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Abstract

The TWOSTEP algorithm is examined for the case where the centered portion of the

negative-log-likelihood function provides incomplete observability of the magnetometer-bias

vector. In those cases where the full negative-log-likelihood function provides a complete

estimate, the TWOSTEP algorithm can be modi�ed to provide an estimate of all three

components of the magnetometer bias vector. However, the procedure leads to a discrete

degeneracy of the estimate which can be resolved only by explicit evaluation of the negative-

log-likelihood.

Introduction

The TWOSTEP algorithm [ 1 ] is a very e�cient and robust algorithm for the

estimation inight of the magnetometer-bias vector without knowledge of the at-

titude. Numerous comparisons [ 2 ] have shown that TWOSTEP is superior to all

other attitude-independent algorithms providing an estimate of the magnetometer-

bias vector in hundreds of simulations, in many of which the other algorithms failed

completely. Only Acu�na's algorithm [ 2, 3 ] was seen to be superior to TWOSTEP

in some cases, namely, those in which a reference magnetic �eld was not available,

in which case TWOSTEP cannot be applied, or when the measurement noise levels

had been severely mismodelled, in which case Acu�na's algorithm was sometimes

marginally better. Acu�na's algorithm, however, requires that the spacecraft be made

to spin rapidly about two di�erent axes in succession, which limits its range of appli-

cability. Thus, the TWOSTEP algorithm is the clear algorithm of choice for near-

Earth missions, while Acu�na's algorithm is unchallenged for interplanetary missions.
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TWOSTEP has been extended also to estimate linear parameters of the magne-

tometer calibration [ 4 ] .

The TWOSTEP algorithm depends on the separation of the negative-log-

likelihood function into two pieces. Therefore, there is always the possibility

that neither piece will have complete information on the magnetometer-bias vector

even if the estimation is possible with the full negative-log-likelihood function.

These cases will occur mostly when the bias vector is barely observable, since the

�rst step of TWOSTEP works quite well in general. It is these cases of poor

observability which we treat in the present work.

The TWOSTEP algorithm [ 1 ] assumes a measurement model of the form

Bk = AkHk + bbb + εεεk , k = 1, . . . , N (1)

where Bk is the measurement of the magnetic �eld (more exactly, magnetic

induction) by the magnetometer at time tk; Hk is the corresponding value of

the geomagnetic �eld with respect to an Earth-�xed coordinate system; Ak is the

attitude of the magnetometer with respect to the Earth-�xed coordinates; bbb is the

magnetometer bias; and εεεk is the measurement noise. The measurement noise,

which includes both sensor errors and geomagnetic �eld model uncertainties, is

assumed to be white and Gaussian.

The dependence on the attitude is eliminated by considering the square of the

magnitude of the magnetometer readings as an e�ective measurement. Thus, we

de�ne e�ective measurements and measurement noise as

zk ≡ |Bk|
2 − |Hk|

2 (2a)

vk ≡ 2(Bk − bbb) · εεεk − |εεεk|
2 (2b)

whence,

zk = 2 Bk · bbb − |bbb|
2 + vk , k = 1, . . . , N (3)

To arrive at a linear quadratic cost function we de�ne center values of the di�erent

time series according to

z ≡ σ2
N
∑

k=1

1

σ2
k

zk , B ≡ σ2
N
∑

k=1

1

σ2
k

Bk (4ab)

v ≡ σ2
N
∑

k=1

1

σ2
k

vk , µ ≡ σ2
N
∑

k=1

1

σ2
k

µk (4cd)

where

1

σ2
≡

N
∑

k=1

1

σ2
k

(5)

Then it follows that

z = 2 B · bbb − |bbb|2 + v (6)

If we de�ne now

z̃k ≡ zk − z , ˜Bk ≡ Bk − B (7ab)

ṽk ≡ vk − v , µ̃k ≡ µk − µ (7cd)
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then subtracting equation (6) from equation (3) leads to

z̃k = 2 ˜Bk · bbb + ṽk , k = 1, . . . , N (8)

The derived measurements are linear in the magnetometer-bias vector. This

operation is called centering. We call z the center measurement and z̃k the

centered measurement at time tk.
The centered measurements are all mutually correlated through the common

term z. Nonetheless, it is possible to write the full negative-log-likelihood function

J (bbb)

J (bbb) =
1
2

N
∑

k=1

[

1

σ2
k

(zk − 2 Bk · bbb + |bbb|2 − µk)2 + log σ2
k + log 2π

]

(9)

as the sum of two statistically independent terms, one depending only on the

centered measurements and the other only on the center measurement. Thus,

J (bbb) = ˜J (bbb) + J (bbb) (10)

where

˜J (bbb) =
1
2

N
∑

k=1

1

σ2
k

(z̃k − 2˜Bk · bbb − µ̃k)2 + terms independent of bbb (11a)

and

J (bbb) =
1
2

1

σ2
(z − 2 B · bbb + |bbb|2 − µ)2 + terms independent of bbb (11b)

Further details of these functions can be found in [ 1 ] .

