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Constraint in Attitude
Estimation Part I:
Constrained Estimation’

Malcolm D. Shuster?

Felix qui potuit cognoscere de rerum causas.’

— Publius Vergilius Maro (70-19 B.C.E.)

Abstract

A complete and careful foundation is presented for maximum-likelihood attitude estima-
tion and the calculation of measurement sensitivity matrices with the intent of revealing
heretofore undisclosed pitfalls associated with unconstrained quaternion estimation. Efficient
formulas are developed for computing the measurement sensitivity matrix for any attitude
representation for which an efficient formula for the inverse kinematic equation is known.
In particular, it is shown that the measurement sensitivity matrix for the quaternion is am-
biguous and may take on a wide range of values. Hence, estimates of a quaternion which do
not take correct account of the norm constraint will be physically meaningless. It is shown
also that within Maximum Likelihood Estimation the form of the Wahba cost function for
attitude estimation is incorrect when the attitude constraint is relaxed. A simple physical ex-
ample is presented for quaternion estimation from noise-free vector measurements which
fails when the norm constraint on the quaternion is relaxed. Part I of this work provides the
basis for more detailed investigations of unconstrained attitude estimation in Part II [1].

Introduction

This is the first of two articles whose purpose is to dissuade practitioners of
spacecraft attitude estimation from estimating a quaternion or quaternion correction
which does not satisfy the appropriate norm constraint, at least to first order in the
estimation error. This was also the intent of an earlier conference report of this work
[2], where the intent was stated less bluntly.

"This and the succeeding article [1] are an expansion of an earlier conference report [2], presented in August 1993.
"Director of Research, Acme Spacecraft Company, 13017 Wisteria Drive, Box 328, Germantown, Maryland

20874. email: mdshuster @comcast.net.
*Translation: Happy [is he] who has been able to know the causes of things.
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By “appropriate” we mean unit-norm for a quaternion which would be a quater-
nion of rotation if the norm constraint were enforced, and for a quaternion correc-
tion that the corrected quaternion have unit norm to this order. We say first order in
the estimation error, because the linearization process of batch estimators or the ex-
tended Kalman filter discards terms of second order. In general, by quaternion of
rotation [3] we mean an element of the quaternion group (i.e., homomorphic to
SO(3)), whose domain is S, the unit sphere in four dimensions. By a quaternion in
general, we mean an element of the quaternion skew field (algebra, division ring),
whose domain is R*. We will sometimes discard the tag “of rotation” when it is ob-
vious from the context. The distinguishing feature of quaternions, of course, is the
nature of the multiplication operation [3].

It has long been the feeling of this writer that unconstrained quaternion estima-
tion* has been lacking in rigor and coherence and especially in analytical studies.
The present work seeks to help fill this gap. The approach of this work is unso-
phisticated but careful. For the most part Part I provides the necessary background
for Part II, but it contains original work as well. Our general investigatory tool is
not the Kalman filter, which up to now has been the sole context of unconstrained
quaternion estimation, but the covariance matrix or inverse covariance matrix (re-
ally, Fisher information matrix) of batch attitude estimation. We choose batch atti-
tude estimation for the simple reason that it is more transparent than sequential
estimation. This limits our studies to systems without process noise, hence, equiva-
lently, to static systems, but the benefit of such studies will become very apparent
in the sequel. In particular, the Kalman filter applied to a system without process
noise must yield the same result within round-off error as a batch estimator. Hence,
a failure of the batch estimator for such a system implies a failure of the Kalman
filter for the same data.

We begin Part I with a careful presentation of maximum-likelihood attitude esti-
mation. Next we present the attitude measurement sensitivity matrix in much more
detail than it has been presented before. We present both constraint-sensitive and
constraint-insensitive measurement sensitivity matrices since both have their place
in correctly constrained attitude estimation. An important early result is that the
value of the constraint-insensitive measurement sensitivity matrix for the quater-
nion is not unique, which has the immediate implication that the unconstrained
quaternion estimate is also not unique and, therefore, without physical meaning. We
next show that the Wahba problem is a maximum-likelihood attitude determination
problem for direction measurements only for the correctly constrained estimation
of the attitude. Finally, as a cliffhanger, we present a trivial but disturbing example
of the failure of the unconstrained quaternion estimation process.

In Part IT [1] of this paper we examine many examples of unconstrained attitude
estimation and the restoration of the constraint. Again our attention is focused on
batch attitude estimation, but we will also discuss the obvious consequences of our
batch estimation results for the Kalman filter. An interesting outcome of our inves-
tigation is that there is genuine value in the estimation of an unconstrained attitude
matrix, but none, it seems, in the estimation of an unconstrained quaternion. The
reader should note that Part IT assumes that the reader has read Part 1.

*We postpone references to specific works until Part II.
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Batch Attitude Estimation and Maximum Likelihood Estimation

The two principle ingredients of attitude estimation, apart from the data, are:
(1) the attitude measurement model and (2) the estimation method. We assume gen-
erally that the attitude measurement can be written in the form

z="f(A) +n )

where z is the measurement vector, generally a column vector of dimension n. f(A)
is a column-vector function of the attitude of the same dimension, which we may
express generically as a function of the direction-cosine matrix [3]. n is the noise
vector, which we generally assume to be Gaussian, zero-mean, and having an
n X n covariance matrix R. We write n ~ IN(0,R). It says something for the
primitiveness of our field that we seldom (except for gyros) have need to go beyond
such a simple measurement model.’

Given a set of N measurements, Zi,...,2y, which we assume depend only on
the attitude (represented in our discussion by the attitude matrix), the maximum-
likelihood estimate of the attitude is the value of A for which the probability den-
sity function of the measurements is a maximum. We write

L T—
A = arg Arggé)p(z., ., Z,|A) )
The probability density function (pdf) in this situation is generally called the like-
lihood function (hence, the name maximum-likelihood estimation) and written as
L(A|z,...,2zy) to show the different emphasis. The vertical in the pdf in equa-
tion (2) may be interpreted either as showing just a functional dependence on A or
a conditional pdf if A is a random matrix.

