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Attitude-Independent
Magnetometer-Bias
Determination: A Survey

Roberto Alonso! and Malcolm D. Shuster?

Abstract

The currently known algorithms for inflight magnetometer-bias determination without
knowledge of the attitude are examined. The majority of these are shown to be limited
either by poor convergence properties, significant statistical or analytical approximations, or
the discarding of important data. The most robust and accurate of these algorithms is
TWOSTEDP, an algorithm recently developed which combines the best properties of the ex-
isting algorithms. Comparisons of algorithm performance are made both for spinning and
inertially stabilized spacecraft. While TWOSTEP performs well in all cases, many of the
other algorithms do not converge to the globally optimal estimate of the magnetometer-bias
vector or even diverge.

Introduction

A number of algorithms have been proposed for estimating the magnetometer
bias when attitude information is not available. The simplest is to solve for the bias
vector by minimizing the weighted sum of the squares of residuals which are the
differences in the squares of the magnitudes of the measured and modeled magnetic
fields [1]. This approach has the disadvantage that the cost function is quartic in the
magnetometer bias and therefore admits multiple minima. Typically, one initiates
the least-squares procedure by assuming that the initial magnetometer bias vector
vanishes, which may lead to slow convergence or convergence only to a local mini-
mum if the magnetometer bias is large compared to the ambient magnetic field.

Gambhir [1, 2] advocated centering the data to remove the quartic dependence.
This leads to a cost function which is quadratic is the bias and, therefore, has a
unique solution. The algorithm embodying this centering is called RESIDG (sup-
posedly, “G” for Gambhir) and has been employed for nearly two decades. The
centering, however, necessarily discards part of the data, and the effect of this loss
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of data on the accuracy of the algorithm was not studied. In addition, RESIDG does
not make any attempt to treat the statistics correctly, so that it is not possible to as-
sess the accuracy of the estimation adequately.

A second approach has been put forth by Thompson et al. [3], who preferred to
construct a fixed-point algorithm, which was called, with obvious reference,
RESIDT. Fixed-point algorithms have the advantage of often converging quickly
when one is far from the solution, but can become intolerably slow as one ap-
proaches the solution. Thompson’s algorithm was successfully employed in support
of the AMPTE spacecraft.

Davenport et al. [4] have proposed another approach to solving the quartic cost
function by computing first an approximate solution for the magnetometer bias.
The approximate solution produced by this algorithm, unfortunately, is not consis-
tent. Hence, the approximate solution cannot approach the true solution as the num-
ber of data becomes infinite. However, the inconsistency seems to be no worse than
about ten per cent for biases as large as one third of the ambient field. Higher
accuracy can then be obtained by an iterative procedure, using the approximate es-
timate as a starting value for minimizing the quartic cost function. Davenport’s ap-
proximation, however, has no advantage over the centering method of Gambhir,
which, at least, is consistent and which may serve equally well as a starting point
for an iterative solution using the quartic cost function. This algorithm has been ap-
plied to the magnetometers of the Hubble Space Telescope.

Acufia {5] has proposed an ingenious method which does not require a geomag-
netic field model at all. This model has been used to calibrate the magnetometer in
studies of magnetic fields far from the Earth. The model is certainly adequate for
most applications, even for spacecraft in low-Earth orbit. However, the fact that it
does not take advantage of a field model, limits its accuracy and introduces sys-
tematic errors as well. Like Davenport’s approximation, Acufia’s method may be
used to initiate a search for the minimum of the quartic cost function.

The present authors [6] recently proposed a new algorithm which is based on
the centering method of Gambhir [1, 2] but which treats the statistics more cor-
rectly and provides an efficient method of restoring the error introduced by the cen-
tering approximation. Centering necessarily discards part of the data. It is shown,
however, that this discarded data can be incorporated as a single effective measure-
ment which is uncorrelated with the centered estimate of the bias. This permits
the data discarded by the centering approximation to be included in the final result
as an update of the centered estimate. In most cases, the algorithm converges in
two iterations. This approach has been applied successfully not only to the estima-
tion of magnetometer biases but also the estimation of scale factors and the non-
orthogonality of the magnetometer axes. The authors do not call this new algorithm
RESIDA or RESIDS, but rather have chosen the name TWOSTEP. The algorithm
was prepared to support SAC-B, the first Argentine spacecraft.