The TWOSTEP algorithm consists in �rst �nding the estimate ˜bbb
∗

of the mag-

netometer-bias vector based on the centered measurements alone and then using

this as a starting value for the minimization of the entire negative-log-likelihood

function to �nd bbb∗. Except in the cases treated in this work, the centered estimate

alone seems to be always adequate, and the treatment of the center negative-log-

likelihood function J (bbb) seldom requires more than a single iteration.

The estimation error covariance can be computed from the Fisher information

matrix, Fbb

Fbb ≡ E
{

∂2J

∂bbb∂bbbT

}

(12)

where E( · ) denotes the expectation and which can also be written as the sum of

two terms

Fbb = ˜Fbb + F bb (13)

with

˜Fbb =

[

N
∑

k=1

1

σ2
k

4 ˜Bk
˜BT
k

]−1

(14a)

F bb =
4

σ2
(B − bbb)(B − bbb)T (14b)
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and in the limit of in�nite data, the asymptotic approximation, the estimate-error

covariance is given by

Pbb = F−1
bb (15)

We can also write an estimate-error covariance matrix based on the centered

measurements alone, which is equal to

˜Pbb = ˜F−1
bb (16)

which is correct also for small samples, because ˜J (bbb) is a quadratic function of the

measurements. Note that there is no P bb, because F bb is only rank 1.

Centering and Observability

The observability of the magnetometer-bias vector is closely related to the

centering operation. It may happen that ˜Fbb is ill conditioned or even singular.

In that case we cannot minimize equation (11a) to obtain ˜bbb
∗′

because Pbb will not

exist. This situation will occur when there is insu�cient variation in the magnetic

�eld as measured in the frame of the magnetometer. This may be due either to

poor orbit geometry (e.g., a spin-stabilized spacecraft in the equatorial plane with

spin axis pointing north and one of the magnetometer axes aligned with the spin

axis) or simply to a very short data span. This problem is most easily corrected

operationally by taking data over a longer time span or by performing a calibration

maneuver to insure that there is adequate change in the magnetic �eld in the

magnetometer coordinate frame.

It may seem possible to compute the magnetometer bias from this poor data,

if the full information matrix Fbb is non-singular. However, we must evaluate this

matrix at the true value of the magnetometer-bias vector and, if ˜Fbb is singular, we

no longer have the centered estimate as a good approximation of the true value.

Thus, from the operational standpoint, we require a somewhat di�erent approach

in this case.

What we can do in this case is perform an eigenvalue decomposition of ˜Fbb
so that we can compute those components of ˜bbb

∗′
which are observable, and then

attempt to use the center correction to compute the remaining component. Thus,

we write the eigenvalue decomposition of ˜Fbb as

˜Fbb = OF O
T (17)

where O is orthogonal and F is diagonal.

F = diag(f1, f2, f3) (18)

Because ˜Fbb is positive semi-de�nite, we may choose F so that

f1 ≥ f2 ≥ f3 ≥ 0 (19)

In actual practice, this may not be the case, because ˜Fbb may not be positive semi-

de�nite due to numerical roundo� error, and f3 may be slightly negative. In that

case, clearly, f3 will not be numerically signi�cant and should be replaced by zero.

The Fisher information matrix for the center term, presented in equation (14b), is

necessarily of rank 1. Hence, in order to be able to compute a solution at all, ˜Fbb
must be at least of rank 2. From the practical standpoint, an absolute requirement

is that

f2 ≥
1

σ2
max

(20)
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where σmax is the maximum standard deviation that we will tolerate for the

magnetometer-bias estimation. If equation (20) not satis�ed, then we must abandon

the estimation of the magnetometer bias.

Let us suppose that equation (20) is satis�ed, but that the Fisher information

matrix is nearly singular. Then we can write

O = [ û1 û2 û3 ] (21)

where û1, û2, and û3 are a right-hand orthonormal triad of column vectors, and

˜Fbb = f1 û1ûT
1 + f2 û2ûT

2 (22)

We have discarded the term in f3 because it is not numerically signi�cant. The

pseudo-inverse solution for ˜bbb, which we write as ˜bbb
#
is then given by

˜bbb
#
= ˜F #

bb

N
∑

k=1

1

σ2
k

(z̃k − µ̃k) 2˜Bk (23)

where
˜F #
bb = f−1

1 û1ûT
1 + f−1

2 û2ûT
2 (24)

is the pseudo-inverse of ˜Fbb.
We could now hope to estimate bbb as before provided we make the substitution

(

bbb − ˜bbb
∗′)T

˜P−1
bb

(

bbb − ˜bbb
∗′)
→
(

bbb − ˜bbb
#′)T

˜Fbb

(

bbb − ˜bbb
#′)

(25)

in our center correction procedure. However, we no longer have a good initial

estimate for all three components of bbb, and, consequently, convergence of the

Newton�Raphson process may be erratic.

