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Generalization of the
Euler Angles

Malcolm D. Shuster1 and F. Landis Markley2

Abstract

It is shown that the Euler angles can be generalized to axes other than members of an

orthonormal triad. As �rst shown by Davenport, the three generalized Euler axes, hereafter:

Davenport axes, must still satisfy the constraint that the �rst two and the last two axes be

mutually perpendicular if these axes are to de�ne a universal set of attitude parameters.

Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles,

to the 3�1�3 Euler angles of an associated direction-cosine matrix. The computation of the

Davenport angles from the attitude matrix and their kinematic equation are presented. The

present work o�ers a more direct development of the Davenport angles than Davenport's

original publication and o�ers additional results.

Introduction

The Euler angles [ 1�4 ] are de�ned as the angles of a sequence of three rotations

R(
n1, 
n
′
2, 
n

′′
3; ϕ, ϑ, ψ) ≡ R(
n′′3, ψ)R(
n′2, ϑ)R(
n1, ϕ) (1)

which represent the attitude, in particular, the attitude of a rigid body. Here, 
n1,


n
′
2, and 
n

′′
3 are selected from the set { 1̂, 2̂, 3̂ }, where

1̂ ≡

[ 1
0
0

]

, 2̂ ≡

[ 0
1
0

]

, and 3̂ ≡

[ 0
0
1

]

(2)

In general, we denote column vectors by bold sans serif letters. A caret here

denotes a unit column vector. The primes denote that the column vectors are each

representations with respect to a di�erent abstract basis (as seen by an inertial

observer). In this case, the basis is the current basis of the body-�xed coordinate

system, which changes (from an inertial point of view) as the body rotates.
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In order that the representation in terms of the Euler angles have the required

three degrees of freedom, we must further stipulate that


n1 6= 
n
′
2 and 
n

′
2 6= 
n

′′
3 (3)

Given this restriction, there are twelve possible sets of Euler angles: six symmetric

sets, whose labels are written as

1-2-1 1-3-1 2-3-2 2-1-2 3-1-3 3-2-3

and six asymmetric sets, designated by

1-2-3 1-3-2 2-3-1 2-1-3 3-1-2 3-2-1

In each label the �rst (leftmost) integer denotes the �rst rotation axis. For example,

the 1-3-2 set of Euler angles correspond to 
n1 = 1̂, 
n
′
2 = 3̂ , and 
n

′′
3 = 2̂. The

asymmetric sets have been called variously Cardan angles, Bryant angles and Tait

angles.

Regarded as the representation of body-�xed axes, the Euler axes are generally

chosen from a right-hand orthonormal triad of column vectors. That this orthonor-

mal triad need not be limited to the representations of the body coordinate axes

with respect to themselves (that is, to the set { 1̂, 2̂, 3̂ }) should be obvious but

will be demonstrated rigorously below. What we wish to know in particular is

whether it is possible to construct a representation of the attitude in terms of Euler

rotations about three arbitrary non-orthogonal axes as seen from the body-frame.

In the present note we prove that a universal representation of the attitude in

terms of three consecutive Euler rotations about arbitrary non-orthogonal axes is

not possible. However, we shall show that an extension of the de�nition of the

Euler angles does indeed exist. The Euler angles for those sets of Euler axes

which accommodate the representation of any attitude we shall refer to as universal

attitude parameters, or as a universal representation, in order to distinguish them

from the angles about three axes for which some attitudes cannot be represented.

Universality of the Conventional Euler Angles

To the best of our knowledge, all texts present formulas for extracting the

conventional Euler angles from the rotation matrix, but none demonstrate rigorously

that the Euler angles can represent an arbitrary rotation matrix. The proof is quite

simple, and we o�er it here.

We particularize our discussion to the 3�1�3 set of Euler angles. We shall show

later in this report that any of the remaining eleven sets of conventional Euler

angles can be obtained from the formula for extracting the 3�1�3 Euler angles.

Hence, the �rst step will be to prove that the 3�1�3 Euler angles are a universal

parameterization of the attitude.

