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Abstract

The consequences of ignoring the norm constraint in quaternion estimation or the or-
thogonality constraint in the estimation of the attitude matrix are examined within the frame-
work of batch maximum-likelihood estimation. Unconstrained estimation of the attitude
matrix is shown to be a useful first step to the constrained estimation, because it confers
global convergence to the estimation process. Unconstrained estimation of the quaternion,
however, is shown to be fraught with problems. Apart from the fact that the unconstrained
quaternion estimate can introduce errors which cannot be eliminated later, it can also lead
to a singular (hence, noninvertible) inverse covariance matrix when used with a realistic
measurement model. Consequently, the unconstrained quaternion estimate cannot be con-
structed. This has the additional consequence that there can be no recovery from an arbitrary
initial condition. Certain practices associated with unconstrained quaternion estimation in
the Kalman filter, in particular, the partial reset, are shown to interfere with the process of
the correct restoration of the quaternion norm. Thus, one is forced to conclude that uncon-
strained quaternion estimation should be avoided in practice.

Introduction

As stated in the introduction to Part I [1] this work seeks to provide a more rig-
orous foundation for research on unconstrained attitude estimation [2–6] and to
show many of the pitfalls of unconstrained quaternion estimation.

The first part of this work [1] presented the foundations of batch least-squares at-
titude estimation within the framework of Maximum-Likelihood Estimation and a 
1This and the preceding article [1] are an expansion of an earlier conference report [2], presented in 
August 1993.
2Director of Research, Acme Spacecraft Company, 13017 Wisteria Drive, Box 328, Germantown, Maryland
20874. email: mdshuster@comcast.net.
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detailed account of the attitude measurement sensitivity matrix. It was shown there
that the unconstrained quaternion measurement sensitivity matrix was ambiguous,
and, therefore, would lead to meaningless unconstrained estimates of the quaternion.
In particular, it was shown that for one very physical case of quaternion estima-
tion the estimation process broke down completely. In the present part we examine
unconstrained attitude matrix and quaternion estimation in more detail.

The present Part II concentrates on specific examples of unconstrained attitude
estimation. Our studies are restricted to the attitude matrix and the quaternion, since
these (apart from the Cayley-Klein parameters, which differ only trivially from the
quaternion) are the only higher-dimensional attitude representations in common
use. Our attention is restricted again to batch attitude estimation, since batch esti-
mation is more transparent then the jumble of equations in the Kalman filter. Thus,
we limit out studies to systems without process noise, which means we will examine
effectively static systems.3 Within numerical error the Kalman filter must yield the
same result as the batch estimator. Hence, a failure of batch estimation must be
echoed in the failure of the Kalman filter for the same data. Our specific tool will
be the covariance matrix (or inverse-covariance matrix if the former does not exist)
of the unconstrained estimator, which we will frequently compare with the QUEST
covariance matrix, which establishes a useful scale. This will prove to be more re-
vealing than simulations, which only give a single sample.

The domain of the constrained quaternion is the unit sphere in four dimensions,
usually denoted by . ( is the unit sphere in three dimensions, the unit circle.)
The domain of the unconstrained quaternion is simply , Thus, we may write for
constrained and unconstrained quaternion estimates

and (1ab)

Similarly, the domain of the constrained attitude matrix is the set of elements of
(which we will denote by ) and that of the unconstrained attitude

matrix is . Thus

and (2ab)

The same cost function is employed for both the constrained and unconstrained
estimates. The unconstrained estimates4 are obtained by Newton-Raphson itera-
tion in the representation itself rather than in terms of �. Generally, the calcula-
tion of the unconstrained estimate is trivial, compared with the constrained
estimation problem.

As we have pointed out in Part I [1], unconstrained attitude estimation is mean-
ingless, except in those unlikely cases where it leads (without tinkering) to an esti-
mate which satisfies the constraint. Hence, the chief result of unconstrained attitude
estimation is to transform the problem from estimating the constrained attitude rep-
resentation given the data to estimating the constrained attitude representation
given the unconstrained estimate and its covariance matrix. Thus, we will be occu-
pied in this work largely with developing methods for restoring the proper con-
straint to the attitude representation.

3One could, of course, study measurements with process noise in a batch framework, but there is hardly any
point to doing so, because the dimension of the measurement vector would be so large.
4Unconstrained estimate in this work will always refer to the attitude matrix or the quaternion and never to a
three-dimensional representation, which is ipso facto constrained.
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There are two general approaches to constrained estimation: (1) the method of
Lagrange multipliers and (2) by iteration of a representation of lower dimension,
which for the present work will always be �-iteration. The method of Lagrange
multipliers of its own has an unconstrained minimization which leads to a form of
the estimate , for which yields the unconstrained estimate and yields
the properly constrained estimate. Thus, we obtain a usually continuous function
connecting the unconstrained to the constrained attitude estimate. The problem of
estimating the correctly constrained estimate is thereby transformed one step to
finding the desired value of . The use of the method of Lagrange multipliers in
attitude estimation is by no means exotic. The best known example of an (uncon-
strained) quaternion estimator which uses the Lagrange multiplier approach to re-
store the constraint is QUEST [7].5 The �-iteration is just the estimation procedure
presented early in Part I of this work. In it, at each iteration, we write effectively

and (3ab)

In both approaches, the unconstrained estimate and its (unconstrained) covariance
matrix substitute for the original data.

We begin Part II by examining the unconstrained estimation of the attitude ma-
trix. We shall find that this unconstrained estimate converges globally in a single
step and with a nonsingular convariance matrix. There is no need for an
a priori estimate in order to start the estimation. In addition, given the assumption
of Gaussian noise, the unconstrained estimate provides a Gaussian sufficient statis-
tic [8] for the attitude, and, therefore, an efficient and exact means for obtaining
the properly constrained attitude estimate, which we illustrate by both of the two
methods above. Further, since earlier workers have examined the Wahba problem
[9] without constraint directly in terms of the attitude matrix [10, 11, 12], we do so
also, with some new results. Unconstrained estimation of the attitude matrix offers
a genuine benefit to attitude estimation.