An alternate method is to write the centered cost function approximately as

˜J (b1, b2, b3) =
1
2

[

f1 b
2
1 + f2 b

2
2 − 2g1b1 − 2g2b2

]2
+ terms independent of bbb (26)

where we have de�ned

bj ≡ ûj · bbb , and gj =
N
∑

k=1

1

σ2
k

(z̃′k − µ̃k) 2(ûj · ˜Bk) j = 1, 2, 3 (27)

Because ˜J (bbb) is positive semi-de�nite and the quadratic term in b3 vanishes, it

follows that the term linear in b3 also vanishes, so that g3 = 0, and ˜J (bbb), therefore,

depends only on b1 and b2. A centered estimate is possible, clearly only for these

two components. The centered estimate for b1 and b2 is just
[

b̃∗1

b̃∗2

]

=
[

g1/f1

g2/f2

]

(28)

We now try to use the center estimate and the center term to estimate b3. To

do this, we write

J (bbb) = J (b1, b2, b3)

=
1

2σ2

[

z′ − 2(û1 · B)b1 − 2(û2 · B)b2 − 2(û3 · B)b3 + b
2
1 + b

2
2 + b

2
3 − µ

]2

+ terms independent of bbb (29)
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and minimize J (b̃∗′1 , b̃
∗′
2 , b3) over b3. Since the values b1 = b̃∗′1 and b2 = b̃∗′2 min-

imize ˜J (bbb), this procedure provides an approximate minimization of J (bbb). The

minimization would be exact if B were parallel to û3.

Since the problem is now one-dimensional, one can solve for b3 analytically.

De�ne

y
′ ≡ z′ − 2(û1 · B)b̃∗′1 − 2(û2 · B)b̃∗′2 + b̃∗ 2

1 + b̃∗ 2
2 − µ (30)

Then

J (b̃∗′1 , b̃
∗′
2 , b3) =

1

2σ2
[ y′ − 2(û3 · B)b3 + b

2
3 ]2 (31)

which for the desired value of b3, which we denote by b
∗′
3 , vanishes identically.

There are two possible solutions, which are

b
∗′
3 = (û3 · B) ±

√

(û3 · B)2 − y′ (32)

The solution now is seen to be indeterminate, since both (b̃∗1, b̃
∗
2, b

∗
3+)′ and

(b̃∗1, b̃
∗
2, b

∗
3−)′ minimize J (b̃∗1, b̃

∗
2, b3). If (û3 ·B) turns out to be a very large number,

then we expect that the smaller of (b̃∗1, b̃
∗
2, b

∗
3±)′ will be the more likely choice for

the bias, for instance, if the two solutions for b3 are 6,000 mG and 20 mG. In

general, however, the answer will be ambiguous.

Alternatively, given these two possible estimates for the magnetometer-bias

vector, we may try to gain greater determinacy by minimizing the entire cost

function, which we now write (to within terms linear in bbb) as

J (bbb) =
1
2

(

bbb − ˜bbb
#′)T

˜Fbb

(

bbb − ˜bbb
#′)

+ J (bbb) (33)

using the two approximate minima as starting values. Such trials, however, are

not guaranteed to remove the ambiguity. We emphasize that these di�culties

arise from inadequacies in the data, and not in the underlying methodology of the

TWOSTEP algorithm. In cases where the observability of b3 is poor, the method

of the present section will likely lead a far better result because it will not prejudice

the weights in the centered estimate using a possibly unreliable estimate of b3.

After b3 has been estimated, the entire process can be repeated again, with a now

complete initial estimate.

For carrying out re�nements of the two solutions, we note the following ap-

proximate form for the estimate error covariance

Pbb = f−1
1 û1ûT

1 + f−1
2 û2ûT

2 +
σ2

4(û3 · B − b
∗′
3 )2

û3ûT
3 (34)

which can be used to initialize the search for the global minimum.