The explicit evaluation of equation (1) for 
n1 = 3̂, 
n2 = 1̂, and 
n3 = 3̂ yields3

R313(ϕ, ϑ, ψ) ≡ R(3̂, ψ)R(1̂, ϑ)R(3̂, ϕ)

=

[

cψ cϕ − sψ cϑ sϕ cψ sϕ + sψ cϑ cϕ sψ sϑ
−sψ cϕ − cψ cϑ sϕ −sψ sϕ + cψ cϑ cϕ cψ sϑ

sϑ sϕ −sϑ cϕ cϑ

]

(4)

3Henceforth, we shall discard the primes on the Euler-axis representations with the understanding that

these are always with respect to current body axes.
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where cϕ = cosϕ, sϕ = sinϕ, etc., and we have written the axis indices as subscripts

on R. The elements of the attitude matrix (direction-cosine matrix) are the

components of the initial body axes with respect to the �nal body axes. In order to

demonstrate that the parameterization of R313 can realize any proper orthogonal

matrix, it is su�cient to show that the representation of the coordinate axes of the

initial coordinate system with respect to themselves (namely, 1̂, 2̂ and 3̂) can be

transformed into any other right-hand orthonormal triad of column vectors, i.e., the

representation with respect to an arbitrary set of arbitrary right-hand orthonormal

coordinate axes.

Thus, we examine �rst


e3 ≡ R313(ϕ, ϑ, ψ) 3̂ =

[ sin ϑ sinψ
sin ϑ cosψ

cos ϑ

]

(5)

Clearly, ϑ and (π/2−ψ) are the spherical angles of an arbitrary unit vector. Hence,

by a suitable choice of ϑ and ψ , 
e3 can be made to coincide with an arbitrary unit

column vector, in particular, the third member of the target right-hand orthonormal

triad. We will assume that ϑ and ψ have been so chosen.

Examine next


e1 ≡ R313(ϕ, ϑ, ψ) 1̂ =

[ cosψ cosϕ − cos ϑ sinϕ sinψ
− sinψ cosϕ − cos ϑ sinϕ cosψ

sin ϑ sinϕ

]

(6)

This last column vector can be written as


e1 = cosϕ 
u1 + sinϕ 
u2 (7)

where


u1 =

[ cosψ
− sinψ

0

]

, 
u2 =

[ − cos ϑ sinψ
− cos ϑ cosψ

sin ϑ

]

(8)

Obviously, 
u1 and 
u2 are each unit column vectors and


u1 · 
e3 = 
u2 · 
e3 = 
u1 · 
u2 = 0 (9)

The vectors 
u1 and 
u2 span the plane perpendicular to 
e3, and ϕ can be chosen

to generate any unit vector in that plane. Since the �rst member of the target

right-hand orthonormal triad must lie in that plane, there is a value of ϕ for which


e1 coincides with that unit column vector. Thus, for suitable choices of the three

Euler angles, R313 will transform 3̂ and 1̂ into any pair of mutually perpendicular

unit column vectors.

Finally, because both the initial column vectors { 1̂, 2̂, 3̂ }) and the target column

vectors { 
e1, 
e2, 
e3 } are each right-hand orthonormal sets and R313(ϕ, ϑ, ψ) is

proper orthogonal by construction, it follows that

R313(ϕ, ϑ, ψ) 2̂ = R313(ϕ, ϑ, ψ) (3̂ × 1̂) (10a)

=
(

R313(ϕ, ϑ, ψ) 3̂
)

×
(

R313(ϕ, ϑ, ψ) 1̂
)

(10b)

= 
e3 × 
e1 = 
e2 (10cd)
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which completes the proof. Therefore, the 3�1�3 Euler angles are a universal

representation of the attitude. The proof can be repeated with minor modi�cations

for any of the other eleven conventional sets of Euler angles, but the universality

of these remaining sets will follow as an corollary of the result for the generalized

Euler angles.