If the measurements are independent and Gaussian then the likelihood function
can be written as
N 1
kE[l V (27T)”k det Ry

1 N
= exp{—; ;} [[zx — fi(A)]'Ri'[2i — fi(A)] + log det R, + ny log 271-]}

3)

where we have not written the dependence of L(A) on the measurements explicitly.
If we now define the negative-log-likelihood function Ji1L(A) as (for convenience
we no longer write the measurements as arguments)

hi(A) = —log L(A)

L(A) GXP{—%[Zk — fA)]'Ri [z« — fk(A)]}

~5 > Az — fATR [z« — i(A)] + log det R + nilog 27} (4)
k=1

We may write equivalently that
AfiL = arg min Jy(A) (5)
AeSO(3)
Generally, but not without exception, column arrays will be denoted by boldface sans serif type, matrices by

upper-case italic Roman type, scalars (other than elements of arrays) by lower-case italic Roman type.
Quaternions will always be identified by an overbar. By Roman we mean the type style, not the alphabet.
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that is, the maximum-likelihood estimate minimizes the negative-log-likelihood
function. We note finally, that if we are not estimating parameters which character-
ize the measurement-model covariances, then the last two terms do not affect the
minimization, and we have finally that the maximum-likelihood estimate of the at-
titude must minimize the least-squares cost function

s = 3 [z~ AR 2~ fA)] 6)

which, in MLE parlance, is the data-dependent part of the negative logarithm of the
likelihood function [4]. Within MLE, there is no arbitrary constant factor nor arbi-
trary constant term in the cost function. The cost function of equation (6) will be
the basis of our estimation program.®

Since the attitude matrix A, or any other attitude representation, depends on only
three independent parameters, it follows that J(A) is sensitive to only three inde-
pendent attitude parameters. If, following ancient practice, we write A = A(¢),
with ¢, say, a3 X 1 matrix of the Euler angles [3], we could then minimize a batch
weighted least-squares cost function

1 & _
J(¢) = JAP) = = Z 2, — f(A(P)]'Ri [z — Tu(A())] )
The minimizing value of ¢, the estimate ¢p*, is usually found by the Newton-
Raphson method [4], which follows.

If the desired estimate does not lie on the boundary of the domain of ¢ (usually
because the domain has no boundary), then’

a¢T(¢*) =0 ®)

which must be solved iteratively.
If ¢F(—) is an approximate (a priori) value of ¢* at step i, then in some small
region containing both ¢#(—) and ¢* we have (writing ¢ = ¢¥(—) + Ad)

2

AP I

(¢) («b*( )+ Ad) = (¢*( ) + (PF(=)Ad: + .

a¢T a¢T a¢T

)

Truncating the Taylor series at linear order in Ad,, setting the gradient of
J(pF(—) + Ad;) equal to 0 at AdF(+), and solving for ApF(+) lead to

9%
ap' o

o
P’

Agi(+) = —[ (d)?"(—))] (¥(—)) (10)

There is a minor complication in the form of the likelihood function because it will turn out the 1, can have
only a finite range while a Gaussian random variable ranges over all space. This consideration is treated in
detail in reference [S] and can be ignored here, essentially because the Gaussian distribution falls off so
quickly.

"We use the convention that the derivative of a scalar function with respect to a column vector is a row vector,
hence, the differentiation with respect to a row vector in equation (8). The nabla operator, however, acting on
a scalar function always produces a column vector. Note that local minima will also satisfy equation (8).
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and the (i + 1)-th a priori value for the next iteration is the a posteriori value at
step i

df(—) = @i(+) = dI(—) + Adi(+) (In

(Note in passing that necessarily A¢pF(—) = 0.) If one is sufficiently close to the
estimate, then by continuing this process ad infinitum

lim ¢ (+) = ¢* (12)
and in the limit that the quantity of data becomes infinite (the asymptotic limit)
Illlm d)* — d)true (13)

Generally, a different method is required to supply the initial estimate of ¢.
The covariance matrix of the estimate in the asymptotic limit is given by

Poo = E((* = 6™)(&" — ¢™) = F (14)
where Fyq4, the Fisher information matrix, is given by
0% aJ aJ
F =F (rue = E{— true) (rue 1 5
b {—aquad;(d) )} {adzT(d) )a¢(¢ )} (15)

which, for practical reasons, is generally evaluated at ¢p*. Unless the Fisher infor-
mation matrix is full-rank, the covariance matrix will not exist (nor will ¢*).
Nonetheless, we will frequently write P;},, for the Fisher information matrix, even
when Fy¢ does not exist.

A variant of the Newton-Raphson method is the Gauss-Newton Method [4].
In this method the Hessian matrix in equation (10) is replaced by its expectation,
the Fisher information matrix. The Fisher information matrix is generally a much
smoother function of the parameters than the Hessian matrix and the estimation se-
quence generally converges faster.

We may write the measurement as

2, = f(A(GH(—) + %(A(M(—)»A«b,- Fotm
— 2 (A + HuASH)Ad + . +m (16)

Z,; is the a priori value of the measurement (given ¢¥(—)) and H,; is the meas-
urement sensitivity matrix. Az, ; = 2, — 2, is called the residual measurement. In
this work, k£ will always denote the measurement index and i the iteration index.
Sometimes we will write H, or Hg, ;i to emphasize the attitude representation. In
terms of these quantities

N N
Pghi= X HLR'Hy;,  i%(+) = X HL R Az ; (17ab)
k=1 k=1

AT (+) = Ppyiif(+), @F(+) = &F(—) + AdF(+) = () (17cd)
and

P¢¢ = hm Pdld),i? d)* = hm d)ik(‘i‘) (l8ab)
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The vector i¥(+) is generally called the information vector.

Equations (16) through (18) were standard practice twenty-five years ago [6].
These three-dimensional parameterizations, however, are not regular everywhere
and are inconvenient for practical calculations because of the complicated functions
which must be differentiated. In addition, there is usually a choice for the space co-
ordinate axes for which the attitude error covariance matrix will become infinite,
even if the attitude is known with great precision. These difficulties are eliminated
by the methods of the next section.

The Attitude Increment Vector

Consider now a parameterization of different character, which some workers
choose to call “multiplicative,” whereas the former choice was “additive.” Given
the a priori estimate of the attitude matrix A¥(—) we write now

A = (84)AF(—) = expflel}Ai(—) (19)

where €, the attitude increment vector, is the rotation vector of a very small rota-
tion 8A,. Here, [v] is the 3 X 3 antisymmetric matrix [3]

0 V3 %)
Vi=|-v» 0 (20)
Vo =W 0

and exp{-} is the matrix exponential function. Euler’s formula in terms of €
becomes

| - .
8A(e) = exp{[el} = cos|e|I5x; + %MGGT + %“d[[e]] (1)
€
Because € is very small, we may write equation (21) as
8A = Iz + [€] + O(leP) (22)

where the matrix s is the 3 X 3 identity matrix. Obviously, 8A,(—) has the value
Lxs and €(—) the value 0.