The same cannot be said for unconstrained quaternion estimation. Unconstrained
quaternion estimation is not globally convergent and requires an a priori starting
value, and the iteration process does not converge in a single step (these two facts
are not unrelated). In order to obtain useful results from our studies of uncon-
strained quaternion estimation, we start the iterative process at the true value of the
quaternion, so that, barring highly diseased estimation problems, we can expect the
iterative process to converge effectively, if not exactly, in a single step to the un-
constrained maximum-likelihood estimate. This, obviously, is not a possible proce-
dure for practical attitude estimation, but it is the most instructive. We develop the
constraint restoration procedure also for the quaternion using both a Largrange
multiplier and �-iteration. However, because the unconstrained maximum-
likelihood estimate of the quaternion is not a sufficient statistic [8], the con-
straint restoration cannot be exact, but if the data is of arc-second accuracy, then
barring particularly diseased estimation problems, it will be close enough. Because
of the low dimension of the quaternion, we can show explicitly that the Lagrange
multiplier method truly does lead to the desired constrained quaternion estimate,
at least to first order in the estimate error. We determine also the condition under

5The common property of the Lagrange-multiplier-based attitude estimation algorithms seems to be that they
all have names (QUEST, FOAM, ESOQ, etc.)

9 � 9

� q̄i �
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�*
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which restoration of the norm constraint amounts to division by the quaternion
norm. Most important of all, quaternion estimation from direction measurements
alone leads to a singular inverse covariance matrix. Thus, estimation of the
unconstrained quaternion is impossible in this case no matter the quantity of data.

Unconstrained Estimation of the Attitude Matrix

The unconstrained estimation of the attitude matrix might seem a foolish task
given the excess (six) of newly unconstrained parameters. It will turn out however,
to be a useful exercise.

Assume that any two-dimensional focal-plane measurements have been con-
verted to vector measurements following the prescriptions of Appendix A of 
Part I. Then the measurements will be either scalar or vector, each of which are 
linear in the elements of the attitude matrix A. We can write, therefore, in very
general notation

with , (4ab)

where the attitude column vector is given by

(5)

and

, (6ab)

which are and matrices, respectively.6

The weighted least-squares cost function is then

(7)

Unconstrained minimization of leads straightforwardly in one step to

(8ab)

Constraint Restoration for the Attitude Matrix I

We assume that there are sufficient measurements so that is invertible
(see below) and that is sufficiently close to the constrained estimate that it is
extremely unlikely that when orthogonality is restored the determinant is not unity.
If were not invertible, then could not be constructed. Since the meas-
urement model of equation (4) is linear and Gaussian, is not only an effective
measurement for A but a sufficient statistic [8] as well. Thus, and its 
convariance matrix contain exactly the same information about A as the original
measurements and measurement covariance matrices. This means that the weighted
least-squares cost function can be written identically as

(9)
6Equation (6b) and equation (21) below appeared in the Kalman filter implementation of reference [4].
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with

(10a)

and Y is independent of A. One shows readily that

(10b)

Since Y does not depend on A, it plays no role in determining the constrained
maximum-likelihood estimate and may be discarded.

We can now restore the orthogonality constraint by minimizing

(11)

with so that, in reality, there are only six Lagrange multipliers. We have
written

(12)

This is identically equivalent to the minimization of

(13)

where the symmetric matrix and the symmetric matrix is
given by

and (14ab)

We minimize equation (13) without constraint and then chose the matrix � so that
the constraint is satisfied.

Straightforward minimization of without constraint leads to

(15)

and we must solve for the matrix from the six equations

(16)

Constraint Restoration for the Attitude Matrix II

We can equally well construct the correctly constrained attitude matrix by 
�-iteration. Write

, (17ab)

Then define

, ,
(18abc)

which is a right-hand orthonormal triad and
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is a first estimate of the constrained estimate of the attitude vector. Further
refinement will come from minimizing successively

(20)

with

(21)

One obtains by repeated iteration

(22)

(23)

(24)

and

, (25)

The properly constrained is given by

(26)

Note that we can write

and (27ab)

with given by equation (I-43).7 Again, it is advisable to accumulate as the
quaternion in order to control the round-off error.

We can check the rank of by evaluating equation (8a) assuming that all
measurements are unit vectors, distributed uniformly over the celestial sphere and
obeying the QUEST measurement model, with the result

(28)

where and . Here denotes a diagonal matrix in
terms of its diagonal elements. For the full-vector model . The un-
constrained covariance matrix is generally nonsingular, and the uncon-
strained estimation of the attitude matrix from direction and three-axis
magnetometer data will succeed admirably. The above methods provide a general
means for solving batch attitude estimation problems which might not otherwise be
easily solvable.8

Unconstrained Attitude Matrix Estimation and the Wahba Problem

If we relax the orthogonality constraint on the attitude matrix, then the Wahba
cost function becomes [11]

7Equation I-43 is to be interpreted as equation (43) of Part I.
8See reference [13] or [14] for examples of rather unwieldly deterministic methods.
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(29)

where

and (30ab)

Straightforward minimization of the cost function leads to

(31)

a result first due to Brock [10, 12].
The error in is simply

(32)

from which it is an easy matter to compute the mean orthogonality defect of ,
which is, using the QUEST measurement model

(33)

where, as usual, denotes the expectation operation. The covariance ma-
trix of is also easy to calculate but uninstructive. To appreciate the scale of the
orthogonality defect, note that the covariance method of the QUEST attitude solu-
tion (i.e., a constrained solution) is given by

(34)

where the subscript body means that the matrix has been transformed to the body
frame. Note that E is resolved along space axes while is resolved along body
axes (i.e., ).