Generalized Euler Angles (Davenport Angles)

Consider a three-parameter rotation given by

R(
n1, 
n2, 
n3; ϕ, ϑ, ψ) ≡ R(
n3, ψ)R(
n2, ϑ)R(
n1, ϕ) (11)

where now, there are no restrictions on 
n1, 
n2, and 
n3, except that


n1 6= 
n2 and 
n2 6= 
n3 (12)

Can any rotation be represented in this way? A necessary condition for this to be

true is that any unit column vector can be transformed into any other unit column

vector by this sequence of rotations. For the generalized Euler angles to be a

universal representation of the attitude, this condition must be satis�ed.

Consider now the transformation


v = R(
n1, 
n2, 
n3; ϕ, ϑ, ψ) 
n1 (13)

Then


n3 · 
v = 
n3 · R(
n2, ϑ) 
n1 (14)

We shall show that equation (14) cannot be satis�ed for arbitrary 
n1, 
n2, 
n3, and


v.

Writing Euler's formula as [ 3 ]

R(
n, ζ) = I3×3 + sin ζ [[ 
n ]] + (1 − cos ζ) [[ 
n ]]2 (15)

with

[[ u ]] ≡







0 u3 −u2

−u3 0 u1

u2 −u1 0






(16)

it follows straightforwardly that the condition on ϑ becomes


n3 · 
v = (
n3 · 
n1) + 
n3 ·
(


n2 × (
n2 × 
n1)
)

− sin ϑ
(


n3 · (
n2 × 
n1)
)

− cos ϑ
(


n3 ·
(


n2 × (
n2 × 
n1)
))

. (17)

De�ne now

B cos α ≡ −
n3 ·
(


n2 × (
n2 × 
n1)
)

and B sin α ≡ −
n3 · (
n2 × 
n1) (18)

or, equivalently,

α = arctan2

[


n1 · (
n2 × 
n3), −
n1 ·
(


n2 × (
n2 × 
n3)
)]

(19a)

B =
√

[


n3 · (
n2 × 
n1)
]2

+
[


n3 ·
(


n2 × (
n2 × 
n1)
)]2

> 0 (19b)

where arctan2(y, x) is the function which yields the arc tangent of y/x in the

correct quadrant. This corresponds to the function ATAN2 in the FORTRAN

programming language. In terms of these new variables, equation (17) becomes


n3 · 
v = β + B cos(ϑ − α) (20)
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where

β ≡ (
n3 · 
n1) + 
n3 ·
(


n2 × (
n2 × 
n1)
)

= (
n3 · 
n2)(
n2 · 
n1) (21)

The right member of equation (20) can assume any value between β − B and

β + B. Therefore, a solution will exist for ϑ if and only if

β + B ≥ 
n3 · 
v ≥ β − B (22)

However, since 
n3 · 
v can assume any value between −1 and +1, it follows from

equation (22) that β and B must satisfy

B ≥ 1 − β and B ≥ 1 + β (23)

Thus, we require that

B ≥ 1 + |β| (24)

On the other hand, de�ning

u ≡ 
n2 × 
n1 (25)

it follows that

B2 =
[


n3 · u
]2

+
[


n3 · (
n2 × u)
]2

= |u|2 
n
T
3

{


u 
u
T + (
n2 × 
u)(
n2 × 
u)T

}


n3 (26)

Now, 
n2 and 
u are orthogonal. Hence, 
n2, 
u, and 
n2 × 
u, form an orthonormal

triad, and therefore


n2
n
T
2 + 
u 
u

T + (
n2 × 
u)(
n2 × 
u)T = I3×3 (27)

It follows that

B2 = |u|2 
n
T
3

[

I3×3 − 
n2
n
T
2

]


n3 = |u|2 [1 − (
n3 · 
n2)2] = |
n3 × 
n2|
2 |
n2 × 
n1|

2 (28)

We have thus

β = (
n3 · 
n2)(
n2 · 
n1) , B = |
n3 × 
n2| |
n2 × 
n1| (29ab)

Equations (24) and (29) can be satis�ed simultaneously if and only if

B = 1 and β = 0 (30ab)

Hence, we require that


n1 ⊥ 
n2 and 
n2 ⊥ 
n3 (31ab)

as a necessary condition that the generalized Euler angles be able to represent an

arbitrary attitude. Equations (31) were �rst discovered by Paul Davenport [ 5 ], who

also proved su�ciency, as we shall below. For this reason we will refer henceforth

to the generalized Euler angles as the Davenport angles.

