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Abstract

Two Kalman-filter formulations are presented for the estimation of spacecraft sensor mis-
alignments from inflight data. In the first the sensor misalignments are part of the filter state
variable; in the second, which we call HYLIGN, the state vector contains only dynamical
variables, but the sensitivities of the filter innovations to the misalignments are calculated
within the Kalman filter. This procedure permits the misalignments to be estimated in batch
mode as well as a much smaller dimension for the Kalman filter state vector. This results not
only in a significantly smaller computational burden but also in a smaller sensitivity of the mis-
alignment estimates to outliers in the data. Numerical simulations of the filter performance
are presented.

Introduction

Alignment estimation forms an important part of many missions since the align-
ment estimation accuracy directly affects the accuracy with which the payload atti-
tude can be determined. A complete treatment of the batch estimation of spacecraft
sensor alignments from flight data has been presented previously [1, 2]. The use of
these batch techniques, however, requires that the data be arranged in repeated
frames of simultaneous measurements. The attitude sensors, however, are typically
sampled asynchronously.

The present work presents two filter approaches. The first approach is that of the
standard, or “naive” Kalman filter, in which any parameter to be estimated is made
a component of the state vector. Since a spacecraft may easily have ten sensors, this
leads to a state vector of dimension at least 36 when one considers also the mini-
mum number of dynamical variables. This high dimensionality, coupled with the
inherent nonlinearity of the dependence of the measurements on the attitude can
lead to poor convergence of the filter in addition to a large computational burden.
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The solution to this dilemma was provided by Gupta and Mehra [3], who noted
that the innovations sequence in the filter was white and therefore provided the ap-
propriate uncorrelated sequence of effective measurement sequence. This made it
possible to apply MLE techniques directly to the innovations sequence. In fact,
since the Kalman filter itself may be treated as an MLE algorithm for the case of
Gaussian measurement and process noise [4], this meant that the entire estimation
process could be treated entirely within the framework of MLE. Friedland [5] has
shown how the estimation of the deterministic parameters (i.e., parameters which
are not random variables) may be carried out efficiently in a second Kalman filter,
using sensitivity matrices computed in the Kalman filter for the stochastic dynam-
ical variables (in this work, the attitude and the gyro biases). Since alignments are
purely static, however, these can be estimated via batch lease squares using Fried-
land’s sensitivity matrices with still greater computational savings. This is the
second method presented in this work, which we call the HYLIGN algorithm (for
HYbrid aLIGNment algorithm), since it combines the best qualities of the Kalman
filter and batch least-square estimation.

Basic Definitions

Sensor Referenced Measurements

A spacecraft line-of-sight sensor such as a vector Sun sensor or star tracker
measures a direction in sensor coordinates, defined to be directed outward from
the sensor, which is describable statistically as

(1)

where is the true value of the direction and is the measurement noise.
Here i is the sensor index, and k is the temporal index,
We assume that is Gaussian, zero-mean, and white, with covariance matrix

. Because the observations are constrained to be unit vectors, must be sin-
gular with a null vector.

Body-Referenced Vectors and Alignments

If denotes the measured direction in the spacecraft body frame, then the
alignment matrix, is the proper orthogonal matrix defined by

(2)

and, therefore

(3)

(4)

Thus, the body-referenced observations have an error covariance matrix given by

(5)

Misalignments

In general, the alignment matrix is not known exactly. Instead, what is known
is the alignment matrix determined by the prelaunch alignment calibration.
Thus, we are led to define the misalignment matrix, according to

(6)Si � Mi Si
o

Mi,
Si

o,
Si
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is necessarily orthogonal. Therefore, we define the misalignment vectors,
according to

(7)

where denotes the matrix exponentiation, and denotes the usual antisym-
metric matrix

(8)

Equation (7) is just Euler’s formula for the rotation matrix recast as a function of
the rotation vector. The angles are misalignment angles or simply the mis-
alignments. Since the misalignment matrix is generally a very small rotation, the
misalignments will be small and we can write

(9)

As a rule, we will keep only first-order terms. The measurement equation now be-
comes finally

(10)

Dependence of the Measurements on the Attitude

If denotes the reference vector, i.e., the representation of the measured vector
in the primary reference system (for example, geocentric inertial), then the attitude
matrix is defined according to

(11)

whence
(12)

We assume that is free of error. From this it follow that the actual sensor meas-
urements are related to the reference vectors by

