, since at some point the body frame must be approximated by the quasi body frame if the results of
Special Relativity are to have any application to an attitude problem. Special Relativity is “special,” because
it is specialized to inertial frames. The General Theory of Relativity does not have this restriction, a freedom
which is purchased dearly in intellectual effort.

ŴiV̂i
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Thus, �, , and � have a common origin at time ,
and , and . The connections between the four frames are illus-
trated below.

�
rotation boost

�
translation

� (1)

With respect to the successive transformations of the star directions from the star
catalog, the transformation from the star-catalog frame to � is the parallax effect;
the transformation from � to is the aberration effect; and the transformation
from to the body frame � is the attitude transformation. Thus, equation (1) is
equivalent ideally7 to

attitude aberration parallax
(2)

where denotes the representation in body coordinates of the direction of star i
at time . Note from equation (2) , , , and are symbols for representations
of vectors observed from a specific frame and coordinatized with respect to the axis
directions of that frame.

A further level of transformation can be added, namely, sensor alignment, which
(in the direction of the arrows of equations (1) and (2)) would come after the atti-
tude transformation [8, 9]. Thus,

�
alignment

� and
alignment

(3)

The star-camera frame is also a body frame, and the alignment
transformation is also a rotation. The star-camera frame is assumed to be the fidu-
cial8 body frame in the derivations, so that the additional trivial complication of
equations (3) need not burden the presentation. However, the final results (for im-
plementation) will allow � and � to be distinct frames.9

Note the direction of the arrows in equation (3). For true star directions (i.e., un-
corrupted by measurement noise) , and, if the fiducial body frame is
not the star-camera frame, , where is the alignment matrix of the
star camera. Our convention [8, 9] is that the direction of all transformation matri-
ces (without an explicit transpose sign) is “toward” the fiducial body frame. For that
reason the arrows in equations (3) point to the right. The reader should have no
difficulty distinguishing for an abstract star direction observed from �, for its
representation with respect to �, and S for the star-camera alignment matrix.

Note with caution that the aberration and parallax effects are not frame transfor-
mations themselves, although they arise from frame transformations. This fact will
be repeated more than once.

7“Ideally,” because the noise in originates from a different source than the noise in , so that the two
cannot be related by a transformation. Although random noise corrupts all four vectors in equation (2), one
neglects the noise, generally, in the first three directions compared to that of . When this is not possible,
the additional noise terms present only a minor inconvenience, as in Ref. 5.
8From Latin fiducia, confidence, reliance, from Latin fidere, to trust. In the present context the closest mean-
ing is “by common consent,” which implies a common trust.
9Following the practice of the earliest papers on Special Relativity, The reference frames have been labeled
by German Fraktur letters. The use of the letter � (German Fraktur “S”) arises from the German (Koordi-
naten) System. Fraktur “B” has been chosen for the body frame rather than “K” (for German Körper). The
letter “S” was no longer available for the star-camera frame (“Star” is Stern in German), so “E” from French
étoile has been chosen instead. “E,” especially in lower case, is used frequently to denote a unit vector (be-
cause unit is Einheit in German).

Ŵi, k

Ŝi, kŴi, k
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SkŴi, k � SkÊ i, k

Ŵi, k � AkV̂i, k
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��
��

��

v�� � v�v� � v�
tk�O� � O�� � O����
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The reference frames �, �, , �, and � are each members of a continuum of
frames, each defined at the time . Only the transformation from � to requires
the use of Special Relativity. The relative velocities of � to the star-catalog frame and
of the body frame with respect to are sufficiently small that their treatment within
the framework of classical Newtonian Mechanics causes no perceptible error.

The Lorentz Transformation and Addition of Velocities

Consider the two inertial frames � and with axes and , re-
spectively. Suppose that frame has a velocity v relative to � of magnitude v
along the x-axis with respect to frame �. The two frames coincide at and identi-
cal clocks at the origin of each frame are synchronized at . This means that the
origins of the two frames are located necessarily at a point of the spacecraft trajec-
tory only at , since the two frames, having constant velocity, must move along
straight lines, while the orbit of a spacecraft is certainly not straight. For simplicity,
and because the final expressions will not contain the time explicitly, can be set
equal to zero and the connection between frame coordinates examined as a func-
tion of t.