The Measurement Model
All treatments begin with the model presented in {6] given as
Bi=AH;+b+ &, k=1,...,N ey

where B is the measurement of the magnetic field (more exactly, magnetic induc-
tion) by the magnetometer at time #,; Hy is the corresponding value of the geomag-
netic field with respect to an Earth-fixed coordinate system; Ay is the attitude of the
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magnetometer with respect to the Earth-fixed coordinates; b is the magnetometer
bias; and & is the measurement noise. The measurement noise, which includes both
sensor errors and geomagnetic field model uncertainties, is assumed to be white
and Gaussian.

The dependence on the attitude is eliminated by considering the square of the
magnitude of the magnetometer readings as an effective measurement. Thus, we
define effective measurements and measurement noise as

ze = By — [H,? (2a)
v, =2(Bx — b) - & — |& (2b)

whence,
z%=2Bc-b—|bf+u, k=1,...,N 3)

This is the starting point for the derivation of all of the algorithms. Assuming that
the measurement noise € on the magnetometer readings is white and Gaussian
with & ~ N(0, 2y), it follows to very good approximation that the effective scalar
noise satisfies

W~ N(P«k, 0'2) “4)

with
we = —tr(Sy) (5a)
o? = 4(Bx — b)"=,(By — b) + 2(r =P (5b)

The model is discussed in somewhat more detail in reference {6].
Maximum Likelihood Estimate of the Bias and Scoring

Given the statistical model above, the negative-log-likelihood function [7] for the
magnetometer bias is given by

N
J(b) = L I:Lz(zk — 2B« - b + |b]> = w)* + log o + log 277] (6)
2 | ok

which is quartic in b. The maximum-likelihood estimate maximizes the likelihood
of the estimate, which is the probability density of the measurements (evaluated at
their sampled values) given as a function of the magnetometer bias. Hence, it mini-
mizes the negative logarithm of the likelihood (equation (6)), which thus provides
a cost function.

Since the domain of J has no boundaries, the maximum-likelihood estimate for
b, which we denote by b*, must satisfy

aJ
—| =0
ob | 7

Note that only the first of the three terms under the summation depends on the mag-
netometer bias. Unless one wishes to estimate parameters of the measurement
noise, there is no reason to retain the remaining two terms.’ This quartic depend-
ence can be avoided if complete three-axis attitude information is available, since

*See the remarks in a corresponding footnote in reference [6].
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the bias term then enters linearly into the measurement model (q.v. equation (1)),
as in the work of Lerner and Shuster [8].

The most direct solution is obtained by scoring, which in this case is the
Newton—Raphson approximation. We consider the sequence*

bk =0 (8a)
°J ~'aJ

bR = bM® — | ——= (b} — (bR 8b

% [ababT( )] oy B (80)

This series is obtained by expanding J(b) to quadratic order in (b — bM®), setting

the gradient of the truncated series to zero, and solving for bi.;. If for some value

of i we are sufficiently close to the maximum-likelihood estimate, then it will be
true that

lim bi* — b’ &)

We have adopted the convention here that the partial derivatives of a scalar function
with respect to a column vector is again a column vector, The gradient vector 3J/db
is the 3 X 1 matrix
aJ | 5
— = =2 —(z ~ 2By - b + b — pw)2(By — b) (10)
ob k=1 Ok
and the Hessian matrix 27/9b 3b" is given by the 3 X 3 matrix

L 2ol
m = kz::] ;,%[4(Bk - b) (Bk - b)T + 2(Zk - 2Bk N b + |b|2 - [Lk)13><3] (11)
Generally, the second term in the brackets will be much smaller than the first and
can be discarded.

A second approach to scoring is the Gauss—Newton approximation [9]. In this
case, we replace the Hessian matrix by its expectation, the Fisher information ma-
trix F. Since

E{(zc = 2By - b + b* — p)} =0 (12)

this amounts to discarding the second term in equation (6). According to the law of
large numbers, as the number of independent identically distributed (i.i.d.) samples
of a random variable becomes infinite (the asymptotic limit), the average of these
samples approaches the expectation value of the random variable. Our measure-
ments are not identically distributed because of the dependence on By. However, if
the distribution of the values of AH, is regularly repeated, then we may regard the
measurements as being i.i.d. for each value of A:Hy. Therefore, as N — oo

L p =S L am b8 - by (13)
ab b’ iz O%
and the scoring procedure becomes now
bg™ =0 (14a)
b = b — £ 2 (b (14b)