We see an important result from this discussion. The observability of the

magnetometer-bias vector depends, in general, only on the centered data. There-

fore, apart from not being able to compute the σ2
k accurately, to which the centered

estimate is not very sensitive, we can determine whether the data permit an unam-

biguous estimate of the magnetometer bias by simply computing the eigenvalues

of the centered Fisher information matrix ˜Fbb. We see also that we require at least

four measurements of the magnetic �eld vector in order to achieve an unambiguous

solution. If we had knowledge of the attitude, then a single measurement of the

magnetic �eld vector would su�ce. The requirement of at least four magnetic �eld
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measurements applies, obviously, to any algorithm for computing the magnetometer

bias from measurements of the magnetic �eld magnitude.

Numerical Examples

The new algorithm developed in this work has been examined for a typical

scenario where we can expect observability to be a problem: an inertially stabilized

spacecraft. The spacecraft orbit has been chosen to be circular with an altitude

of 560 km and an inclination of 38 deg. The geomagnetic �eld in our studies

has been simulated using the International Geomagnetic Reference Field (IGRF

(1985)) [ 5 ], which has been extrapolated to 1994. More recent �eld models are

available, but IGRF (1985) is adequate for our simulation needs.

For purposes of simulation we have assumed an e�ective white Gaussian mag-

netometer measurement error with isotropic error distribution and a standard

deviation per axis of 2.0 mG, corresponding to an angular error of approximately

0.5 deg at the equator. We have assumed also that the x-axis of the magnetometer

always points toward the Sun. The Sun direction makes an angle of approximately

40 degrees with the orbit plane. The magnetometer data were sampled every eight

seconds. All entries in the tables for the estimated magnetometer bias and the

associated standard deviations are in mG.

Table 1 displays the results. Nearly 200 di�erent cases were simulated in testing

the algorithm. The above cases were typical except that we have modi�ed the �eld

model slightly so that the third component of the bias would be less observable

from the centered data alone. This was done to illustrate more acutely the possible

importance of the center correction and the performance of the special algorithm

developed for cases of poor observability.

We found for this case

˜Fbb =

[ 76.23 −7.30 −7.86
−7.30 45.66 14.25
−7.86 14.25 5.89

]

(mG)−2 (35a)

while the Fisher information for the center correction alone F bb has the value

F bb =

[ 4.43 10.84 28.12
10.84 26.58 68.92
28.12 68.92 178.70

]

(mG)−2 (35b)

Clearly the center data provides most of the information on b1 and b2, while the

center term provides most of the information on b3.

Table 1. Performance of TWOSTEP for an Inertially Stabilized Spacecraft.

bbbtrue = [ 10., 20., 30. ] mG.

step bias estimate (mG)

centering approximation [ 9.92, 20.00, 29.68 ]
±[ 0.14, 0.33, 0.98 ]

with center correction [ 9.94, 19.94, 29.92 ]
±[ 0.11, 0.17, 0.11 ]
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To test the algorithms developed for conditions of poor observability, we have

reconsidered the data of Table 1 and have carried out the regime for ill-conditioned

statistics, although obviously the TWOSTEP algorithm yield excellent results in

this case without such intervention. An eigenvalue decomposition of the Fisher

information matrix of equation (35a) yielded the eigenvalues 79.57, 47.28, and

0.95 (mG)−2, of which we have rejected the smallest (even though it provides an

equivalent accuracy of 1.03 mG for the bias vector along û3.

Calculating the two solutions by the method outlined above yields

bbb∗ singular method
1 = (9.94, 19.94, 29.92) mG (36a)

bbb∗ singular method
2 = (−23.03, 155.24, −411.54) mG (36b)

We recognize the �rst solution as close to the TWOSTEP result of Table 1, correct

to two decimal places. The second solution is the spurious solution. If we calculate

the value of the cost function according to equation (33), we arrive at the values

J (bbb∗ singular method
1 ) = 0.03 , and J (bbb∗ singular method

2 ) = 100, 250. (37)

so that in this example, there is no doubt as to which solution to choose. The

uncommonly large value of b3 for the second solution should have made us

immediately wary. Calculating the local minimum of the full negative-log-likelihood

function, without treating ˜Fbb as singular (i.e., we do not discard the term f3û3ûT
3 )

yields a very similar result for the position of the spurious minimum and the

corresponding value of the cost function. The singular method would seem to

work very well.

Discussion

TWOSTEP provides insights into the nature of ill-conditioned cases. It is very

clear from our discussion that observability of the magnetometer bias is tantamount

to observability from the centered data alone. Thus, in order to measure the three

components of the bias one requires at least four magnetometer measurements.

Otherwise, the quadratic dependence of the measurement on the bias will lead to

a two-fold ambiguity. In some cases the ambiguity can be eliminated, in others,

however, the solution may remain indeterminate. This is a problem not of the

method but of the data. Other methods will fail to produce a result with even

greater frequency, and provide less understanding of the reasons for failure. We

saw examples of this in [ 2 ] .
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