We now define the sensitivity matrix in terms of €
_ f((5A()AF(-)

Je’

(€) (23)

and proceed with the Newton-Raphson or Gauss-Newton method in the usual way.
The covariance matrix is defined as

P = E{e*e*"} (24)
with €*, the attitude error vector, defined by®

Ax = (L€ gme (25)

The attitude error covariance matrix defined in terms of €* has the advantage that
it is independent of the choice of space axes, and if the body axes are rotated by a
rotation with direction-cosine matrix C, then simply

€ >& =Cé and P.— P.=CP.C" (26ab)

$We use the tilde to avoid confusing the attitude error vector with the estimate of the attitude increment.
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Clearly, there is no singularity of P. associated with the choice of coordinate axes.
The “mechanics” of the attitude error and attitude increment vectors are identical.

The Measurement Sensitivity Matrix for the Attitude
Increment Vector

Equation (1) for the attitude measurement model is too general for practical use.
In almost every practical case an attitude measurement consists of a function of
inner products of the components of a direction in space with respect to a coordi-
nate system fixed in the spacecraft body. Consider, for example, an arbitrary physi-
cal vector v with 3 X 1 matrix representations Vg and V; with respect to the body
and inertial coordinate systems, respectively. If A, the attitude matrix, transforms
representations from the inertial to the body coordinate system, then

Vp = AV; (27)

For a three-axis magnetometer, the measurement consist ideally of the three com-
ponents of the magnetic field in the magnetometer frame. Hence, if v is the mag-
netic field vector, we may write the vector measurement as’

X-v X3 AVy
z=|y- + = |ViAv;| + (28)
zZ-v Z;Av;

where X, # and £ are the three coordinate axes of the magnetometer, with body rep-
resentations X, ¥ and Zp, and 7 is the measurement noise vector, generally as-
sumed to be Gaussian. For a focal-plane sensor, typified by vector Sun sensors and
star trackers, the measurement takes the form of two scalar measurements

)’GAV] )A/EAVI
== +m, and & =5
Z;AV; ZpAV;

+ o, (29ab)

1

where now v is the unit vector of the sensed direction. The common component of
all of these measurements are scalars of the form u'Av. We take, therefore, as our
basic scalar measurement

z=U"Av + 7 (30)
Substituting equations (19) and (22) into equation (30) leads to"
7= UA(—)v + u'fe]A(—)v + 7
=U'A(—)v + (u X A(—)v)"e +

= 2J(A(—)) + H{A(—))e + 7 (1)
and we have used the fact that
[e]A(—)v = —[A(—)v]e (32)

Equation (28) is equivalent to Z = STAV; + 1) = Zusor, Where S is the alignment matrix [7]. Generally, how-
ever, when we write Z we will mean 2z = SZor, the measurement vector in body coordinates, when deal-
ing with vector measurements, as in equation (37) below.

""We will frequently suppress subscripts and superscripts to make our notation less cumbersome. This will
often include the asterisk on estimates, when the idea is already conveyed by ().
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Thus, the sensitivity matrix H{(A(—)) for a simple scalar measurement is given by
the 1 X 3 matrix

(scalar)HE(A(_)) — (u X A(_)V)T (33)

The a posteriori value €(+) is that obtained by minimizing the batch least-
squares cost function over €;, after which the a posteriori value of the attitude'' at
the i-th iteration is A,(+) = 6A(+)A(—) = dA(e(+))A{(—) = A;x1(—). This ap-
proach must still contend with the presence of local minima but no longer suffers
from possible singular points of the Euler angles and leads to a much simpler
measurement sensitivity matrix than that for the Euler angles, because it avoids the
need to differentiate the attitude matrix.

If the measurement is an arbitrary scalar function of the representation of the
measured vector in body coordinates, then we may write successively

z = flAv) + n = flA(=)V — [A(=)V]e) + n
= fA(=)V) + [(VAA(=)V) X (A(-)V)]'e + 7 (34)

which amounts to replacing U by Vf(A(—)v) in the earlier equations.'? This allows
us to accommodate focal-plane measurements as given by equations (29) within
our model. Thus, for example, if
a'Av
AV) = —— 35
f(Av) bAV (35)
as in equations (29), then the effective value of U is given by

u = VA(A(-)v) = (b"A(=)v) *(b X @) X (A(—)v) (36)

For the special case that z is a 3 X 1 matrix of the three components of a vec-
tor W in the body frame, W = AV, then simply

z=Av + n=A(—)v — [A(—)v]e + n (37)

a form which has been used to advantage in other studies [8, 9]. The measurement
sensitivity matrix for a vector measurement is then

(veclor)Hs(A(_)) = —[[A(—)V]] (38)

The sensitivity matrices of equations (33) and (38) are considerably simpler than
the corresponding sensitivity matrices obtained from differentiating the measure-
ment function in terms of the Euler angles for a finite rotation.

One constructs the sensitivity matrix for a two-dimensional measurement from
focal-plane sensors in a similar manner making use of equation (36). (Note that 1,
and 7, need not be statistically independent.) However, in practice it is easier to
convert these focal-plane measurements into unit vectors [8]. (See also Appen-
dix A.)