In the isotropic case in which the measurements have equal variances and are dis-
tributed uniformly over the unit sphere, we have

(35)

whence

and (36ab)

The error due to ignoring the constraint is four times larger than the error due to the
measurement uncertainties.

More interesting is the case where the measurements (and hence the reference
vectors) are confined to some small square field of view of full width . Assuming
that the measurements are spread uniformly over the field of view then the expected
value of E is

(37)Enarrow FOV � AT
true��

0

0

0

�

0

0

0

1 � 2�
A true

�

�PQUEST
�� �isotropic �

3

2
 2

tot I3�3�orthog
isotropic � 6 2

tot I3�3

Eisotropic �
1

3
I3�3

V̂k l Ŵk
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with

(38)

For an 8 deg by 8 deg field of view 

(39a)

(39b)

In our “numerical” computations we suppose that the space axes, body axes, and
sensor axes are all aligned, and that the sensor boresight is the z-axis. From Equa-
tions (39) we see that errors due to ignoring the constraint can overwhelm the
genuine errors from the measurements.

The orthogonality defect can be significantly larger than typical attitude errors. 
It is interesting to note that with E symmetric. Hence, the Wahba

(constrained) attitude will be closest to in the Schur norm [15].

(40)

with the Schur norm for an arbitrary matrix M defined by

(41)

Equation (40) is true, because the QUEST algorithm simply effects a polar decom-
position of B with the orthogonal matrix of the decomposition. Thus, for to
be generated by the QUEST algorithm it is sufficient that , where S is a
symmetric matrix. If qualifies as such a matrix, then obviously so must .
Thus, inserted into the QUEST algorithm in place of B would generate .
However, only for will the QUEST algorithm yield the correct attitude esti-
mate error covariance matrix. Note also that the mean-square estimate error in 
is given by

(42)

Note that we cannot compute the covariance matrix for from the Hessian
matrix of the Wahba cost function. This is because the result which allows us to re-
place the singular measurement covariance matrix by is
no longer true, as we have shown in Part I, if the orthogonality constraint is relaxed.
Thus, we must compute the covariance matrix of A by brute force using our
result for and the QUEST measurement model.

Constraint Restoration for the Attitude Matrix III

Consider equations (8) above with but with all of the measurements
direction measurements. This Wahba cost function is no longer the correct MLE-
derived cost function for unconstrained attitude estimation, but this really isn’t im-
portant. Once the constraint of proper-orthogonality has been restored, than the
Wahba cost function will be equivalent to that derived from MLE for direction
measurements. In the notation of equation (30) we may write
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(43)

with E given by equation (30b). Then we can define

(44)

Now B has the same relation to B as A has to A. It follows then that

(45)

Thus, the QUEST algorithm may be used to restore the constraint to the attitude
matrix (via the quaternion) and the correct attitude estimate error covariance matrix
as well.

Restoration of Quaternion Constraint I

The quaternion, in order to be a quaternion of rotation, must have unit norm. We
now address the problem of determining the quaternion of rotation given the un-
constrained estimate and its estimate error covariance matrix .

In the noise-free case, barring a failure of the estimation process (as in Part I),
the estimate of the unconstrained quaternion should be the true quaternion of rota-
tion. Therefore, we should have approximately that

(46)

where is the quaternion of rotation and

(47)

The approximation9 is in the assertion about . The unconstrained estimate in this
case is an approximate effective measurement for the quaternion of rotation. To
obtain the quaternion of rotation we must constrain to have unit norm. Thus, to
estimate we may use Lagrange’s Method of Multipliers to enforce the constraint.
The estimate of the quaternion of rotation, therefore, minimizes the cost function

(48)

without constraint, and the desired value of is the Lagrange multiplier which
causes the constraint will be satisfied. Note that without the Lagrange term, the un-
constrained minimization of the cost function would yield with covari-
ance matrix . The minimization of the full cost function (including the Lagrange
term) leads to

(49)

and is a solution of
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Since should be close to the norm-constrained estimate, we expect to be 
small. Therefore, it will usually be sufficient to calculate using one iteration of
the Newton-Raphson method with vanishing initial value. Thus

(51)

If is not sufficiently close to having unit norm, then the Newton-Raphson
method is applied repeatedly to equation (50) to obtain further refinement.

Restoration of Quaternion Constraint II

Define as the first properly normed estimate of the quaternion

(52)

the naively normalized unconstrained quaternion estimate. Then the most general
quaternion of rotation can be written at iteration i as

(53)

minimizes the cost function

(54)

with the result
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with
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Thus, after the sequence of estimates converges to 
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is the inverse covariance matrix of The covariance matrix of the quatern-
ion estimate with restored norm is clearly

(58)

with the singularity explicit. Equation (55) shows clearly that simply dividing the
unconstrained estimate of the quaternion by its norm does not provide the proper
unit quaternion, in general. Note that is proportional to the norm defect

(59)

and that it vanishes identically if is a multiple of the identity matrix.
These statements need not mean, however, that is negligibly small. If 
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view, then the eigenvalues of might differ by very large factors.PUC
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Note in passing that can almost never vanish, because the two quanti-
ties are unlikely (with probability 1) to have the same norm. Therefore, for the right
member of equation (55) to vanish, which must occur at the converged estimate 
we must have

(60)

for some value so that this quantity can be annihilated by the factor 
Solving for leads to

(61)

which is just the Lagrange multiplier solution again with the Lagrange multiplier.
The two methods are clearly equivalent.

A Hybrid Estimator

If one insists on unconstrained estimation as a first step, then it is clear that the
best method is to estimate the unconstrained attitude matrix, and use the uncon-
strained estimator as a sufficient statistic for estimating the constrained quaternion,
either via Lagrange multipliers, by �-iteration, or via QUEST.

Constraint or Restored Constraint, That is the Question!