Equation (31) is a less restrictive condition than the generalization of equa-

tions (2) and (3) to an arbitrary right-hand orthonormal triad, which would have

required further that (
n1 · 
n3) be either 0 or 1. The additional degree of freedom

allowed by equation (31) is the angle between 
n1 and 
n3.

We shall now prove that the condition expressed by equation (31) is su�cient

for the set of Davenport axes to permit a universal parameterization of the attitude

in terms of Davenport angles. Let us write


n3 = R(
n2, λ) 
n1 (32)
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where 
n1 and 
n2 are orthogonal. Then,


n3 = cos λ 
n1 − sin λ (
n2 × 
n1) , −π < λ ≤ π (33)

which clearly satis�es 
n3 ⊥ 
n2 and is the most general column vector satisfying this

condition. λ is the angle from 
n1 to 
n3, de�ned to be positive in the counter-

clockwise direction about 
n2. The symmetric sequences of Euler angles correspond

to λ = 0, while the asymmetric sequences correspond to either λ = π/2 or λ = −π/2.
If 
n2 is the cyclic follower of 
n1, then λ = π/2. If it is the anticyclic follower, then

λ = −π/2.
It follows [ 3 ] that

R(
n3, ψ)R(
n2, ϑ)R(
n1, ϕ)

= R
(

R(
n2, λ)
n1, ψ
)

R(
n2, ϑ)R(
n1, ϕ) (34a)

= R(
n2, λ)R(
n1, ψ)RT(
n2, λ)R(
n2, ϑ)R(
n1, ϕ) (34b)

= R(
n2, λ)R(
n1, 
n2, 
n1; ϕ, ϑ′, ψ) (34c)

where

ϑ′ = ϑ − λ (35)

If A is an arbitrary proper orthogonal matrix, then we wish to �nd angles (ϕ, ϑ′, ψ)
which satisfy

A = R(
n1, 
n2, 
n3; ϕ, ϑ, ψ) = R(
n2, λ)R(
n1, 
n2, 
n1; ϕ, ϑ′, ψ) (36)

To show that this is possible, let C be the proper orthogonal matrix which satis�es

C 
n1 = 3̂ , and C 
n2 = 1̂ (37)

Since 
n1 and 
n2 are orthogonal, the matrix C exists and is given by

C = [ 
n2 (
n1 × 
n2) 
n1 ]T (38)

where the expression for C is given as the transpose of a proper orthogonal matrix

labeled by its column vectors. It follows from equations (36) and (38) that the

triplet (ϕ, ϑ′, ψ) must satisfy

R(3̂, 1̂, 3̂; ϕ, ϑ′, ψ) = RT(1̂, λ)CACT (39)

The triplet (ϕ, ϑ′, ψ) is now simply the 3�1�3 set of Euler angles representing the

matrix which is the right member of equation (39). Since the 3�1�3 Euler angles

have been shown to be a universal representation of the attitude, we know that a

solution always exists. This proves the su�ciency of equations (31). Q.E.D.

As a by-product of our proof we have that

R(
n1, 
n2, 
n3; ϕ, ϑ, ψ) = CTR(1̂, λ)R(3̂, 1̂, 3̂; ϕ, ϑ − λ, ψ)C (40)

for any set of axes satisfying equation (31) and C given by equation (38). As an

immediate corollary we have that any of the twelve conventional sets of Euler angles

is a universal attitude representation. For a suitable choice of λ and C, expressions

similar to equation (40) can be obtained for all twelve sets of conventional Euler

angles.

Recall that λ is a function solely of the axes.