If the speed of light c were infinite, then the transformation of coordinates from
one frame to the other could be treated within the framework of classical Newton-
ian Mechanics with the result

, , (4)

The last equation above states that the two clocks remain synchronized.
Within the framework of Special Relativity [4] the result will be qualitatively dif-
ferent, namely

, , , (5)

which becomes equation (4), when c becomes infinite. This result, known as Lorentz
transformation, was known empirically (but imperfectly—he was unaware of the
time-offset term) to the Dutch physicist Henrik Lorentz at the end of the nine-
teenth century. Its correct form, equation (5), was first derived from basic princi-
ples by Einstein in 1905 [11] (also [4]). It is the most important result of Special
Relativity.10

The present work considers only the lowest-order corrections due to Special
Relativity. At some point general-relativistic effects may have to be considered,
as they are already in orbit determination, but attitude determination has not yet
reached that level of precision. The reader interested in learning more about the
importance of General Relativity in Astronautics and Astrometrics is referred to
reference [12].

In the following, the common notation

(6)

10The denominators in equations (5) are the expression of the celebrated phenomena of Lorentz
contraction (or Fitzgerald-Lorentz contraction) and time delation. The offset term in the equation for
time transformation expresses the phenomenon that clocks that are synchronized as observed from one iner-
tial frame are not necessarily synchronized as observed from another.

�vx�c2

1 � v 2�c2

� �
1


1 � v 2�c2
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t � vx�c2


1 � v 2�c2
z� � zy� � yx� �

x � vt


1 � v2�c2

t� � ty� � yx� � x � vt

tk

tk

tk

tk

��
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is used to simplify the expressions.
The perceived direction of a star is the direction opposite to that of the velocity

of a photon from the star reaching the observer. Hence, attention will now be di-
rected to the transformation of velocities due to a boost, or, as it is more commonly
called, the addition of velocities in Special Relativity.

The representation of the velocity of the photon or any object as observed from
frame � is while that observed from frame is , where s
and are the respective matrices of coordinates of the position of the object
observed from the two frames. To relate these note from equation (5) that

(7)

In a similar manner

, (8)

Writing

and (9)

the representations of the velocity of the object as observed from the two inertial
frames, equations (7) and (8) become

, , (10)

This is the formula for the addition of velocities (in this instance “subtraction” of
velocities) in Special Relativity.11

Equation (10) holds for the transformation of the velocity of any object. The
reader may verify from equation (10) that if the magnitude of u is c, then so is the
magnitude of , which is the statement that the speed of light has the same value
in all inertial reference frames. This is one of the basic hypotheses of the Theory of
Special Relativity, based empirically on the Michelson-Morley experiment or, at
somewhat greater remove from experiment, on Maxwell’s equations, and crucial in
the derivation of equation (5) [4].

Denote the direction of v by , then the projection operator onto the one-
dimensional space parallel to v is . Likewise, the projection operator onto the
two-dimensional space perpendicular to v is . Noting this, we may 
write the formula for the transformation of velocities due to an arbitrary boost v,

, and arbitrary velocity u, , of the object with respect to � asu � c�v� 	 c

�I3�3 � v̂v̂T�
v̂v̂T
v̂
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�
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dz��dt�
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dt�
�

dx�

dt

dt

dt�
�

dx�
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(11)

Aberration of Starlight

Let denote the direction of a star as observed from frame , and let be the
direction of the same star as observed from frame �. Then, since the direction of a
star from an observer is opposite to the direction of the velocity of a photon from a
star to the observer, it follows that (again suppressing subscripts)

, and (12)

the speed of light being the same in the frames � and . Substituting these ex-
pressions into equation (11) leads to

(13)

where �, following common practice, has been defined as

(14)

The magnitude of � is never greater than unity.
The speed of a spacecraft in circular low-Earth orbit (say, 450 km) with respect

to a frame fixed in the Earth is approximately 7.6 km�sec. The speed of the Earth
in its orbit about the Sun is approximately 30 km�sec. Hence, the speed of the space-
craft with respect to the frame � is necessarily less than 38 km�sec. The speed of
light is approximately km�sec. Thus, for spacecraft in low Earth orbit

(15)

Expanding equation (13) to linear order in leads first to

(16)

and finally

(17)

or

(18)

where is the antisymmetric matrix12

(19)

The first expression in parentheses in equation (18) is simply (to first order) the
direction-cosine matrix of an infinitesimal rotation [10] with rotation vector [10]

(20)

12Note . Some authors prefer the matrix .�u�� � ���u����u��v � �u � v
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Thus, the effect of stellar aberration is

(21)

The expression in parentheses in equation (18) can be made exactly proper 
orthogonal by recomputing the direction-cosine matrix from the appropriate for-
mula [10] as a function of , for example, and the rotation performed ac-
cordingly. Thus

(22a)

and

(22b)

or as given by equation (18) or (21) after discarding the terms of order and
higher may be simply normalized without loss of accuracy.