It is possible to demonstrate explicitly to first order that the quaternion with cor-
rectly restored constraint is indeed the same as the quaternion one would obtain
from carrying out a properly constrained estimation. Consider the least-squares cost
function which we write as

(62)

Here is the residual measurement, given by

(63)

with given as in Part I, the constraint-insensitive measurement sensitivity ma-
trix (note the asterisk), and is the covariance matrix of the measurement noise.
We assume that both the unconstrained and constrained estimates can be reached
within a single iteration of the appropriate Gauss-Newton algorithm to within terms
of order . This is achieved most easily by setting . For simplic-
ity we assume that , the identity quaternion. Thus, we are performing the
update with respected to predicted body axes.

For the unconstrained quaternion correction, (which is not constrained to pre-
serve the norm and treats the four components of the quaternion as independent)
the estimate is given by

(64)

where the convariance matrix and the information quaternion are
given by
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Note that implicit in equations (65) is the assumption that be invertible.
For the constrained estimate, which is norm-preserving to first order, for the

same data is (note that we estimate only the vectorial coordinates and determine the
scalar component from the norm constraint) we obtain

(66)

with

(67a)

(67b)

and we have written

(68)

where is the partition which includes the first three columns of , and 
is the partition containing the fourth column. In our example, we have also that

. Had we not chosen to make the a priori quaternion , this simple de-
composition of would not have been obtained. It follows from the compari-
son of equations (65) and (67) that

(69)

where denotes the vectorial components of . Hence, we can find a relation
between the constrained and unconstrained corrections to the quaternion by solv-
ing equation (64) for in terms of and inserting the value of from this
expression in equation (66). This leads to

(70)

where, consistent with the partition of , we have partitioned the quaternion
covariance and information matrices as

and

(71ab)

We will return to equation (70) and equations (71) soon. Note that equation (70)
demonstrates that for our linearized measurements with approximately Gaussian
noise is an effective measurement) for , at the least to first order. Note also
that the constraint-insensitive and constraint-sensitive measurement sensitivities in
our example can differ only by the value of .

With equation (70) we are given the prescription for constructing the standard es-
timate and its covariance matrix from the unconstrained quaternion estimate and its
covariance. From equation (51)

(72)

Substituting this in equation (49) leads to lowest order in 
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The vectorial component of the desired optimal quaternion is simply (to this
same order)

(74)

But

(75)

so that, in fact, comparing equation (74) with equation (70) we have

(76)

It follows that

(77)

since is determined from the constraint. Thus, the unconstrained estimate
to the quaternion followed by the correct normalization correction is identical
(within terms of order ) to the standard estimate. Note again that this correct
normalization correction is more complicated than the simple division by the
quaternion norm.10

Unconstrained Quaternion Estimation for the Wahba Cost Function
and the QUEST Measurement Model

It is now time that we examine the covariance matrix of the unconstrained
quaternion estimate in detail. To avoid the problem of the unknowable initial esti-
mate of the quaternion we shall simply assume once again that the initial estimate

is simply and study the effect of one iteration of the Newton-Raphson
method. On this basis we shall study the behavior of the covariance matrix
for the unconstrained quaternion. The covariance matrix cannot be evaluated
in this case as the inverse of the expectation value of the Hessian matrix (or com-
panion matrix) but must be calculated by brute force. This is because, as pointed
out in Part I, the Wahba problem is not the MLE-derived cost function for uncon-
strained estimation. This is not a great hardship.

Since the a priori value for the quaternion is , we are led to examine a cost
function of the form

(78)

A single iteration of the Newton-Raphson method yields

(79)

where C is the companion matrix

(80)

10The latter, of course, is the correct operation to compensate for errors arising from the finite precision of the
computations (round-off error) since these are not dependent on the statistics of the estimate in any way.
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The quaternion covariance matrix is then given by

(81)

with

(82)

The inconsistency of the cost function and measurement covariance matrix is now
also clear from the presence of D, because asymptotically C would be the Fisher
information matrix if J were the MLE cost function consistent with the measure-
ment model.

The calculation of the companion matrix is straightforward. We take as the meas-
urement sensitivity matrix

(83)

where a is a free parameter, which may have any value (see equation (I-77)). For
we obtain the measurement sensitivity matrix corresponding to equation

(I-43), for that corresponding to equation (I-73). This is by no means the
most general form for , but it will be enough to show the strong dependence
of the covariance matrix on the choice of constraint-insensitive measurement sen-
sitivity matrix.

For an infinitesimal rotation , or, equivalently, for a rotation from
predicted body axes)

, (84ab)

with the result

(85)

for .
For in which case the attitude matrix is related to the quaternion accord-

ing to equation (I-43), the quaternion covariance matrix is exactly what one
would expect from a properly constrained estimate. For , in which case the
attitude matrix is related to the quaternion by equation (I-73), the quaternion co-
variance matrix is given by

(86)

It might seem that the quaternion covariance is indeterminate at this value. How-
ever, it is clear from the measurement sensitivity matrix that the measurement is in-
sensitive to , so that the corresponding information must be zero, and infinite.P44q4
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Unconstrained Quaternion Estimation with the Wahba Cost Function
and the Full-Vector Measurement Model

The calculation here, again for , is trivial since the result must
be simply

(87)

with C given by equation (84a). The result is not the same as that from the Wahba
problem. The fact that the result for the Wahba cost function shows no dependence
on the free parameter in the measurement sensitivity matrix or even on the lack of
constraint does not mean that it is more correct. The Wahba cost function is not con-
sistent with the QUEST measurement model. Equations (87) and (88) will have im-
portant consequences for the Kalman filter.

Unconstrained Quaternion Estimation for the QUEST Measurement
Model and the QMM Cost Function

In this case we have directly from the Fisher information matrix that

(88)

The Fisher information matrix is no longer invertible. Thus, with the more physical
of the two measurement models and the correct MLE cost function, the covariance
matrix is infinite. The estimation problem can be made finite only by having an
a priori quaternion covariance matrix for which is nonvanishing. One could
also consider having a three-axis magnetometer as one of the sensors, but that is not
the purpose of this exercise.