(13)

We note immediately from equation (13) that the values of the measurement vec-
tors are unchanged by the simultaneous transformations

(14a)

(14b)

where T is an arbitrary proper orthogonal matrix. Thus, it is impossible from in-
flight sensor measurements to distinguish a common misalignment of the sensors
from a change in the attitude. It is, therefore, impossible to estimate the sensor
alignments and the attitude unambiguously from the spacecraft sensor measure-
ments alone, and some additional measurement, e.g., the prelaunch alignment cal-
ibration, is needed in order to obtain separate estimates of these quantities. In terms
of the misalignments, equation (13) becomes

(15)Ûi,k � Si
oT Mi

TAkV̂i,k � �Ûi,k

 k � 1, . . . , N  Ak → TAk,

 i � 1, . . . , n Si → TSi,
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V̂i,k
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This is the point of departure of the alignment estimation algorithms which we will
now consider.

Estimation of Alignments as Kalman-Filter State Variables

Since the Kalman filter can be formulated as a maximum likelihood estimator [4],
the Kalman filter estimate of the alignments is also a maximum likelihood estimate,
the one which takes account of the spacecraft dynamical degrees of freedom.

Assume that the spacecraft is equipped with n vector sensors for which we wish
to estimate alignments using the Kalman filter. The complete state vector, in
the context of combined attitude and alignment estimation is

(16)

where is the attitude quaternion, , are the alignment quaternia,
which have the same relation to the respective alignment matrices as the attitude
quaternion has to the attitude matrix, and is the gyro bias vector. The inclusion
of additional degrees of freedom in the state vector is straightforward but needlessly
complicates the present discussion.

The state equations for the attitude and the gyro biases are usually modeled
[6, 7] as

(17a)

(17b)

where is the gyro reading, and and are white Gaussian processes
with power spectral density matrices and , respectively, is the

matrix

(18)

The gyro-referenced attitude in the interval satisfies

(19)

and the complete state vector based on the gyro-referenced attitude and the
prelaunch alignments is, in obvious notation

(20)

where for uniformity we have written time arguments for the alignment quaternia.
The incremental attitude quaternion is given by

(21)

In general, will be the quaternion of an infinitesimal rotation, which we may
write as
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Defining the gyro-bias increment vector by

(23)

leads to the incremental equations

(24a)

(24b)

Likewise, we assume that the spacecraft is rigid and the misalignments satisfy

(24c)

Thus, we define the incremental state vector as

(25)

The complete state vector has dimension while the incremental state
vector has dimension The composition of the reference complete
state vector with the incremental state vector is not simple addition. Note that in the
above formulation of the Kalman filter, the gyro measurements have replaced the
dynamical model and the gyro measurement noise has become state process noise.

The discretised incremental state vector satisfies a state equation of the form

(26)

where is a discrete white noise process calculated from and and with
covariance matrix and must be such that

(27)

The state covariance is defined in terms of the incremental state vector

(28)

and the Kalman filter is mechanized in terms of The prediction equations are

(29a)

(29b)

To simplify the notation, we do not write an asterisk to denote the estimate or esti-
mator when the subscript makes this identification clear.

The prediction of the misalignments as given by equation (29a) is necessarily

(30)

The primes on the transition matrices in equation (29b) are a result of the basic non-
linearity of the combined attitude-gyro-bias dynamics, which leads to different
transition matrices for the incremental state vectors and the incremental state errors
[7]. Note that is related to the attitude matrix according to

(31)

which is similar to the equivalent relation for the misalignment vectors
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Thus, we may write the measurement equation as

(33)

where

(34)

(35)

are the sensor-referenced and body-referenced measurements for the reference
trajectory

(36)

are the measurement sensitivity matrices, and

(37)

where the submatrices of vanish except for those which multiply � and 
In general, the measurements are not the themselves but scalar functions

of the , which we denote by . Thus, we define the equivalent scalar meas-
urements as

(38)

(39)

where, we have expanded equation (38) in a Taylor series about to obtain

(40)

(41)

We use throughout the convention that the matrix of partial derivatives of a scalar
with respect to a column vector is again a column vector; hence, the transpose
superscript in equations (40) and (41).