While it is clear from equation (19) that € must be the rotation vector, when € is
small we prefer to refer to it simply as the attitude increment vector. The reason for
this is that many three-parameter representations of the attitude differ from the in-
finitesimal rotation vector only by terms of O(|€|*) when € is very small. Hence, the

""While only the constant and linear terms in € are used in the linear approximation of the measurement, the
higher-order terms cannot be neglected in computing 8A from e.
"2Unless otherwise noted, the gradient will always be with respect to the entire argument of the function.
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measurement sensitivity matrix for these other representations'> when € =~ 0 will
be the same. These other representations include any asymmetric set of Euler an-
gles, twice the Rodrigues vector, four times the modified Rodrigues vector, and also
twice the vector components of the quaternion [3]. Thus, it seems pointless to spec-
ify which of the possible infinitesimal attitude representations is intended by €. In
updating the attitude one must specify the exact nature of € so that a finite parame-
terization of the spacecraft attitude can be chosen. The choice, in general, is incon-
sequential except for the computational burden.'*

Given this freedom of choice in the definition of €, let us define it to be the array
of 1-2-3 Euler angles, measured from the most recently estimated body axes, while
¢ is the same as before, but we may specify it too as a 1-2-3 sequence. Then we
obtain the same equations for attitude estimation as before, but the choice between
¢ and € becomes simply one of frame. We see this also in the measurement sensi-
tivity matrices where an inertial representation V is always proceeded by the a pri-
ori estimate of the attitude A;(—), transforming it to a representation with respect
to the predicted body axes. The same situation would have occurred had we chosen
the representation to be the rotation vector or twice the Rodrigues vector or four
times the modified Rodrigues vector [3]. The only appreciable difference between
inertial updates or predicted-body-referenced updates is the computational burden,
which has been shown to be less in the latter, or problems with singularities, which
are greater in the former. We shall see a similar trade-off in the Kalman filter in
Part II.

Alternate Update Strategies

The quaternion, likewise, can be expressed in terms of € as

sin(e|/2) €
7-sa@ 07 - | [0 2 eg - ["ﬂ ®7(-) (9

with the attitude matrix now a function of the quaternion [3]. The update is still car-
ried out in terms of €, but the attitude is accumulated as the quaternion. This has the
advantage of avoiding the six constraints for the attitude matrix in favor of only one
for the quaternion, while avoiding the singularities of the other attitude representa-
tions. The inevitable violation of the quaternion norm constraint due to round-off
error is easily repaired for the quaternion by division by the norm [11]. Restoring
orthogonality to a corrupted direction-cosine matrix is far more complicated
[12-16]. (See also Part I1.)

The use of € in calculating the attitude correction is not the only possible ap-
proach. We may also write the correction of the direction-cosine matrix in the form

A=A(—) + AA (40)
and the quaternion correction in the form

g=4q(—)+Ag (41)

A sensitivity matrix for a particular attitude representation focuses on the parameters to which the meas-
urement is sensitive. It is, however, always a measurement sensitivity matrix.

"“Markley [10] has pointed out that except for the Euler angles even the second-order 3 X 3 scalar measure-
ment sensitivity matrices for any infinitesimal three-dimensional representation of the attitude are the same
as that for e.
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Estimation strategies using the additive corrections for attitude representations of
dimension higher than three suffer from several drawbacks. Firstly, the four ele-
ments of the quaternion and, even more so, the nine elements of the direction-
cosine matrix, are constrained. Hence, AA and Ag must be constrained values for
the left member, at least to first order. There is no mathematical justification for re-
laxing the constraint on the attitude estimate.

The Quaternion Measurement Sensitivity Matrix

Having warned against carrying out estimation procedures in terms of the four
components of the quaternion, we now develop measurement sensitivity matrices
for such a procedure, but also, as we shall see, for correctly constrained estimation.
To develop a measurement sensitivity matrix in terms of the additive quaternion
correction we write (for a simple scalar measurement)

z=UA(g)V + 1 (42)
with now
A(Q) = (¢ — |aP)5x3 + 2qq" + 24¢4]q] (43)
and
= [q ] (44)
q4
Then
_ 0z dA(q)
Hi(q(—)) = — =u"— (45)
4 aq " | q" |z

Unlike the three-column sensitivity matrices of the previous section, these sensitiv-

ity matrices are insensitive to the quaternion norm constraint. This is because equa-

tion (45) treats all four components of the quaternion as independent variables. To

emphasize that difference, such sensitivity matrices are distinguished by an asterisk.
Explicit differentiation leads to

HX(q)Aq = 2[(u - V)(g4sAgqs — q"Aq) + q"(uv" + vu') Aq
+ (U X V) qAgs + g4u X V)" Aq] (46)

where for convenience we have discarded the designation (—) of g(—) for the mo-
ment. If we write now

Hi(g) = [h*"(g) | hf(g)] = h*"(g) 47)
then
o _ o~V + v+ vug o gau Xv) | _
h*(g) = 2[ U Vet (XY g ] = —2M(u,v)g (48)

The matrix M is symmetric and traceless and can be factored as

M(u,v) = [[[_u]]T u] [_[M] v] (49)

u" ofl-v" o
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If we define the quaternion representations of the three-vectors by

=" ana v=|" 50
—Oan =10 (50)

M(u.v) = {u}{Viz (51

where {-}; and {-}z are the matrix representations of the quaternion multiplication
rules [3]

then we can write

P ®q=1{phqg={qkp (52)
Combining equations (49) through (52) leads finally to
T (g(—) = —2[U @ g(—) @ VT (53)

The result can be extended to more general measurement models by replacing U by
Vf(A(—)v) as in equation (34).
For the case of a complete vector measurement, we have
z=A(Q@V + (54)

We may regard this as a 3 X 1 matrix of measurements of the form given by equa-
tion (30). Thus, applying equation (53) to the three components of Z leads to

(1®g(-) V)"
el (G(=) = —2| (2@ g(-) @ V)"
B®g(—-)®V)

= 2[T®5(-)®V2R5(—)®V[ERG(—)®V]" (59

where
1 0 0
i=(0l, 2=|1], and 3=]0 (56abc)
0 0 1

It then follows that
CH(G(-) = —2{G(—) ® V(T2 |3]

—2{g(-) ® V}R[““] = 2E@-)®V)  (57)

OT

Thus, equation (55) becomes

e (g(-)) = —2E7(G(—) @ V) (58)
The matrix Z(g), given by
I —
=(q) = [q“ v [[q]]] (59)
—-q
is familiar from the kinematic equation for the quaternion [3]

d_
=G=

1
% 3~(Q)w (60)
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where o is the body-referenced angular velocity. For a more general measurement
model, it suffices to replace u by Vf(A(—)v) as before.