The complexities and possible failures of estimating a quaternion in these ways
as opposed to a completely constrained estimation via QUEST, SVD, FOAM,
ESOQ and other algorithms [7, 16] should be noted.

Quaternion Norm Restoration Revisited

Let us reëxamine the quaternion norm restoration. We assume again for con-
venience that . Hence, we may write

(89)

We suppose also that the covariance has the form

(90)

that is, that is uncorrelated with . Thus far, this has been the case with
the measurement model for both unit-vector and full-vector sensors. For a general
model measurement covariance matrix , this will not be true and the result (for
the inverse unconstrained quaternion covariance matrix) will be
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ŴT
kR�1

k �Ŵk�T
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Clearly, we can expect a lack of correlation between and only if

(92)

for all measurements, which will be true for all measurements only if is propor-
tional to or to . In general, for more realistic systems, and

or more generally

and (93ab)

will be correlated. (See Appendix B of Part I.)
Assuming equation (90) we have for the Lagrange multiplier

(94)

Hence, the norm restoration yields after a single Newton-Raphson iteration 
(as before)

(95)

Thus, the norm error has been reduced from to as expected.
We further note that after one iteration

(96)

provided that and are uncorrelated. Thus, if has the structure of
equation (90), then the correctly constrained quaternion can be obtained, at least to
first order, by division by the quaternion norm.

For a general measurement covariance matrix we obtain

(97)

and will differ from by terms of order , which means that the con-
strained quaternion cannot be determined in general by dividing the unconstrained
quaternion by its norm. (See Appendix B of Part I for the general decomposition
for an arbitrary frame.)

Persistence of an Initial Condition

In theoretical studies the Kalman filter is frequently initialized arbitrarily, gener-
ally with very large initial covariance, and the ability of the Kalman filter to recover
from this initial condition is then part of the simulation testing. In a well-designed
mission, obviously, such a procedure should not be needed, and its execution could
pose a danger to the spacecraft. Nonetheless, for many practitioners of attitude esti-
mation it seems to be an important part of performance tests of the unconstrained
filters and will be examined here. Thus, for the full-vector measurement model with
an initial condition we should examine (as usual, for ), recalling
equations (87) and (88) above
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and for the QUEST measurement model

(99)

with the initial arbitrary covariance given by . For independ-
ent of k, will be equal to . Thus, for the full-vector measurement model,
the ambiguous term coming from the unconstrained estimation will dominate the
initial condition asymptotically. However, for the QUEST measurement model,
which is a realistic model for star-cameras, it is the initial condition which will be
perpetuated in every frame. The solution, of course, is to use the full-vector model
for the direction measurements, since this will be justified once the norm constraint
is restored. This means, of course, that the unconstrained quaternion estimate be-
comes even more unphysical and meaningless.

The LMS Survey Paper of the Attitude Kalman Filter

It is well to reexamine the LMS paper [17]. At a distance of two decades it is
clear that the importance of that paper derives in large part from the fact that it
came at an important cæsura in the development of Kalman filtering for spacecraft
attitude, when that topic had reached maturity and the important points of imple-
mentation had been settled. The innovations of that paper were modest, largely in
details of the implementation. The paper was submitted and published, in fact, as
a survey paper. The importance of LMS lies in its timing and the care and clarity
with which those authors presented the then state-of-the-art, which requires little
modification today.

Among the numerous references cited in the historical survey of LMS, the
most important early publication for LMS is that of Toda, Heiss and Schlee [18],
which was presented at the Symposium on Attitude Determination, held at the
Aerospace Corporation, Los Angeles, California in October 1969 (also an impor-
tant milestone in the development of the attitude Kalman filter). That work first
reached the junior authors of LMS via the work of Murrell [19]. Note that LMS
presented three different implementations of the attitude Kalman filter: (1) a
space-referenced implementation in which the redundant quaternion variable is
removed by truncation (essentially the PADS system of TRW [20]); (2) a body-
referenced implementation in which the redundant quaternion variable removed is
the scalar component of the quaternion of an infinitesimal rotation; and (3) a
hybrid approach which is very close to (2). All three implementations have been
tested by Ferraresi [21] who found them very similar in performance. LMS also
presented a filter in which the quaternion update is always and the quaternion
covariance matrix is , without explicit treatment of the constraint (which is
maintained to first-order by the singularity of the covariance matrix), but only as
a point of reference with strong warnings not to use it.11 Nowadays, the LMS
authors lean most toward the body-referenced implementation.

There are two pillars of the attitude Kalman filters of LMS. The first is the dy-
namics replacement model of Farrenkopf [20, 22]. In this model the gyro read-out
noise is neglected and the gyro bias vector replaces the angular velocity vector in
the state vector. In this way the other sources of gyro error become process noise

11Nonetheless, some readers have wrongly interpreted LMS as presenting a preferred approach for imple-
menting a quaternion covariance matrix.4 � 4
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in the filter propagation. The second is the treatment of the attitude correction and
attitude error in the filter. In the propagation of the attitude the four-component
quaternion is used, because the unit-norm is conserved by the form of the kinematic
equations. The attitude error and error correction, however, are expressed by a
three-dimensional representation, which is simply for the
truncation method and for the body-referenced method.

The chief advantage of the three-dimensional treatment of quaternion error and
correction is that it eliminates the need to maintain the singularity of the quaternion
matrix. The chief advantage of working with a body-referenced quaternion is that
the choice of which component to discard becomes obvious and the measurement
sensitivity matrices take on their simplest form.