No accuracy is lost by linearizing equation (13). This follows not only from the
smallness of (because at the present limits of technology attitude sensors cannot de-
tect terms of order ) but even more fundamentally from the fact that Special Rela-
tivity itself is correct only to linear order in when applied to orbiting bodies. This
is because for an orbiting body (in this case primarily the spacecraft about the Earth)
quadratic effects in Special Relativity are on the same order as the gravitational ef-
fects, which can be computed only within the framework of General Relativity.

The axis vectors of � and are parallel, yet the representations and are
different. This is because the physical vector itself has changed. Thus, the boost
causes an active rotation of the star direction [10]. At the same time, this change is
due entirely to a change in the perspective of the observer; hence, it is passive. This
is perplexing if one’s intuition is based on experience with true rotations. To obtain
a truly unambiguous notation for representations of vectors, one which admits non-
rotational effects, both the frame of the observer and the axis directions for the co-
ordinization of the vectors must be specified separately. Generally, we will refer to
a vector or the representation of a vector as observed from a given frame. Unless
otherwise indicated or implied, the representations will be with respect to the axis
directions of the frame of observation. Thus u and were vector representations
of the photon velocity as observed from � and , respectively (but each was also
a representation with respect to either of the two frames, since the axis directions
in the two frames are identical).

The effect of the aberration of starlight is on the order of , which, as has been
noted, for low-Earth orbit is as much as (including the orbital motion of the
Earth about the Sun). This leads to aberrations of as much as 130 microradians or
about 26 arc seconds.13

13For Earth-pointing spacecraft equipped with a star camera the latter is often mounted so that the boresight
points toward the zenith in order to minimize light interference from the Earth albedo. This, however, maxi-
mizes the aberration of observed star directions, which would be minimized if the star camera boresight were
parallel or antiparallel to the spacecraft velocity. For geostationary spacecraft equipped with a star camera,
the star-camera boresight is often parallel to the orbit normal, so that it can observe the pole star, which also
maximizes the aberration.

10�4
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V̂Û��
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Parallax

Spacecraft attitude is estimated by comparing , the direction of star i at time
observed from and coordinatized with respect to frame , with , the star di-

rection observed from and coordinatized with respect to the spacecraft body frame.
The star catalog supplies the direction of this star, , observed from �. In order
to compute for attitude determination, it will be necessary first to compute ,
the representation of the star direction observed from �. The transformation from

to is the parallax effect. This effect is very simple in origin, far simpler than
aberration.

Let P be the position of a star. Then in the vector space of relative positions (but
expressed in terms of affine positions) (see footnote 4),

(23a)

or, equivalently,

(23b)

where Q is the (abstract) position of the star relative to , R is the (abstract)
position of the star relative to , and r is the (abstract) position of the spacecraft
relative to . (“Abstract,” because they are not representations of a vector with
respect to a basis.)

Writing and , it follows that

(24)

The representation of with respect to � is , and the representation of with re-
spect to � is . However, since the axis directions of � are parallel to those of �,
it follows also that the representation of with respect to � is also . The repre-
sentation of r with respect to � is just r. Thus, discarding terms of order and
higher ( , see below), the representation of equation (24) with re-
spect to � (or �) becomes

(25)

so that the rotation vector for the parallax effect is given by

(26)
�parallax � Ŝ �
r
R

 � �I3�3 � ��Ŝ �
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R�Ŝ

 Û � Ŝ � Ŝ � �Ŝ �
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 � R̂ � r�R � �R̂ � r�R�R̂ � O�r2�R2�

 �
R̂ � r�R


1 � 2�R̂ � r�R� � r2�R2

 Q̂ �
R̂ � r�R

�R̂ � r�R�

R � �R�R̂ � RR̂Q � �Q�Q̂ � QQ̂
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Ûi, kŜi, k

Ûi, kV̂i, k
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and, similarly to equation (21)

(27)

The displacement r is the position of the spacecraft measured from the origin of
the star-catalog reference frame, which is located at the barycenter of the solar
system at some epoch.14 Thus, the magnitude of r is roughly the radius of the
Earth’s orbit, or km. The distance to -Centauri, the nearest star, is
roughly 4.3 light-years or about km. Hence, , and
the magnitude of the parallax effect can be as large as 3.7 microradians, or 0.7 arc
seconds. Star catalogs for attitude work sometimes exclude stars closer to the
Earth than 100 light-years, so that the parallax effect for mission-catalog stars 
is smaller than 0.03 arc seconds. All the same, even for -Centauri the effect of
parallax is much smaller, in general, than that of aberration.15

Combined Effects

Since both distortions are very small, they may be combined with little error into
a single rotation with rotation vector given by

(28)

The commutation error from this approximation is on the order of arc seconds.
The reference direction which must be compared with the direction observed
by the star camera for attitude determination is then

(29)

where denotes the function which unitizes its “vector” argument. To empha-
size the fact that these corrections are frame-dependent, that , , and depend
on the time, that depends on the time and the star, and that the vectors are rep-
resentations with respect to a particular frame, equations (20), (26), (28), and (29)
can be written with greater precision in their fully subscripted and superscripted
splendor as

, , (20�, 26�)

, (28�)

and

(29�)

The superscripts o and d here denote that the representations are with respect to �
and �, respectively. There is no need for a superscript on the star directions, since
they are already defined to be representations of vectors observed from and with 

14Before 1984 the origin of the star-catalog reference frame was usually the geocenter at some epoch, as noted
in Wertz [7]. This doubled the possible size of the parallax effect.
15“In general,” because there is always a geometry, not necessarily achievable for the given spacecraft orbit,
for which the aberration of a particular star direction is zero.
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respect to specific frames. Note that equations (20�), (26�) and (28�), and their un-
primed counterparts, are consistent only to linear order in and .

Note once again that equation (28) or (28�) gives the distortion due to aberration
and parallax of the star-catalog direction , so that the attitude matrix from frame

to the spacecraft body frame can be computed. However, the rotation vector of
equation (20�), (26�) or (28�) is not the rotation vector for the rotation of coordinate
axes from one frame to another. Since the transformations of the frames are not 
rotations, no such quantities exist. The direction-cosine matrix for each effect de-
pends, for example, on the direction of the individual star. Also, because ,
for example, is applicable only to , it follows that is not unique.16

Clearly, a term with a arbitrary (but infinitesimal so that the linear approxi-
mation for the direction-cosine matrix holds) may be added to the right member of
equation (26�) without altering the action of on , and similarly for the
rotation vectors of equations (20�) and (28�). An analogous result holds for the cor-
responding direction-cosine matrices.

Likewise, because the distortion due to parallax and aberration is different for
every star, the spacecraft attitude cannot be estimated accurately by first neglect-
ing the lack of distortion in the star-catalog directions and then “adjusting” the
computed attitude afterward, say, by a rotation corresponding to the distortion of
a (hypothetical) star observed along the star-camera boresight. Such an approxi-
mate treatment of aberration applied to a star camera with an 8-deg-by-8-deg field
of view can introduce errors as large as 2.0 arc seconds into the attitude estimate
if the measurements are largely clustered in one corner of the field of view. Simi-
lar arguments apply also if, instead of not distorting catalog directions, the star-
camera measurements are not individually corrected for aberration and parallax.
(See below).