The measurement equation is now in a form familiar to us. In principal, we can
neglect the index i in labeling the measurements, as we have done in equations (38)
through (41) if we choose the temporal index so that each scalar measurement cor-
responds to a different value of k (the order of truly simultaneous measurements is
unimportant). Thus, ideally, we should write in place of i and be aware that will
sometimes assume the same value for successive values of k. In predicting between
equal times the transition matrices will be identity matrices and no process noise
will be accumulated.

Thus, we may write the Kalman filter equations for the update step as

(42)

(43)

(44)

(45)
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�Ûi,k
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and is the variance of . The a posteriori estimate of the misalignment vector
and its covariance are given by

(47)

Kalman-Filter-Based Batch Estimation of Sensor Alignments

Even if the measurement and process noise are small, the Kalman filter for the
attitude and alignments may converge slowly because of the nonlinear dependence
of the measurements on the attitude. Also, the filter will be very sensitive to outliers
at the beginning of a data segment. Batch algorithms, which process all of the
data at once, are less sensitive to outliers and to the nonlinear dependence of the
negative-log-likelihood function on the parameters being estimated. However, from
equation (39) we see that all of the measurements are correlated with one another
through the correlation in Thus, not only will the parameter set in a batch esti-
mation procedure be very large because of the large number of attitudes to be com-
puted, but the measurement covariance matrix, if all of the measurements were
stacked into one large measurement vector, would be very large and nondiagonal,
hence, very difficult to invert.

A method of removing this difficulty was developed by Gupta and Mehra [3].
These authors noted that although the measurements, are correlated, the innova-
tions, computed by the Kalman filter are always a white sequence. Hence, in-
stead of finding the value of � which minimizes

it is sufficient to find the value which minimizes

Gupta and Mehra noted also that the Jacobian determinant of the (very high-
dimensional) transformation matrix which transforms the column vector containing
all the into the column vector containing the corresponding will be unity.
Hence, the two negative-log-likelihood functions will yield the same Fisher in-
formation matrix. Thus, we are led to estimate � by minimizing the a posteriori
negative-log-likelihood function

(48)

instead of the negative-log-likelihood function given directly in terms of the 
although the two are formally equivalent.

In the present instance the total alignment vector, �, is no longer a state variable
but a constant parameter of the system. The state vector, therefore, is now much
reduced in dimension and simply

and (49)xk � � �k

��k
	Xk � �q̄k
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Thus the gradient of the a posteriori negative-log-likelihood function in terms of
the innovations process and the residual covariance is [3]

(50)

and the corresponding Fisher information matrix is given by

(51)

(Note that Gupta and Mehra make an error in their derivation of equation (51) lead-
ing them to include an extraneous term.) The mechanization of the filter now pro-
ceeds as before without the components related to the misalignments, which are
now simply constant parameters in the measurements. Equation (32) is now re-
placed by

(52)

which is the same as in the batch estimator presented earlier. Equations (38) and
(39) now become

(53)

(54)

where

(55)

(56)

with and given still by equation (36), and the nonzero entries in occur in
the submatrix which multiplies The superscript I, distinguishes the measurement
sensitivity matrix in equation (54) from the related quantity in equation (39) et seq.
and denotes that it represents that component of the measurement which is insensi-
tive to the alignments.

To calculate the dependence of on � we note that because the Kalman filter
consists only of linear operations on the state variables we may write
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where and are independent of �. To determine these alignment-
independent state estimates and the alignment sensitivity matrices and we
substitute these expressions into the Kalman filter equations to obtain new filter
equations of the form

(58)

(59)

(60)

(61)

(62)

(63)

(64)

and the superscript I on and distinguishes these quantities from related ma-
trices of larger dimension in the previous Kalman-filter implementation. The trun-
cation amounts to simply deleting zeros and ones corresponding to the alignment
components. The alignment sensitivity matrices are given by the recursion relations

(65a)

(65b)

(65c)

The innovation is thus given by

(66)

(67)

where
(68)

Thus, the prior-free negative-log-likelihood function for the misalignments is
given by

(69)

For clarity we write equation (69) in matrix form even though the three factors
are each scalars. From this negative-log-likelihood function we may estimate the
prior-free relative alignments and the launch-shock error levels. The a posteriori es-
timates of the alignments taking into account both the a priori estimate and equa-
tion (69) is then given by the usual normal equations

(70a)

(70b)

which are equivalent to equations (49) and (50) if we note that is independent of
�. The values and from equations (70) correspond exactly to 
and which would have been obtained using the larger Kalman filter pre-
sented in the previous section.
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Numerical Results