The technology of the extended Kalman filter for spacecraft attitude has been ex-
tremely stable since the appearance of LMS. One notable practical advance (though
a minute theoretical advance) has been the QUEST filter [23, 24, 25], in which the
star camera data is preprocessed using the QUEST algorithm [7] and the resulting
quaternion used as an effective measurement of the attitude in the Kalman filter up-
date. Since a star camera might observe as many as fifty stars in a single frame, this
greatly decreases the computational burden as well making the filter better behaved
numerically. This is the implementation of the attitude Kalman filter used for
NASA’s deep space missions, where accuracy, speed of execution, and reliability
are all pressing concerns. Another notable practical advance has been the use of the
square-root information filter (SRIF) [26] in the attitude Kalman filter [27] instead
of the covariance filter employed by LMS. The great advantage of the SRIF is that
it obviates the need to initialize the Kalman filter estimate with a large arbitrary co-
variance matrix, which generally corrupts the filter results for a considerable time
and can also lead to divergence. Unfortunately, the SRIF has not received wide ap-
plication in attitude estimation. Theoretical work since LMS has experimented with
different attitude representations, wider applications to spacecraft attitude systems
(especially gyroless systems), and more exotic filters.

Additive and Multiplicative Corrections

This writer senses the feeling among some workers that the additive and multi-
plicative implementations of the Kalman filter update express different but equally
valid and not necessarily equivalent Kalman filter approaches. This is not true, the
two approaches are exactly equivalent and should yield the same result within
round-off error, as was demonstrated by Ferraresi [21]. The differences between
the “additive” and “multiplicative” approaches is really only one of frame as
pointed out a decade ago in reference [2]. Nonetheless, the terminology “additive”
and “multiplicative” have become ingrained, for which this writer bears some re-
sponsibility. Hopefully, the true nature of the difference will become clear in the
present section.

There are, as we indicated in Part I, two approaches to representing the attitude
correction, which we may understand either as: (1) the “quotient” of the a pos-
teriori and the a priori values of the quaternion or (2) the arithmetic “difference”

between these two quantities. Thus, in LMS we contrasted and . In the
following we adopt a different point of view, namely that and are the atti-
tude state vectors, the first referenced to inertial axes, the second to predicted body
axes. The update corrections are then and , both with a priori values of

. The difference is subtle, but important for establishing the exact parallelism be-0̄
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tween the additive and multiplicative approaches, which we prefer to think of as
inertially-referenced and predicted-body-referenced implementations. These two
implementations correspond to the “truncated” and “body-referenced” implemen-
tation of LMS, Sections X and XI, respectively. We ask the reader to banish the
phrase “multiplicative correction” from his or her mind.

These two implementations may be written as

, (100ab)

Because of the norm constraint

, (101ab)

only and are computed directly from the data. The respective
scalar update corrections are computed from the constraints and the vector correc-
tions according to

(102a)

(102b)

The vanishing of follows from the vanishing of . The reader
should not conclude from this that the predicted-body referenced correction is
only three-dimensional while that for the inertially referenced correction is four-
dimensional. Equivalent to the exact vanishing of  
is the exact vanishing of . Thus, it would be correct to say that the
correction is four-dimensional but that happens to vanish. The differ-
ence, again, is only one of frame.

The similar natures of and can be seen also through an examination
of the computation of the Kalman filter update. For the two representations

(103a)

(103b)

Where the superscripts I and B denote “inertial” and “predicted body,” respectively.
Likewise, for the measurement sensitivity matrices. If is

the constraint-insensitive measurement sensitivity matrix, then the 
constraint-sensitive sensitivity matrix for the vector components of the quaternion
for the space-referenced and predicted-body referenced update, respectively, is

(104a)

(104b)

where again the body-referenced expression simplifies, because .
The measurement model for a scalar measurement in the two procedures is
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where simply denotes the functional relationship of equation (I-43). The ob-
servation vectors are always in the body frame.

The two updates are equivalent and both are additive! The only distinction is
the frame.12

As a last step we must write for the predicted-body-referenced update procedure

(106)

The “multiplication,” from this point of view, is really not part of the update
but the transformation back to an inertially-referenced quaternion, because it only
makes sense to accumulate the attitude as an inertially-referenced quaternion.
Otherwise, the definition of the spacecraft attitude would change at every update.
The computational burden of this operation is small compared to the greater com-
putational burden of carrying out the update with respect to inertial axes.

To emphasize yet once more that the difference between the “additive” and
“multiplicative” approaches differ only in the choice of frame we write

, (107ab)

Note that both update procedures preserve the norm only to first order in the 
correction. Hence, to correct for second-order effects and round-off error it is
necessary to divide by the quaternion norm, after implementing equation (100a)
for the space referenced update and after equation (106) for the predicted body-
referenced update.

Consequences of the Batch Estimation Results for the Unconstrained
Quaternion Kalman Filter

The Kalman filter is also a maximum-likelihood estimator [28]. To see this let
and be the a priori state estimate and state estimate-error covariance

matrix. Then the MLE (more exactly, MAP) dictated cost function for is

(108)
As a function of the correction this becomes

(109)

with . Minimization of leads straightforwardly to

, (110ab)

This we recognize immediately as the information form of the Kalman filter, to be
more exact, the extended Kalman filter (EKF), because the measurement model has
been linearized. (See [17] for references.) The derivation of the covariance form of
the filter from the information form is assumed to be known to readers.

12Note in passing that in terms of the four-dimensional update equations take the form 
and . The second equation is equivalent to equa-

tion (100b) above. The first equation, however, is the update step of the remaining implementation of LMS,
the reduced-order implementation (Section IX).
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It has been assumed in deriving these last results that the components of the state
vector are truly independent variables (although not necessarily statistically in-
dependent) and that the estimate error covariance matrix is full rank.

The measurement sensitivity matrix has been shown to be ambiguous for uncon-
strained quaternion estimation, which implies that unconstrained quaternion esti-
mates must also be ambiguous, and, therefore, meaningless. How, then should
one mechanize a Kalman filter for the quaternion when the norm constraint is
abandoned?

The answer to this is simple. Since only the constrained quaternion estimate has
meaning, we chose the quaternion measurement sensitivity matrix so as to make the
problem of getting to the constrained quaternion estimate easiest. At the moment,
that would seem to mean that we choose the relationship between the attitude ma-
trix and the quaternion to be equation (I-43), especially since we know that equa-
tion (I-73) has nasty aftereffects.