Body-Referenced and Sensor-Referenced Effects

A different point of view can be exercises for the calculation of both the stellar
aberration and parallax effects. The inertial coordinate system of the star catalog is
arbitrary to a large degree. Consider, therefore, a different inertial coordinate sys-
tem for the star catalog which has the same origin and velocity as � but whose axes
are rotated by the attitude matrix. Thus, the axis vectors of the new inertial refer-
ence frame are

(30a)

(30b)

(30c)

where is the true value of the attitude matrix, not the estimate of the attitude
matrix (which would be distinguished by an additional marker), which is cor-
rupted by measurement noise. The operation above is not matrix multiplication,
because two different sets of abstract vectors are being related and not the repre-
sentations of a given abstract vector with respect to the axes of two reference
frames, as in equation (33) below.17 See reference [10] for further details of this dis-
tinction. The axes of differ from the true body axes by the absence of parallax 

16This is nothing more than the statement that in the absence of error the action on at least two vectors is nec-
essary for the determination of a proper orthogonal matrix.
17The relation of to is identical to the relation of to .�x̂�, ŷ�, ẑ�	�x̂b, ŷb, ẑb	�x̂o, ŷ o, ẑo	�x̂�, ŷ�, ẑ�	
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and stellar aberration effects. For lack of a better name may be called the un-
translated unboosted body frame.18

Obviously, the stellar-aberration and parallax effects can be calculated just as
well starting with this new untranslated unboosted body or star-camera frame as
the previous inertial one, and the result must be identical in form. Thus, it must
be true that

(31)

and

(32)

Here

(33)

is the representation of the star-catalog direction with respect to , and is the
value of without the measurement noise.19

The two approaches must be equivalent. If not, the most basic principle of Spe-
cial Relativity, that all inertial reference frames are equivalent for the formulation
of physical laws, would be violated. Thus, it must be true that

(34)

or

(35)

which is indeed true provided that (see equations (106) and (107) of reference [10]

(36)

This is certainly the case, since the action of transforms every representation
of a vector with respect to � into a representation with respect to . Likewise,
if the star-camera reference frame is different from the fiducial body reference
frame, the stellar aberration and parallax effects may be computed in either of
those two frames.20

Distortion and Correction

If the distortion of a star-catalog direction for the effects of stellar aberration
and parallax is

(37a)

(37b)

18When the star-camera frame is not the fiducial body frame, then the axes of the untranslated unboosted star-
camera frame are derived from equations (30) with replaced by .
19All star directions labeled in this work, with or without superscripts, are distorted neither by aberration
nor by parallax nor corrupted by measurement noise. Thus, , and (below). The transformation of
equation (32) is not of practical use, although it illustrates the concept best. Of greater practical interest is the
inverse transformation, which computes from , which will appear shortly.
20Although equations (28�) and (31) rely on being infinitesimal, equations (34) through (36) do
not. They are correct even if the distortions are macroscopic, a fact that will be more useful to the crew of the
future Starship Enterprise than to present terrestrials. Again, if the star-camera frame is different from the
body frame the transformation matrix from � to , the untranslated unboosted star-camera frame, is .ST
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then the correction to the distorted star direction to remove these effects is21

(38a)

(38b)

Equation (38b) presents the essence of the operation performed by observational
astronomers when preparing entries for the star catalog.22 Identical equations, but
with a different superscript on (and different symbols for the star directions)
hold for the correction of star-camera- or fiducial-body-referenced star directions.
(See equations (40) and (42) below.)

The earlier discussion examined the effects of stellar aberration and parallax on
the star-catalog star directions. The star camera on board the spacecraft supplies
the observed star directions with the aberration and parallax effects already built
into the data by nature. Therefore, to compute the attitude either: (1) undistorted
(i.e., corrected) star-camera star directions must be compared with undistorted star-
catalog directions or (2) uncorrected star-camera star directions must be compared
with distorted star-catalog directions. As demonstrated by equation (34), either ap-
proach will lead to the same estimate of the attitude. Thus, either the star-catalog
star directions must be distorted or the star-camera star directions must be cor-
rected. Philosophical arguments exist for the intrinsic superiority of either ap-
proach. Since numerous corrections must be made to the directions measured by
the star camera (misalignment, physical distortion of the star-camera focal plane,
temperature corrections, star-intensity corrections, etc.) it makes sense to perform
the corrections to the star-camera data rather than to distort the catalog, so that at
least the star-catalog values of the directions will always be the same. On the other
hand, the calculation of the corrections for stellar aberration in any body-fixed
frame (fiducial body or star-camera) requires an a priori value of the spacecraft
attitude, which is not always immediately available. Thus, both approaches have
their respective advantages and disadvantages. Both are equally correct.

Summary: Attitude Estimation

Assume in this section that the star-camera and fiducial body frames are dis-
tinct (otherwise, ). There are then three approaches to attitude estimation
using star data.