λ = arctan2

(

(
n1 × 
n2) · 
n3, 
n1 · 
n3

)

(41)
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This formula also assumes that equation (31) holds.

We remark that while the three Davenport axes must satisfy equation (31) in

order for the representation to be universal, the parameterization of the attitude

can still be useful when only equation (12) is satis�ed, if one knows a priori that

the axes permit a realization of the attitude matrix for the values of interest.

Extracting the Davenport Angles

To determine the Davenport angles from a given direction-cosine matrix we note

the relationships


n
T
3A 
n1 = cos(ϑ − λ) , (42a)


n
T
2A 
n1 = sin(ϑ − λ) sinψ (42b)

(
n2 × 
n3)TA 
n1 = − sin(ϑ − λ) cosψ (42c)


n
T
3A 
n2 = sin(ϑ − λ) sinϕ (42d)


n
T
3A (
n1 × 
n2) = − sin(ϑ − λ) cosϕ (42e)

Except for the fact that ϑ has been replaced by ϑ − λ, the right members of

equations (42) are each identical within a sign to the elements of the direction-

cosine matrix given in equation (4).

From equation (42a) we have immediately

ϑ = λ + arccos(
nT3A 
n1) (43)

If we choose the principal value of the arc cosine, then ϑ will be single valued and

lie in the range

λ ≤ ϑ ≤ λ + π (44)

For λ < ϑ < λ + π, so that sin(ϑ − λ) > 0, the two remaining Davenport angles are

given by

ϕ = arctan2 [
nT3A 
n2 , −
n
T
3A (
n1 × 
n2)] (45a)

ψ = arctan2 [
nT2A 
n1 , −(
n2 × 
n3)TA 
n1] (45b)

The cases where sin(ϑ − λ) = 0 are treated in the next section.

Singularity of the Davenport Angles

The representation in terms of Davenport angles must become singular when

R(
n2, ϑ) 
n1 = ±
n3 (46)

which follows from an examination of the resulting equations

R(
n3, ψ)R(
n2, ϑ)R(
n1, ϕ)

= R(
n3, ψ)R(
n2, ϑ)R(
n1, ϕ)RT(
n2, ϑ)R(
n2, ϑ) (47a)

= R(
n3, ψ)R(±
n3, ϕ)R(
n2, ϑ) (47b)

= R(
n3, ψ ± ϕ)R(
n2, ϑ) (47c)

= R(
n2, ϑ)R(
n1, ϕ ± ψ) (47d)

where we assumed equation (46) in going from equation (47a) to equation (47b).

It is easy to see from equation (42a) that a singularity in the Davenport angles

occurs when sin(ϑ − λ) = 0.
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Equations (45) are inappropriate for the computation of ϕ and ψ at a singularity,

when ϑ − λ = 0 or π, because all of the arguments of the arctan2 functions will

vanish. In that case we must turn to four other �elements� of the direction-cosine

matrix, namely,


n
T
2A (
n1 × 
n2) = sinϕ cosψ + cosϕ sinψ cos(ϑ − λ) ≡ a (48a)

(
n2 × 
n3)T A 
n2 = cosϕ sinψ + sinϕ cosψ cos(ϑ − λ) ≡ b (48b)


n
T
2A 
n2 = cosϕ cosψ − sinϕ sinψ cos(ϑ − λ) ≡ c (48c)

(
n2 × 
n3)TA (
n1 × 
n2) = sinϕ sinψ − cosϕ cosψ cos(ϑ − λ) ≡ d (48d)

From these relationships it follows that

[1 ± cos(ϑ − λ)] sin(ϕ ± ψ) = a ± b (49a)

[1 ± cos(ϑ − λ)] cos(ϕ ± ψ) = c ∓ d (49b)

from which it follows that

ϕ + ψ = arctan2(a + b, c − d) for cos(ϑ − λ) 6= −1 (50a)

ϕ − ψ = arctan2(a − b, c + d) for cos(ϑ − λ) 6= +1 (50b)

These equations provide a more accurate means for calculating either ϕ + ψ or

ϕ−ψ (but, unfortunately, not both) when the attitude is very close to a singularity

than do equations (45).