The Connection Between the Measurement Sensitivity Matrices

Equation (60) provides the first step of the proper path to obtaining a sensitivity
matrix for the quaternion which embodies the norm constraint to first order. If we
imagine the finite value of € as being due to a physical rotation, then the change in
the quaternion related to the change in the error vector € is given by

1 _
Ag =S E(qe (6la)

If Ag satisfies equation (61a), then form Z"(g)Z(g) = Isx; it follows that
€= 2E"(q)Ag (61b)
The matrix Z(g) has the property [3] that
E'(q)g=0 (62)

Given an arbitrary quaternion, the matrix Z'(g(—)) in equation (61b) will annihi-
late in Ag the component along g(—), which can affect the length of g(+) to first
order. Thus, given a measurement sensitivity matrix for € we can construct the
corresponding constraint-sensitive'> measurement sensitivity matrix for Ag accord-
ing to

Hy(q(—)) = 2HJ{A(g(—))E"(g(-)) (63)

Such a measurement sensitivity matrix is not sensitive to the component of the
quaternion along g(—). It is different from the quaternion measurement sensitivity
matrices of the previous section. To distinguish these two the new quaternion meas-
urement sensitivity matrix does not bear an asterisk.

We can now understand the argument of E " in equation (58). One could equally
well compute Hig, in which case g(—) — 6g(—) = 1 = [0,0,0, 1]" (the identity
quaternion) and Vv = v; — V3 = A(—)V. Hence, the sensitivity matrix in the body
frame becomes —2Z "(A(—)V), which is just the well known statement that the mea-
surement is not sensitive to rotations about the line of sight of the observed object.

This transformation also works in the opposite direction.

HAAG(-)) = 3 H(@(-)E@G(-) 69
HAAG(-) = 5 H@-)E@(-) (©9)

which are no more than a statement of the chain rule for partial differentiation.
Equation (65) can be tested by substituting equations (33) and (53) or equations (38)
and (58). Finally

H(q(—)) = 2H{A(q(—))E"(g(-))
= H(q(-)E@E"(q) = Hj(g(-) (I — 73" (66)
13“Constraint-sensitive” and “constraint-insensitive” in this paper will always refer to the quaternion norm

or the orthogonality constraint of the attitude matrix. The measurement sensitivity matrix for € is always con-
straint-sensitive.
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Note that all of these relationships assume that g(—) has unit norm.

The Sensitivity Matrix for an Arbitrary Attitude Representation

Equation (65) may be seen as an alternate method for computing H{(A(—)). It is
clear, however, from the lengthy derivation of the previous section that it is easier
to compute H(A(—)) directly.

A similar result to equation (63) can be used to obtain the sensitivity matrix in
terms of the Euler angles. The body-referenced angular velocity is related to the
Euler angle rates by a relationship of the form [3]

10

d d
= M(p,¢)—| O | = M(¢p)— 67
o (¢ l/f)dt (¢)dt¢ (67)
U
This is equivalent to first order to writing [3] (in the notation of this work)
e = M(P) (d* — ™) (68)

and similarly for equations (71) and (72) below for the attitude correction [3].
By trivial inspection, the sensitivity matrix to changes in the Euler angles for a
scalar measurement is

Hy(p(—)) = H{A(d(—))M(p(—)) (69)

which, for a simple scalar measurement, becomes
Hy(d(—)) = (u X A(H(=)V)'M(d(—)) (70)
and similarly for vector measurements. Simple expressions [3, 17] exist for the ma-

trix M(¢).
In general, if the inverse kinematic equation for a given attitude representation «
(of any dimension) is known, namely

w= M(a)d%a (71)

then the corresponding constraint-sensitive measurement sensitivity matrix'® is
Ho(a(—)) = H{A(a(=)))M(a(—)) (72)

Thus, despite our earlier assertion, it is a simple matter to construct the constraint-
sensitive measurement sensitivity matrix for an arbitrary attitude representation
provided that the inverse kinematic equation for the representation is known, but
only because our predecessors have done the hard work to find an efficient form for
the inverse kinematic equation.

Ambiguity of the Measurement Sensitivity Matrix for the Quaternion

The constraint-insensitive measurement sensitivity matrix for the quaternion de-
pends on the nonunique relation of the attitude matrix to the quaternion. If in equa-
tion (43) the factor multiplying the identity matrix had been changed to (1 — 2|q|?)
to give

A(g) = (1 = 2|q)5xs + 2qq" + 24q4[[q]] (73)

"®Sensitivity to the constraint is an issue only if the dimension of e is greater than three.
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then the form of the sensitivity matrix would have been completely different. In
particular, for a simple scalar measurement, the alternate parameterization, which
is also popular though not as popular as equation (43), leads to the constraint-in-
sensitive measurement sensitivity matrix

SOHT(G(-) = 2B g(-) ®V]T - 2w -v)g'(-) (74

A more general parameterization one can make for the attitude matrix as a function
of the quaternion is

A(g) = A"(g) + ("7 — DO(q) (75)

where A”(g) is the (homogeneous) parameterization of equation (43), and Q(7) is
an arbitrary differentiable 3 X 3 matrix function of the quaternion. For the alternate
popular parameterization of equation (73), Q(q) was simply —lLxs. Q(q) = +13x3
yields a variant of equation (73) with (2¢7 — 1) multiplying the identity matrix.
One could also multiply the right member of equation (43) by a 3 X 3 matrix func-
tion 7(g"q) which is equal to the identity matrix for unit argument. The choice
T(x) = (1/x)I3x3 would lead to the ray representation of the attitude.

Given equation (75), then, a more general constraint-insensitive measurement
sensitivity matrix is

C BT (g(—)) = CH (g(—)) + ACHZ (g(-)) (76a)
with
ACH(G) = a(g)g" + ("7 — Db"(q) (76b)
and
_ _ _ 00 _
a(g) =2u'Q(g)v, b'(g) = uTa—q(q)V (76¢d)

For the vector measurement
(vector) r (= Ny =T —T— aQ —
A("*"Hz(q)) = 20(q)vg" + (g'q — 1) 07 (q@)v (77)

For g(—) having unit norm these measurement sensitivity matrices, when substi-
tuted into equation (65), will generate the same measurement sensitivity matrices
for € independent of the value of the new terms. In estimation problems the
constraint-insensitive quaternion measurement sensitivity matrices must be treated
with extreme caution. Since the constraint-insensitive measurement sensitivity
matrix, unlike the constraint-sensitive measurement sensitivity matrix, is not
unique, there can be no simple transformation from the latter to the former in
the manner of equation (63). Note that for some choices of Q(g) the constraint-
insensitive measurement sensitivity matrix will become sensitive to the constraint.
Such a choice for Q(g), in fact, leads to equation (74).