Star Catalog Directions Are Distorted

To estimate the attitude based on uncorrected star-camera measurements, the rele-
vant equations are (assuming distinct star-camera and fiducial body frames):

(39a)

(39b)

(39c)

(39d)
21Note the superscripts on in equations (37) and (38). From the numerical standpoint the distinction be-
tween and is insignificant. However, in terms of the direction-cosine matrix as in equation (22) rather
than the expansion to order the expressions will not be formally consistent unless these small differences
are given proper attention.
22In fact, observational astronomers carry out many tasks akin to those of attitude-determination analysts,
since the observatory is essentially a huge star camera. The corrections applied to observatory star data, how-
ever, are more complex than just equation (38b).
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with the star-camera alignment matrix at time . This is the approach presented
first in this work (and which occupied much of it). The first three lines of equa-
tions (39) present the transformations which must be applied to the star-catalog di-
rections and the star-camera data. The fourth line is the principal equation for the
attitude estimation step.

Star-Camera Measurements Are Corrected in the Star-Camera Frame

To calculate the attitude based on corrected star-camera measurements and undis-
torted star-catalog values for the star directions:

(40a)

(40b)

(40c)

(40d)

Again, above is not identical to because of the presence of measurement
noise in the former, but . The unboosted untranslated star-camera
reference frame at , , with respect to which all of
the are representations, is connected to by the alignment rotation .
Thus, ideally

(41a)

(41b)

(41c)

and is the true value of the alignment matrix, not the estimated value, which is
corrupted by measurement noise. Thus, .

Star-Camera Measurements Are Corrected in the Fiducial Body Frame

To calculate the attitude based on star-camera measurements corrected in the
fiducial frame and undistorted star-catalog values for the star directions:

(42a)

(42b)

(42c)

(42d)

This approach is less useful nowadays, since recent star cameras are capable of cor-
recting or distorting for aberration effects internally and computing a batch attitude
estimate in their resident software.

Frame Summary

Seven frames in two sequences have been defined: �, �, , �, �, and �, ,
. The relationships of these seven frames to one another can be understood most

easily from the commutative diagram of Fig. 1. (The elongated “equal” sign is just
that.) The relationships of the representations of the star directions are presented
in Fig. 2.
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Horizontal arrows in the commutative diagrams have been written in the direc-
tion for which the transformation (direction-cosine) matrix bears no explicit trans-
pose sign and vertical arrows have been written in the direction of distortion (from
parallax or aberration effects) or of corruption (from measurement noise).23 These
direction-cosine matrices are , , , ,
and . Note that , and .

Had measurement noise in the star-catalog directions been acknowledged, the
commutative diagram would have been as in Fig. 3. The diagram assumes that
noise in the system originates only in the star-camera and star-catalog data. (Note
the prominent absence of an arrow at the lowest level.)

The seven reference frames of Fig. 1 are, in fact, insufficient in practice because
Earth-orbiting spacecraft orbit-determination activities require a geocentric inertial
coordinate system for their practical implementation. Thus, in theory, parallax and
aberration corrections should take place in two phases, one for Earth motion with
respect to � and one for spacecraft motion with respect to the Earth. The sequence
of distortions will then be

(43)

where � is Fraktur “G” (for Greek “Earth”). � and are geocentric ref-
erence frames analogous to � and but reflect distortion effects only from the
motion of the Earth. is now the result of a boost due to the velocity of the Earth
with respect to � and both the displacement of the Earth from the origin of � and
the displacement of the spacecraft from the geocenter. It is, therefore, not identical
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FIG. 1. Commutative Diagram for Reference Frames.

FIG. 2. Commutative Diagram for Star Directions.

23The commutative diagrams of Figs. 2 and 3 have been constructed so that at the highest level are star di-
rections undistorted by parallax or aberration and uncorrupted by measurement noise, at the center level are
star directions distorted by parallax or aberration and uncorrupted by noise, and at the lowest level are direc-
tions which are both distorted and corrupted. Thus, the diagram begins in “purity” at the highest level and de-
scends into “corruption.”



to � defined previously. must be formally identical to its previous definition.
Equation (28�) is still valid to first-order and the displacement and the velocity
vectors are each now, as obviously they were previously, the trivial sum of two
terms, one for Earth motion with respect to � and one for spacecraft motion about
the Earth.