*Throughout this work we shall use k as the time index and i as the iteration index.
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Again, if for some value of i we are sufficiently close to the maximum-likelihood
estimate, it will be true that

lim b — b’ (15)

Rigorously, the Fisher information must be evaluated at the true value of the mag-
netometer bias. In practice, however, there is little disadvantage to evaluating it at
the current value of the estimate. For both the Newton—Raphson and the Gauss—
Newton method, the estimate error covariance matrix is given in the limit of infi-
nitely large data samples by

N -1
By — F = [2 —154(Bk ~ b)(Bx — b)T] (16)
k=1 Ok
If the measurement noise is Gaussian, then the asymptotic limit is true, in fact, for
finite data samples. In most cases, the Fisher information matrix is simpler to evalu-
ate than the Hessian matrix of the negative-log-likelihood function, and often can
be evaluated independently of the data.
The earliest estimates of the magnetometer bias were accomplished by the
method culminating in equations (6) through (8), although often the weights were
not chosen according to a statistical criterion.

Convergence of the Scoring Approximation

Let bY%, bR, ..., b, b, ..., be a sequence of scoring estimates of the bias,
generated by the Newton Raphson method, and let us define the correction by
M = bM* — bl {an
By definition of the Newton—Raphson method
aJ 9°J
9% i) + BY%) e = 0 1
ab( 1) [ababT( 1)]8 (18a)
aJ 0%J
I bFJR + bNR E; - b
o) [ahabT( )] % (180)
Writing the gradient vector as
aJ
b) =— 1
g(b) = = (b) 9)
we can rewrite equations (18) as
gb™) + (el - V)gbX) =0 (20a)
gb™) + (&5 - V)gb™) =0 (20b)

and V is the gradient operator with respect to b. If we substitute equation (17) for
bR in equation (20b), we obtain

g + M) + (el - V)gblF + ) =0 21

Expanding the function g in a Taylor series in €]* and discarding terms higher than
quadratic leads to

gbif) + (e - Vigbi%) + (1/2)(el” - V)’gb) + - -

+ (el - V)[gi) + (e - V)gbi®) + ---]=0
(22)
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The sum of th first two terms vanishes identically because of equation (20a). Solv-
ing for £ and keeping only lowest-order terms leads to

-1
e = —i[a—gT(b%“ﬂ ] (el - V)gbih (23)
2| db

Thus, when the quadratic approximation in equation (22) is justified, the conver-
gence of the corrections is also quadratic. The Newton—Raphson method generally
converges quickly, once the solution is suitably close to the minimum. The same is
true for the Gauss—Newton method, as can be shown by arguments identical to
those leading to equation (23). (For the Gauss—Newton method, the matrix dg/ab”
is replaced by the Fisher information matrix.) For quartic functions, however, one
may never become close enough to the true minimum because of the influence of
the other (local) minima. This is a serious drawback of the Newton—Raphson
method.

Let us examine these statements in more detail for a specific example. Suppose
that the actual measurements were obtained from a random function

B, = A H, + b"™ + g, k=1,...,N (24)

where b™ is the true value of the bias. We assume also that the AHy, k =1, ..., N,

are uniformly distributed over all possible directions and that g is isotropic, that is,

it has a covariance matrix proportional to the identity matrix. In that case o7 is a

constant, which we denote simply by 2, and the negative-log-likelihood function

will have the form.
1 N
J=— 2 [JAH + b™ + & — |AHP
2075
—2(AHy + b™ + &) - b + |b]> — u]* + terms independent of b
(25)

We will assume that N is very large, so that we can replace J by its expectation
value, and we can replace the sum over N by N times the average over the direc-
tions of A¢Hy. This leads to

N |4
J(b) = — |:—H2|b'rue — bf> + [b™ — b|4] (26)
2001 3

Here H is the magnitude of Hy, which by our initial assumption is a constant. In this
special case, J has a unique minimum at b"*. If we differentiate with respect to b,
we obtain

aJ N| 4
gb)=—=-— [—Hz(b‘rue — b) + 2|b™ — bA(b™ — b):| (27a)
ob gl 3
ogb) N

4
BT o7 ?Hzlaxa + 2[b™ — bf'Lixs + 4(b"™ — b)(b™ — b)T] (27b)

Substituting these expressions into equation (23) leads to

-1

[ (1 1
8£\I+Rl — <?H2 + ?|bt.rue _ bi|2>13><3 + (btrue _ bi)(btrue _ bi)T:l

__[2( we _ ) - gNRNR _ | R (pime — b)) (28)
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Close to the solution, the first matrix is simply (3/H*)I3x3 and the numerator de-
creases faster than |eM*|* because |(b™ — by)| is also tending to zero. The conver-
gence, therefore, will be very fast. Note that b™ is a double root in this special case
and that the minimum of the cost function is unique. Hence, for small perturbations
of the conditions, we expect to find two roots very close together. This is, perhaps,
the signpost of trouble ahead.