To appreciate the differences which can arise in the calculation of the constraint-
insensitive measurement sensitivity matrices let us evaluate equations (53) and
(74) for the case that g(—) =[0,0,0,1]". If we let u=[1,0,0]" and v =
[cos 30°,sin 30°,0]" we will arrive at the following numerical values for equa-
tions (53) and (74)

Hy =[0,0,1,1], and HZ'=10,0,1,0], (78ab)



Constraint in Attitude Estimation Part I: Constrained Estimation 65

The differences are indeed substantial.

Despite this ambiguity in the constraint-insensitive measurement sensitivity
matrices for the quaternion they can nonetheless be used in constrained quaternion
estimation. The restriction of the quaternion g*(+) to S* means that the first
term in equation (76b) or equation (77) will not contribute at all because
7"(—)E(g(—)) = 0", and likewise for the second term, because g(—) has unit
norm. It is only unconstrained quaternion estimation that the ambiguity can appear
to first order.

The Quaternion Norm and the Singularity of the Quaternion
Covariance Matrix

The norm constraint on the quaternion leads necessarily to a nearly singular
4 X 4 quaternion covariance matrix when the rotations are confined to some
minute region of SO(3) (for quaternions some minute region (or, better, two minute
antipodal regions) of S°, the sphere in four dimensions. To see this consider the fol-
lowing probability distribution of the quaternion

q~ NO,0l),  qa=V1-|q (79ab)

We assume that o < 1. This normal distribution for q is, of course, not rigorously
possible because it allows |q| > 1, but the probability of that occurring is so infini-
tesimal that we can ignore it, provided we are careful in our treatment to truncate
the integrals so as not to allow the square roots to have (infinitesimally) negative ar-
guments. From the consideration of symmetry it is obvious that the covariance ma-
trix of the quaternion must have the form'’

P;; = diag(o?, 0%, 07, %) (80)

where the right member denotes a diagonal matrix labeled by its diagonal elements.
Straightforward calculation leads to'®

3
= 30'4 + 0(0®) (81)

The 4 X 4 covariance matrix is not strictly singular, but it is certainly very ill
conditioned. For o = 2 arc sec, a routinely achievable attitude accuracy today, the
condition number (the ratio of the largest to the smallest eigenvalue of a matrix)
is greater than 10°, which makes the matrix singular for all practical purposes.
This statement, clearly, has nothing to do with the sensor models or with the esti-
mation method.

Note also that the mean quaternion in our examples is given by

Tz =[0,0,0,V1 = 302]" + 0(c*) (82)

which is not a possible quaternion of rotation, once more demonstrating that the
mean and covariance matrix are not rigorous statistical concepts for random vec-
tors defined on curved surfaces.

""The result is not changed if the sign of the quaternion is allowed to vary.
"The second moment of g, — 1 is (15/4)a”. Note that the distribution of g, is not Gaussian but approxi-
mately 1 + (%/2)x*(3).
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The most general result for wg and P;; is

T = {710,0,0, VT = tr Pagaq |" + O(tr Pagaq?) (83a)
| P 0 |(_
Pig = {qh| {ah (83b)
0 P5q45q4

with Pysq = Pe/4 and
1
Pogio0. = I(tr B3q8q)2 + (tr (quﬁq)z) + O((tr Pﬁqﬁq)3) (83¢)

This is not the form that would be obtained from an estimation procedure, in
which A(8qs) would vanish identically within the linearized approximation. Thus,
the 4 X 4 quaternion covariance matrix arising from a typical iterative estimation
problem would be

Py = {a}R[PS"f‘* g]% = E(q)PsunZ"(@) (84)
In computations in which terms of order |tr Pysq|* are discarded, P;; can certainly
be said to be singular. We shall see in Part II that the 4 X 4 covariance matrix of
equation (84) is more appropriate than that of equation (83).

It has sometimes been said that because Agq is not a quaternion of rotation it sati-
sfies no constraint. That is obviously not true. As stated at the end of Part I, since
g(+4) must have unit norm, it follows that

[g(H)F — 1 =2¢"(—)Ag(+) + |Ag(+)]P =0 (85)

so that the component of Ag(+) along g(—) must nearly vanish.

If we denote by Ag the component of Ag(+) in the direction of g(—) and
by Aq, the three components of Ag(+) in the tangent space to g(—), then these
must satisfy

(Ag)” + 2Aq, + |Aq [P =0 (36)
which is readily solved to give
Agy=—1+V1-|Aq,]"=—[Aq,[’/2 + O(Aq [ (87)

Agq(+) is most certainly constrained. Not surprisingly, the relationship between Ag
and Aq, is identical to that between dg4 and 6q. Clearly, Ag should not be treated
as a free variable independent of Aq . In fact, it is easy to show that AqH must be
8qs — 1 and that Aq, can be chosen to be 8q. (See Appendix B.)

The near-singularity of the 4 X 4 quaternion covariance matrix depends, of
course, on the attitude being confined to a small region (or equivalently to two
small antipodal regions). Even with measurement accuracies of 0.5 deg we antici-
pate 4 X 4 quaternion covariance matrices with condition numbers of about 100.
If, however, we consider the case of an attitude which is completely unknown, then
the probability distribution of the quaternion will be “uniform” over the entire
quaternion space. The uniform probability density function for the vector compo-
nents of the quaternion has been shown to be [18, 19]

1
pq(q,) = 2 5°

— = o0=|q|<1 (88)
V1 —|q’
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with g4 a function of . In the four-dimensional space of the quaternion this
becomes'’

I SPv
pq(q)—zﬂﬁ(q 1) (89)

where 8(x) is the Dirac 8-function and ¢ is the value of the quaternion magnitude.
The quaternion is clearly uniformly distributed over a spherical surface in four dimen-
sions. The quaternion statistics in this case are

_ 1
ﬁq = 0 and ng = ZI4><4 (90ab)

The quaternion 4 X 4 covariance is certainly non-singular in this instance. How-
ever, the mean quaternion is 0 = [0,0,0,0]", which is highly unphysical and so far
from a physical solution that were this used as an initial condition for an estimation
procedure, a linearization about the initial mean would be meaningless. The uni-
form distribution of q is also not Gaussian.

To a reasonable person these remarks about the 4 X 4 quaternion covariance ma-
trix must seem, well, reasonable, and to some degree they are. Nonetheless, we
shall review our statements here very harshly at the end of Part II.