To illustrate the efficacy of the hybrid HYLIGN method we have computed the
misalignments for spacecraft with 3, 5, 10, 15, and 20 sensors, oriented at random
over the spacecraft. The configuration for three sensors has been taken from [1]. In
each case 100 frames of data were simulated, with each sensor active in each frame.
Table 1 shows the results for the two sequential algorithms presented here together
with the purely batch algorithm of reference [1] (marked SPB). In order to make a
comparison possible, we have simulated the sensor data as being simultaneous.
Otherwise, the batch method could not be applied at all. The three results are seen
to be of equal accuracy. In the simulations we have estimated not the individual
misalignments and , but rather the relative misalignments [1] 
and . These quantities have been estimated without using the a priori� 3 � �3 � �1

�2 � �2 � �1�3�2,�1,
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TABLE 1. Comparison of the Three Methods

A. Batch Alignment Estimation with the SPB Algorithm

�73. �70.947 1.426 1.439
�40. �39.372 6.926 0.090

63. 54.038 11.282 �0.794
�14. �17.143 7.192 �0.437
�43. �43.145 1.425 �0.094
131. 116.938 10.966 �1.282

B. Naive Kalman Filter Alignment Estimation

�73. �71.011 1.424 1.396
�40. �37.903 6.487 0.323

63. 55.238 10.845 �0.716
�14. �17.288 6.766 �0.486
�43. �43.086 1.423 �0.061
131. 119.475 10.675 �1.080

C. Alignment Estimation with the HYLIGN Algorithm

�73. �71.970 1.426 1.417
�40. �39.627 6.964 0.054

63. 58.048 11.524 �0.430
�14. �17.783 7.195 �0.526
�43. �43.156 1.426 �0.110
131. 120.105 11.185 �0.974

��*a ���a��a�*a� a
true

��*a ���a��a�*a� a
true

��*a ���a��a�*a� a
true



information, which is of low quality because of launch shock. The large launch
shock error levels would, in fact, obscure the comparison of the different methods.
In the table, the first column gives the true value of the misalignment in arc sec-
onds, the second gives the estimated misalignment, the third the standard deviation,
and the fourth column the normalized error. If the estimates of the different mis-
alignments were uncorrelated, these last would have a Gaussian distribution with
mean zero and variance unity. Although this is not true exactly, the result permits
us to assess roughly the consistency of the estimation process. Note that two rela-
tive misalignments show much larger error levels than the others. These are the rel-
ative misalignments about the sensor boresights. Hence, the model variances are
larger due to the well-known geometric dilution of precision.

A comparison of the computational burden (in flops) for the three algorithms is
given in Table 2. The results have been normalized so that the computational bur-
den is unity for the hybrid algorithm with three sensors. The comparison for the two
sequential estimation techniques only is shown in Table 3. As expected, the elimi-
nation of the alignment parameters from the the Kalman filter update leads to a con-
siderable savings in the computational burden, which accelerates as the number of
sensors increases.

Space limitations prohibit our presenting the detailed results for the configura-
tions with larger numbers of sensors. The agreement of the two sequential ap-
proaches is indistinguishable in general within the computed estimation error, and
root-mean-square values of the differences in the normalized errors for the two
methods are typically much less than one. For the case of three sensors, the differ-
ences between each of the two sequential methods and the batch method are smaller
than that between the two sequential methods, as is to be expected owing to the sig-
nificantly greater computational burden of each relative to the batch method.
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TABLE 2. Relative Timings for the Case of Three Sensors

Algorithm Relative Computation Time (flops)

SPB Batch Method 0.2
Naive Kalman Filter 2.0
HYLIGN Algorithm 1.0

TABLE 3. Relative Timings for the Filter-Based Algorithms

Number of Sensors Naive KF HYLIGN Algorithm

3 2.0 1.0
5 7.8 2.9

10 57.7 17.9
15 191.6 56.5
20 451.1 130.2



Summary

We have presented two sequential methods for estimating spacecraft sensor mis-
alignments from flight data. The first was a naive Kalman filter which included the
sensor alignments among the state variables, the second was a hybrid approach,
HYLIGN, based on the ideas of Gupta and Mehra [3] and Friedland [5], which ex-
cluded the alignment parameters from the filter. The HYLIGN method has been
shown to be more efficient computationally. It is also expected to be less sensitive
to outliers, and is to be preferred in general.
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