The Davenport angles extracted by this procedure and that of the previous section

will not always agree with the conventional Euler angles when a conventional Euler-

axis set is used. This is due to trivial angular ambiguities of 2π and to the two-fold

ambiguity in the Davenport angles, which is related to the well-known two-fold

ambiguity of the conventional Euler angles. The general relation for the two-fold

ambiguity in the Davenport angles can be obtained from equation (40) and the

similar relation for the 3�1�3 Euler angles, namely,

R(3̂, 1̂, 3̂; ϕ, ϑ, ψ) = R(3̂, 1̂, 3̂; ϕ + π, −ϑ, ψ − π) (51)

with the result

R(
n1, 
n2, 
n3; ϕ, ϑ, ψ) = R(
n1, 
n2, 
n3; ϕ + π, 2λ − ϑ, ψ − π) (52)

which summarizes the result for the 3�1�3 Euler angles (λ = 0) and the 3�1�2

Euler angles (λ = π/2). The speci�cation of the formulas of this section and the

previous section to the extraction of the conventional Euler angles is left as an

exercise for the reader.

Kinematics

The kinematic equation for the Davenport angles is identical to the general

expressions for the conventional Euler angles.4 We may write [ 3 ]

ω = ψ̇ 
n3 + ϑ̇ R(
n3, ψ) 
n2 + ϕ̇ R(
n3, ψ)R(
n2, ϑ) 
n1 (53)

4The kinematic equation for the Davenport angles was also derived by Davenport [ 5 ].
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where ω is the body-referenced angular velocity vector. This may be recast in the

form

ω = R(
n3, ψ)S(
n1, 
n2, 
n3; ϑ)

[

ϕ̇
ϑ̇
ψ̇

]

≡M (ϕ, ϑ, ψ)

[

ϕ̇
ϑ̇
ψ̇

]

(54)

with S(
n1, 
n2, 
n3; ϑ) represented in terms of column vectors as

S(
n1, 
n2, 
n3; ϑ) = [R(
n2, ϑ) 
n1 | 
n2 | 
n3 ] (55)

Simple forms exist for the matrices S(
n1, 
n2, 
n3; ϑ) and M (ϕ, ϑ, ψ) as explicit

functions of the conventional Euler angles [ 4 ]. Those for the Davenport angles

are more complicated.

More useful for simulation is the inverse of M (ϕ, ϑ, ψ), which satis�es

[

ϕ̇
ϑ̇
ψ̇

]

=M−1(ϕ, ϑ, ψ)ω (56)

whence

M−1(ϕ, ϑ, ψ) = S−1(
n1, 
n2, 
n3; ϑ)RT(
n3, ψ) (57)

with

S−1(
n1, 
n2, 
n3; ϑ) =
1

(

R(
n2, ϑ) 
n1

)

·
(


n2 × 
n3

)







[


n2 × 
n3

]T

[


n3 × R(
n2, ϑ) 
n1

]T

[

(R(
n2, ϑ) 
n1) × 
n2

]T






(58)

The right member of equation (58) can be reduced to

1
D







[


n2 × 
n3

]T

[

cos ϑ (
n3 × 
n1) − sin ϑ (
n1 × 
n2) × 
n3

]T

[

cos ϑ 
n1 × 
n2 − sin ϑ 
n1

]T






(59)

where the denominator D is given by

D ≡
(

R(
n2, ϑ) 
n1

)

·
(


n2 × 
n3

)

= − sin(ϑ − λ) (60)

Discussion

We have given a presentation of the Davenport angles in the same detail that

is normally given to the standard twelve sets of Euler angles. The connection has

been made between the Davenport angles and the 3�1�3 set of Euler angles, and

this has been used to develop further relationships of the Davenport angles. A

corollary of our work is that if a reorientation of a spacecraft is to be accomplished

by rotational maneuvers about three axes, then these must be Davenport axes. An

application of the Davenport angles to attitude estimation is given in Reference 6.
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