Obviously, it should make no difference, apart from the presence of an initial
condition, if the norm is restored after each update or after several updates.
However, it is important that the norm restoration take proper account of the sta-
tistics of the unconstrained estimation that preceded it. Unfortunately, an initial-
condition is needed for unconstrained quaternion estimation if we model the
measurements as direction measurements, and this initial condition will persist
forever in the filter, Note that process noise will not speed the decay of the
quaternion norm defect, because the kinematic equations are norm preserving.
Fortunately, we can model the direction measurements as full-vector measure-
ments (see above) as long as we do not alter the state vector in any way before
performing a correct constraint restoration.

An interesting point for unrepentant EKF “adders”: it should be obvious now
from our batch studies that the unconstrained quaternion EKF will be simplest if
the prediction and update steps are carried out in the (predicted) body frame. Thus,
for both correctly constrained and blithely unconstrained EKFs the first command-
ment is to multiply!13

One consequence of this work is that the unit-vector filter [23, 29] can be used
in general for unconstrained attitude estimates, because the quaternion with the
constraint restored will be correct.

Comparison with Earlier and Current Practice (Batch and Filter)

The earliest work (1983) known to the author in which (1) an attitude constraint
is relaxed, (2) the unconstrained estimate is a sufficient statistic [8] for the correctly
constrained estimate, and (3) the constraint is restored via the method of Lagrange
multipliers, treated not three-axis attitude estimation but spin-axis attitude estima-
tion [30]. This work, a batch rather than a sequential estimator, has been imple-
mented frequently in real missions and has performed well.

This same technique has been applied to quaternions in reference [2]. This lat-
ter work was not intended to develop a new algorithm for quaternion estimation
but to show that the unconstrained quaternion Kalman filter of Bar-Itzhack and

13Be fruitful and multiply (Genesis [1:18]) is the first commandment in the Bible. However, the word for
multiply there has the literal sense rather of “greaten” (root: ), that is, to make greater or more numerous.
The word (in both Mishnaic and Modern Hebrew) for multiply in the arithmetic sense derives from the root

, equally ancient (it has a biconsonantal precursor ) and having the meaning fold. Compare Latin mul-
tiplicare, where plicare means to fold (note also English ply).
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Oshman [3] (see below), if the constraint were restored correctly, would necessarily
yield the same results as the LMS filters to within second-order in the attitude errors
but with a significantly greater computational burden than the constrained and
lower-dimensional LMS filters. This author’s unstated purpose in reference [2], was
to turn workers away altogether from an unconstrained quaternion filter which he
regarded, and still regards, as suffering from insufficient rigor and presenting results
which he found troubling.

Bar-Itzhack and Reiner [4] published a Kalman filter implementation for the un-
constrained direction-cosine matrix (to which equations (4) through (8) bear very
close resemblance). However, no prescription was given for the restoration for the
constraint, which was left to a procedure to be determined later. Professor Bar-
Itzhack’s previous work on the orthogonalization of a matrix [31–35], while very
interesting geometrically and correct for repairing the constraint defects due to
round-off error, was not statistical in nature and would not have been appropriate
for norm restoration to the unconstrained attitude matrix estimate.

The foundation paper of unconstrained quaternion estimation is the work of Bar-
Itzhack and Oshman [3]. Unfortunately, the algorithm for restoring the quaternion
norm is not based on the statistics of the unconstrained estimate. The partial reset
method is an ad hoc method supported only by limited simulations. On the basis of
the work presented here for batch estimation, the chief effect of partial resets would
be to eliminate the possibility of restoring the quaternion norm in a statistically cor-
rect fashion. Though not stated in their publication, Bar-Itzhack and Oshman use
the full-vector model for direction measurements. Hence, their filter is spared the
problem of an eternally persistent initial condition, but at the cost of using a mea-
surement model which is invalid for most attitude sensors.

A number of alternate methods have been proposed for the restoration of the
quaternion norm to the filtered unconstrained quaternions [5, 6]. All of these meth-
ods are ad hoc and do not use all of the data but truncate it in arbitrary ways. The
methods proposed in the present work, which use all of the data rigorously (except
for the approximation that the unconstrained quaternion estimate is a sufficient sta-
tistic), are not among them.

Kasdin and Weaver [36] follow a different approach. They first implement a
filter in which the attitude is parameterized by an unconstrained attitude matrix.
The advantage of this is that the filter converges then in one step, as we saw in
our batch example, which is not true for the quaternion. Kasdin and Weaver then
refilter the results of the first filter using that fact that the unconstrained attitude
matrix estimate is a sufficient statistic for the quaternion. The second filter is it-
erated until convergence with a Lagrange multiplier for the quaternion to insure
convergence to unit norm. The expression “iterated until convergence” indicates
that these authors are actually performing an iterative batch estimation at each
step of the filter. Thus, their work is much closer to the methods presented here
than to an extended Kalman filter. It would be interesting to know how well this
two-step filter performed with only a single iteration of the second step.

A different approach to estimating the initial condition of a Kalman filter state
is a two-step process [37] applied to misalignment estimation. Here the first filter
generates a sequence of sufficient statistics for the initial condition and appropri-
ate sensitivity matrices and covariances, while the second step uses these quanti-
ties to estimate the initial condition. In this last application, since one focused
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only on the alignment estimation and not of other parameters or state variables,
the second filter step was replaced by a batch estimator. This approach assumes
that the initial condition enters linearly into the filter state vector.

Markley has begun a careful study of the continuous unconstrained Kalman filter
which includes process noise [38]. His studies should throw light on features of the
unconstrained Kalman filter different from those explorable within the context of
the present work.