The QUEST Measurement Model, the Wahba Cost Function,
and MLE

The QUEST measurement model [5, 20] was developed for a brute-force calcu-
lation of the estimate error covariance matrix for the Wahba problem, that is to
develop an approximate estimate error covariance matrix for the attitude matrix es-
timate which minimizes the Wahba cost function [20, 21], which, at the time, was
thought to have no rigorous connection to MLE. It was shown later that within
MLE the QUEST measurement model led directly to the Wahba problem [5].
However, this is not true if the attitude matrix is not constrained to be proper
orthogonal. In the present section we will develop the QUEST measurement model
and derive the Wahba problem from it. We shall also present a cost function which
is consistent with the QUEST measurement model and a measurement model
which is consistent with the Wahba cost function.

The general model for unit-vector measurements is

z. = AV, + 0 1)
or in more familiar notation
W, = AV, + AW, with AW, ~ N(O,R,) (92ab)

Since W, is a unit vector, there can be no error to first order in W; in the direction
of Wj*°. Therefore, it must be true that

WieTAW, = O(r Ry) (93)
It follows that

R = O((tr R)™) (94)
"Note that equation (88) assumes that q’ is confined to the hyperhemisphere (hemihypersphere?) g4 > 0,

while equation (89) assumes that it ranges over the entire hypersphere S°. Note that in equations (88) and (89)
we distinguish the sampled value from the random variable by a prime.
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Hence, there must exist an orthonormal triad { A e, l:lk, I ﬂk, »} such that

Ri = 02,0, 0%, + 02,0.,0%, + 0O((tr R)™) (95)
The QUEST measurement model (QMM) consists of setting
ot = 0, = 0t (96)
and ignoring the higher-order terms, whence
R = (I3 — WEeWieT) 07

The QMM measurement covariance matrix is singular, hence not invertible. To
construct the MLE cost function we consider the two scalar measurements

2(j) = UL We = OF,AV + mj, k=1,...,N, j=12 (98)

with n¢; ~ N(0, o). By definition, z;(j) will always have a sampled value close
to zero, but this is of no consequence. The MLE result for the QMM cost function is

N 2
1 ~ ~ "
JA) = 2 2 UL (W — AV
k=1 j=1 O%
N 1 . " . " . . . "
= Z ;(Wk — AV (U UL + Ui U (W, — AV))
=1 O%
N
1 .~ A P " A
= (W - AV)T(I — WW ") (W, — AV)) (99)
=1 0%

Thus, the effective inverse covariance matrix for the correct cost function for batch
unconstrained attitude matrix estimation from direction measurements is

1 A oa
uRk—ln — ?(1 _ W}(ruew}(rucT) (100)
k

which is the pseudo-inverse of the QUEST model measurement covariance matrix.
We have now developed the QUEST measurement model and derived the resulting
QMM cost function. We note that the QMM cost function is not that of Wahba.
Consider now the iterative minimization of the QMM cost function over the
manifold SO(3). At the i-th iteration we have for the QMM cost function

1Y 1 . . .
J™MM(e) = 5 P O_%[Wk — Ai(=)Vi + [Ai(—)V]e]"
(I — WIEWED[W, — A=)V, + [A(—)Vi]e] (101)
whence
aJ M N . ..
(€(+) = 2 SIA(-VIT(T — WieWieT)
Je k=1 Ok
W, — A=)V + [A(—)Vi]e ()] = 0 (102)

We now note that asymptotically (i.e., as N — )

limA (-)Vi] = [W¢] (103)
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true

Thus, asymptotically, the term in R;' proportional to Wi WT does not con-
tribute in the asymptotic limit when the iterative estimation procedure has con-
verged. The resulting cost function when this term is discarded is

N 2
1 - .
TVERA) = X > =W — AV (104)
k=1 j=1 0%
which is the Wahba cost function. The substitution of J"*™*(A) for J®™(A) re-
quired that A be restricted to the SO(3) manifold and the asymptotic approximation.
If we define

1 No1
=25 (105)
T ot k=1 Ok
and
N
ar = ob/or sothat X ap=1 (106ab)
k=1
then we can rewrite the Wahba cost function as
N
JVab(A) = > afW, — AV, (107)

20—t201 k=1

a more familiar form, except for the preceding factor 1/, a requirement of
MLE.®

It is now a trivial matter to present the measurement model which leads via MLE
to the Wahba cost function. That is, namely,

Wk = AVk + AWk with AWk ~ N(O, 0%I3><3) (1083.1))

We call this the full-vector measurement model. It is a possible model to use for the
three-axis magnetometer if we define

Zy = Bk + Nk with N ~ N(O, O’%I}><3) (109ab)

(Note that W, and o7 are no longer unitless.) Unfortunately, there exists only one
sensor which could be correctly modeled”' as a full-vector sensor. To use the full-
vector model for a focal-plane sensor, such as a vector Sun sensor or a star camera,
would be unphysical, to say the least. The detailed examination of these three models
will be carried out in Part IT [1].

We now have three models for studies of unconstrained attitude estimation:
(1) The QUEST measurement model with its associated QMM cost function;
(2) the full-vector measurement model with its associated Wahba cost function; and
(3) a hybrid model consisting of the QUEST measurement model but the Wahba
cost function.”? We could, of course, consider mixtures of measurements which are
either unit vectors obeying the QUEST measurement model or three-axis magneto-
meter measurements obeying the full-vector measurement model, but the three

“The normalization of the Wahba cost function in equation (104) leads to values of A in QUEST which are
approximately 1/0% [5]. If 1/a7 is replaced by a; of equation (106b), as in the original publication of
QUEST [20], then Amix = 1. Obviously, the value of the QUEST quaternion is the same in both cases.
Correctly modeled in the qualitative sense only, because the effective measurement covariance matrix will
be dominated by errors in the reference magnetic field which are not isotropic.

ZObviously, there is no point in considering the QMM cost function and the full-vector measurement model.
Combination (3), at least, has a precedent.
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above will be sufficient for our investigatory purposes and more transparent. Note
that only the first two models are consistent with MLE if the constraint is relaxed
and these are the only models which will have significance for the Kalman filter.