To Distort or to Correct, That Is the Question!

In a Kalman-filter implementation, the correction for aberration and parallax
can be computed using the predicted attitude in order to obtain and 
referenced to fiducial-body or star-camera axes, which figure in the computation
of or , respectively. Thus, in the Kalman filter, the op-
tion, exists with equal ease, of either distorting the star-catalog directions or cor-
recting the measured directions. In a batch-estimation procedure, on the other hand,
unless an iterative Newton-Raphson procedure is being carried out for a nonlinear
estimation problem, there is usually no readily available a priori estimate of the
attitude. In this case, the correction of the measured directions, rather than the dis-
tortion of the star-catalog directions, requires the initial computation of an a pri-
ori value for the attitude by neglecting the aberration and parallax effects in the
data. This a priori estimate of the attitude is then used to compute 
or . Thus, the batch estimation of the attitude with measurements cor-
rected for aberration and parallax may require an additional attitude computation,
while no additional attitude computation is required if the star-catalog directions
are distorted instead. In batch attitude estimation, therefore, it is advantageous to
distort the star-catalog directions for aberration and parallax rather than to correct
the observed star directions.

For a deep-space mission currently in planning the star-camera microcomputer
will distort its resident star catalog star directions for aberration based on a stored
ephemeris and will output a batch estimate of the star-camera quaternion. This will
then be combined with gyro data in a Kalman filter in the spacecraft computer.

An a priori estimate of the attitude is required not only for the correction of
star-direction measurements but as an important component of star identification.
With an a priori estimate of the attitude, the star search in the star-identification
process can be limited to an area of the sky not much larger than 100 (for a
star-camera field of view of 8 deg by 8 deg), which is small compared with the
area of the entire celestial sphere (approximately 40,000 ). A full-sky searchdeg2
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FIG. 3. Expanded Commutative Diagram for Star Directions.



is possible, of course, but much more time-consuming. For both star identifica-
tion and the computation of aberration and parallax corrections an attitude estimate
from coarse attitude sensors (with accuracies of from 0.5 to 1.0 deg) is adequate.
Fortunately, these distortion effects may be neglected still (in 2004) in the star-
identification process.

Discussion: Star Catalog and Proper Motion

The analysis above has not considered the proper motion of the Solar System, to
which the “inertial” frame � is fixed. In fact, the Sun and 200 billion other stars are
revolving around the center of the Milky Way Galaxy with an orbital speed of about
250 km�sec. It follows then that the magnitude of the velocity of a star on the other
side of the Galaxy relative to the spacecraft can exceed 500 km�sec, which is more
than an order of magnitude greater than the velocity of the spacecraft relative to �,
which in Earth orbit, as has been seen, will not exceed 38 km�sec. Thus, in physi-
cal terms, the treatment of aberration above might seem at first glance to be inade-
quate. That, however, is not the case.

The principal requirement of a star catalog for attitude work is not that it pro-
vide the most detailed model of star motion but that it provide the means for
computing reliable directions of its stars with respect to � at . The proper star
motion behind the star direction recorded by the astronomical observatories is of
no interest for attitude determination except in so far as it permits the extrapola-
tion of the catalog directions forward or backward in time from the catalog epoch.
Thus, astronomical star catalogs record not only the corrected observed direc-
tions (“positions”) of stars at some epoch (currently the onset of the year 2000)
but also the proper motion at epoch, visual magnitude, spectral information, dis-
tance from the Earth and more, not all of which is useful for attitude determina-
tion. Galactic coordinates offer no practical advantages for attitude determination
and, considering how less accurately we can model Galactic motion than motion
within the solar system, many obvious disadvantages.

The Sun is approximately 28,000 light-years from the Galactic center. Therefore,
the angular rate of revolution of the Solar System about the Galactic center is only
0.6 are seconds�century, so that directions change very slowly due to mean Galac-
tic rotation. Also, this angular rate corresponds to a centripetal acceleration of
roughly or gal, which hardly makes a reference frame fixed at
the barycenter of the Solar System significantly less inertial than a Galactic coor-
dinate system.

Of greater concern is the proper motion of proximate stars, whose observable
proper motions are less regular than mean Galactic rotation. The star-catalog
“positions” are simply corrected for known proper motion at whatever time in-
terval is needed during the mission.
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