Means, Covariances, and Constraints

We saw in equation (I-83) that the mean of the quaternion of rotation, and, there-
fore, the covariance matrix, are not physically meaningful, because the mean takes
on values outside the domain of definition of the quaternion of rotation. Certainly,
these statistics convey some information about approximate values and range of
variation, but they have no value in constructing a probability density function un-
less we know that the random variable is Gaussian. Note also that the nonzero vari-
ance for and its lack of correlation with the other variables does not imply that it
is an independent random variable, as is made clear by equation (I-79b). The atti-
tude has only three degrees of freedom; therefore, there can be only three distinct
attitude random variables, for which, in the present example, q is certainly the best
choice. One could, of course, write a joint pdf for the four components of the
quaternion as

(111)

in which the -function is really a shorthand for equation (79b). There are only
three random variables required to describe a random attitude or an attitude
estimate.

In fact, since we normally linearize our measurement model in the EFK, higher-
order terms, like the element of the quaternion covariance matrix, have no
significance. In fact, only a attitude estimate-error covariance matrix has
mathematical significance.14 The singular quaternion estimate-error covari-
ance matrix of equation (I-84) is no more or less unsuitable than the nonsingular

covariance matrix of equation (I-83). All that is important is that both 
preserve the quaternion norm to first order in the Kalman filter update. (The un-
constrained quaternion estimate-error covariance matrix, of course, should be a
nonsingular covariance matrix, but the unconstrained quaternion cannot be
interpreted as a quaternion of rotation.)

The singular nature of the QUEST measurement model covariance is nothing
more than the statement that a unit-vector measurement consists effectively (and
truly) of only two measurements, as in equations (I-29). To write equations (I-92)
and (I-97) and then use this model to construct a different covariance matrix 
containing higher-order terms in is to stretch the model too far. We can remove
the singularity of the QUEST measurement model covariance matrix in practice,
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but only because asymptotically, the measurement sensitivity matrix will annihi-
late the unphysical component. Thus, it is important to maintain the singularity of
the covariance matrix of the constrained quaternion estimate, not to satisfy
some divine mathematical commandment, but to maintain the norm constraint of
the quaternion.

Summary and Discussion

Despite being largely limited to batch attitude estimation, this work has covered
a lot of ground. The reader will be spared the usual triumphant list of accom-
plishments. However, the author feels compelled to point out two important fea-
tures of this work: (1) the very careful and detailed treatment of measurement
sensitivity matrices in Part I, which is key to all of the results of Part II, and (2) the
clarity that comes from carrying out estimation operations in the predicted body
frame. More than 150 years ago we learned that rigid-body mechanics was best
studied in the body frame. It is unfortunate that some workers are reluctant to learn
this same lesson for attitude estimation.

The abandonment of the quaternion norm constraint is not synonymous with the
additive EKF. The TRW PADS approach [20], which appears as the truncated filter
in LMS and whose update operations were reviewed above in parallel with the
“multiplicative” approach, is additive and takes account of the quaternion norm
constraint. It is less convenient then the body-referenced methods of LMS but no
less correct. Equally well, one could have relaxed the norm constraint on in the
update step. But who would model a quantity which changes from unity during the
update step by no more than as a variable when one is routinely discarding
terms of ? A reasonable person simply calls this quantity 1 (and does not in-
troduce a fourth free parameter into the attitude). Not surprisingly, one never hears
of an unconstrained MEKF15, except in this paper, where all of the examples are
“multiplicative.” However, the quantity has the same limited variation,
but is blithely made a free variable by the nest of “adders,” perhaps, because the
constraint is less obvious when seen from inertial axes.

Thus, once more and for the record, AEKF does not imply an unconstrained
filter, and MEKF does not imply a constrained filter. From our studies here wise
practice would seem to suggest that one implement a correctly constrained Kalman
filter for both AEKF and MEKF.

Arguments that the four components of the quaternion correction are uncon-
strained rest either on the fact that the supposed covariance matrix is nonsingular
or on the fact that is not a quaternion of rotation. Both of these arguments have
been disposed of in Part I of this work. However, the second argument is still in-
toned by “adders” [39].

An important criticism of the unconstrained quaternion filter work until re-
cently is the lack of careful theoretical study. Generally, the only justification
offered for abandoning the norm constraint has been simulation results. However,
these too are dissatisfying. Generally, one hopes in the time-development of a
Kalman filter simulation that one will first see the decay of an arbitrary initial
condition (if there is any), and then the steady decrease as in the filter co-
variances as they approach their asymptotic limits. However, if the filter estimates
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constrained filter, but the MEKF is constrained.



are truly converging to unit norm, then one should see the condition number of
the quaternion covariance matrix tend toward infinity with N. This does not
seem to have been tested. Nor has the whiteness of the residuals been tested. Note
that the fact that the unconstrained filter converges to the true quaternion asymp-
totically does not mean that the norm constraint has been achieved. A counter-
example (when there is no process noise) would be the case that the attitude
variances decrease as but the variance of the norm defect decreases as

. Of course, if were truly minuscule (for example, ), one
might not care. However, in practice such a situation will not occur.

Finally, we must ask: what is the justification for an unconstrained quaternion
estimator, either as a batch estimator or as an extended Kalman filter? There is ob-
vious benefit to an initial unconstrained estimation of the attitude matrix, because
this leads (1) to a more efficient arrangement of the data and (2) to making the esti-
mation procedure globally convergent without the introduction of an arbitrary ini-
tial condition. There does not, however, seem to be any benefit to unconstrained
quaternion estimation, since it is more burdensome than constrained quaternion
estimation, and, when one has finished, one must still do the work of restoring the
constraint, which, by itself, is at least as difficult as constrained quaternion estima-
tion. The unconstrained AEKF is faster than the constrained AEKF only if one
accepts the unconstrained quaternion estimate as a substitute for the constrained
quaternion estimate. The lack of constraint for the quaternion also brings with it
special ills including the occasional failure of the estimation process. To this writer
it seems that unconstrained quaternion estimation brings only extra burdens and
no benefits.
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