Fixed-Point Method

Thompson, Neal and Shuster [3] proposed a fixed-point algorithm. Define the
quantities

G=2 %[4BkBI + 2(zx — po)lzx3) (29a)
k=1 k
N
a= 2 —(z — m)2Bx (29b)
k=1 Ok
N
f(b) = 3 —[4(B. - b)b + 2b(B, b)) 290)
k=1 k

Then the gradient vector defined by equations (10) and (19) becomes
g(b) = Gb — a — f(b) 30)

Since the gradient vector must vanish at the maximum-likelihood estimate, it fol-
lows that

Gb* —a — f(b*) =0 31
Hence,

b* = G '[a + f(b*)] (32)
Thus, we have an implicit solution for the magnetometer bias. Typically, this algo-
rithm is solved iteratively using

bi" =0 (33a)

b, = G '[a + f(b[")] (33b)
and we expect that once b{" is sufficiently close to the solution that

limb{* = b* (34)

Unfortunately, the convergence of fixed-point algorithms is usually poor.
The convergence properties of the fixed-point method can be found in the same

manner as those of the Newton—Raphson method. Again we write

bi* = b¥, + £ (35)
and
bi* + & = G '[a + f(bF, + &)] (36a)
= G a + f(b™) + (el - VD)) (36b)
Collecting terms and recalling equation (33b) yields
g1 = G (& - VD) (37)

so that convergence is now only linear.
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Let us apply the example that was used for the convergence study of the
Newton—Raphson method. In this case

an| 1
G(b) = ; ?1121:”(3 + btmebxmeT:l (38a)
a=20 (38b)
4N 1
f(b) = —| (™ - b)b + Elblz(bm’e — b):l (38¢)
a

This leads to

1 -1
EF—EI — I:?H213><3 + btruebtrueT:l

1
' [(b‘m - &Mb; + (™ - b)e™ + (b - &F)(b™ — b)) — jlbilzﬂw] (39)

The convergence is only linear. Furthermore, from equation (39) the convergence
factor for small values of the magnetometer bias is typically on the order of

15|btrue|2
2H?

For a bias magnitude of 100 mG, which was observed for the SEASAT spacecraft
[8], the convergence factor at the magnetic equation is roughly 0.8, so that conver-
gence would be very poor in this case. For field values at high altitudes, the factor
could be greater than one, and the fixed-point algorithm would not converge at all.

Davenport’s Approximation

Davenport and his collaborators [4] have offered a very clever approximate form
for the bias vector estimator at the cost of having an estimator which is inconsis-
tent. He begins by writing an approximate cost function as

1 &1
Jo(b) = — E _Z(Zk — 2By b + X — w)? (40)
2 k=1 Ok
where A is a constant. This cost function would agree within constant terms with
that of equation (6) when A = |b|. Davenport, however, allows A to be a free pa-
rameter, independent of b.

The cost function of equation (40) is only quadratic in b. Differentiating this cost

function with respect to b and setting the gradient equal to zero leads to

d N1
—Jn(b =—> —(zx — 2By - b¥ + A — 2B, =0 41
ab D( ) b;; ’; a'% (Zk Kk D ,LLk) Kk (41)
which has the solution
bt =U + XV (42)
where
N 1 -1 N 1
U= [2 —24BkBk] [2 — (o — Mk)znk] (43a)
k=1 Ok k=1 Ok
N 1 | N 1
V= [E — 4B, B{ [E — 2B (43b)
k=1 0k k=1 T
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One next chooses A to be consistent with
b3 = x (44)

Thus, one computes the square of both members of equation (42), which, noting
equation (44), leads to

X =JUP+2(U0- V)X + [VPX (45)
This can be recast as
aX + b +c=0 (46)
with
a=|V), b»=20-V~—-1, c=|UP 47)
The solutions are given by the quadratic theorem
¥=_bi2?t2; (48)

Since a and c¢ are positive and the discriminant must be non-negative to lead to real
roots, it is obvious that b* = 4ac, and therefore |b| = Vb? — 4ac. Tt follows that b
must be negative, otherwise A* will not be positive. In the absence of a magne-
tometer bias and of measurement noise, ¢ = 0 and also b = 0, which corresponds
to the negative sign of the square root in equation (48). Therefore, the solution for
X in that case is given by

—b — Vb* — 4ac

= 2a “

Davenport argues that this sign must be chosen for the square root in all cases. We
shall see later that this choice of sign may not always be correct.