A Failure of Unconstrained Quaternion Estimation
Consider the three noise-free measurements
2 =A@Gu)i =1 22=A@Gu)2 =2, z;=A(@Gu)3 =3  (110abc)

Clearly, by linear superposition A(g)V = V for any 3 X 1 column vector V. Hence,
to add further noise-free measurements would be superfluous (in the constrained
estimation case, equation (110c) would also be superfluous), and equations (110)
are identical to A(guc) = Isxs. It follows that we must solve for the quaternion
from the nine equations

A(que) = Iz (111)

Taking the attitude matrix-quaternion relation to be given by equation (43) we ob-
tain directly

A — A" = 4q.uclquc] = 0sx3 (112)
whence, either gsuc = 0 or quc = 0. However
trA = 3(qaue)” = lque]* =3 (113)
for which gsuc = 0 is impossible. Hence
quc =0, quc= =*1 (114ab)

which are the correct values for the quaternion.
If, on the other hand, we choose equation (73) as the relationship between the at-
titude matrix and the quaternion, we must solve instead

(1 = 2lqf + 2¢7)uc =1 fori =j

AGuc) = 3 1
<2q,~qj + q42 6[jkgk> =0 fori##j
k=1 ucC
where € is the Levi-Civita symbol [3]. For i = j we have directly
(g1 + gDuc = (gf + guc = (43 + g3uc =0 (116)
whence
quc = qouc = qsuc = 0 (117)

The remaining equations all become
0+ quuc-0=0 (118)

We see that gsuc is indeterminate in this case. This will not remain the situation
when noise is added to the measurements, but the estimate for gsuc under these cir-
cumstances cannot be physically meaningful. Thus, for a very reasonable situation
the unconstrained estimation of the quaternion can yield very stupid results. This
will be observed again in the more realistic examples of Part IT [1].

Note that there is no similar problem for the estimation of the unconstrained at-
titude matrix, which yields directly Afic = Lxa.



Constraint in Attitude Estimation Part I: Constrained Estimation 71

Summary and Discussion

We have given a very complete and careful presentation of the foundations of
batch least-squares attitude estimation and the attitude measurement sensitivity
matrix. We have shown, in particular, that the constraint-insensitive quaternion
measurement sensitivity matrices are ambiguous, hence, unconstrained quaternion
estimation will lead to ambiguous, and hence meaningless, estimates for the quater-
nion. We gave a specific example in which, effectively, one choice of the measure-
ment sensitivity matrix led to the correct estimate of the quaternion for noise-free
measurements, while another choice did not lead to an estimate at all. Further, we
showed that the Wahba problem results from the QUEST measurement model, a
very physical model for direction measurements, only when the attitude is con-
strained. When this is not the case the least-squares cost function must have a dif-
ferent form. Thus, we see from the outset that unconstrained quaternion estimation
is beset with problems.

Since, the quaternion measurement sensitivity matrix is ambiguous, is there a
criterion for selecting the right one? The answer is simply that since the uncon-
strained quaternion estimate is also meaningless, the best quaternion measurement
sensitivity matrix to use is the one which leads eventually to the most efficient cal-
culation of the constrained estimate of the quaternion. By this we mean not any
quaternion estimate which would have had unit norm but the quaternion estimate
that would have been obtained had we insisted on maintaining the constraint cor-
rectly throughout the estimation process. This turns out to be a tall order, as we
shall see in Part II of this work [1].
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Appendix A: Transformation of Focal-Plane Measurements

The focal-plane measurements of equations (29) have the disadvantage, unlike
the scalar and vector measurements, of not being linear in the attitude matrix. Gen-
erally, it is much easier to deal with measurements which are linear functions of the
attitude matrix rather than with rational functions. In fact, with the exception of the
three-axis magnetometer, our vector measurements all start out as focal-plane
measurements. .

To avoid a messy notation, let us write W = [W,, W3, W3] as the measured unit
vector. Then we can write the focal-plane measurement vector as

4

¢ Wi/ W ~ ~ 1
— - =fW), W=——— Alab
£ [gz] [Wz/m] W) Vi+ o+ 4 fz (Alab)
A small variation AW is equivalent to a variation A{ according to
1| AW, — L AW, -
A= — = UAW A2
¢ Ws |:AW2 - §2AW3:| (A2)

with

I e
U—W3[O | —gj et =] (A3)
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Equation (A2) and the QUEST measurement model lead to a 2 X 2 measurement
covariance matrix which is [6, 9]

1+48 4o ] "

&4 1+ 4

Beginning instead with a known R; we can obtain Rw knowing that the three-
dimensional measurement equation must have the form

R, = o’(1 +ﬁ+§5)[

W = A\? + M3x1 with M3x1 ~ N(O,RW) (AS)

What we must derive is the form for the singular Rg' with which to construct the
cost function. Note that Ry and Ry' are both singular and therefore not related by
inversion. By Ry' we really mean the (singular) Fisher information associated with
the measurement.

The contribution of the measurement € to the least-squares cost function is

JA) = 516 = CAVTR [ — HaV)]
= 1L~ HAE)T + [ACDTR L — FACV + [da-)D)]
= %[; — f(A(-)V)— UleJA(-)VTR;'[¢ — HA(—)V)— UlelA(-)V]
= S 1E = A0+ VACVITRLTE - AV + UTAC)Dle]
= J(e) (A6)

The contribution of this term to the Fisher information is

9*J(€)
de'de

= [A(=)VI'U'R; 'UIA(—)V] (A7)

which is the same Fisher information that would have been obtained from the least-
squares cost function

J(A) = %[W — AVT'U'R;'U[W — AV ] (A8)

Hence,
Ri'= UR;'U (A9)

is the desired inverse covariance matrix for constructing the weighted least-squares
cost function for the equivalent vector measurement.

Of course, working directly from the QUEST measurement model (see equa-
tion (99)) we have

REVI — (szz _ WlmermeT) (AIO)

1
ot
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Appendix B: Decomposition of the Quaternion Space
From
{@ =[2() : 7] (B1)
it follows that
E(@(=)E"@(=) + q(—)g"(—) = Lo (B2)

provided g(—) has unit norm. Likewise if g(—) has unit norm, we may write for
any quaternion p of arbitrary norm

P = E(?(—))PL + Z](_)pus
=p Ttp (B3)
with
p, = E'(@G(-)p, Py = q'(-)p (B4ab)
Likewise, we may decompose an a 4 X 4 matrix M as
M = E(q(-)M, E'(q(-) + ()M 7" (-)
+ @M, 3"() + G(-M,, E(G(-)) (BS)
with M| | = E'(q(—))ME(g(—)), etc.
For p = g, the quaternion in the constrained quaternion Kalman filter,

q, = 8q4, q,= 6q (B6)