Unfortunately, there is no good way to assess the error created by replacing |b|?
by A? and then choosing X’ to restore some semblance of self-consistency. As a re-
sult of this approximation, the algorithm will not yield the exact value for the bias
in the limit that the measurement noise vanishes. Mathematically speaking, we say
that such an algorithm is inconsistent. To appreciate the magnitude of the inconsis-
tency, consider again our example above for the isotropic field distribution but with
vanishing measurement and model noise. We find in this case that Davenport’s es-
timate is given by

1 — V1 —4x(1 + x)?

b =
D 2x(1 + 2x)? (50)
where
L= 3’btme|2 (51)
- 2H?

for x < 1/4, equation (50) becomes
b% = (1 — X" (52)

For x = 1/6, corresponding to a magnetometer bias approximately one third of the
ambient field (the SEASAT case at equatorial latitudes), the inconsistency in the es-
timator as given by equation (50) in this case is approximately 12 percent. For a
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bias of magnitude 20 mG, the inconsistency becomes only 1.5 percent. Again, we
emphasize that these errors are not due to measurement noise but to approximations
in the cost function. The errors cannot be decreased by increasing the number of
data. Davenport has used this approximation also as the starting point of a complete
Newton-Raphson process.

Acuiia’s Algorithm

A very intriguing alternative to the preceding algorithms is that of Acufia [5],
which does not rely on a field model at all. Thus, Acufia’s algorithm is ideally suited
to determining the magnetometer bias when the satellite is far from the Earth and
the ambient field is not known. The algorithm was developed, in fact, for experi-
mental studies of the magnetic field of celestial bodies other than the Earth.

Acuiia defines the derived measurement

ze = |Bi* — B (53)

where, as before, By is the magnetometer at time #. Recalling the model of equa-
tion (1) we can write this as

Zie = 2(Be — Be) - b + Age (54)
with the effective measurement error A, given by
Ave = [H) — [Hef* + v — v (55)

and u is as given in equation (2b). There are thus two disturbances which contribute
to the noise term, a largely random term » — # and a systematic model error
[Hi> — [H*>. Because Acufia’s effective measurement involves a subtraction, it
also avoids the quartic dependence in the cost function.

Acuiia argues that if the spacecraft is spinning, we can neglect the model error
compared to the random noise term. Since the algorithm will be applied to systems
in which there is no available model for the effective noise term, Acuiia assumes ef-
fectively that the random noise term is a white Gaussian identically distributed
process and determines the b which minimizes the cost function

J(b) = %E’ [zee — 2(Bx — By) - bJ? (56)
k£

Here, the prime on the summation symbol serves to remind us that no index occurs
more than once, so that the individual magnetometer measurements are not counted
double. (That is, n individual magnetometer measurements can yield no more
than n/2 effective measurements.) Straightforward differentiation of equation (56)
leads to

—1
by = [2’ 4(Bx — B)(By — Be)T] >'2(Be — Bo)zwe C1))
k£ X4

Substituting equation (54) we may rewrite this as
bX =b + Ab, (58)

where

-1
Ab, = [2’4(& ~ B)(By — B»T] > 2(Be — BJ) A (59)
k€ kit
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From equation (55), we see that the estimation error contains both random and sys-
tematic terms

-1
Abgrdom — [E 4(B, — B)(Byx — Bf)T] > 2By — B A (60a)
k¢ k€

-1
Ab?\yswmalic — [2’4(]31( — Bc)(Bk —_ Bg)T] E, 2(Bk - B() A (60b)
Y k.t

where
A =wm—~w+p and AP =|HJ — [Hf + e — pe  (61)

The relative importance of the random and systematic errors determine how one
should best construct the effective measurements zz. If the random errors domi-
nate, then it is advantageous to choose k and ¢ so that |B, — B, is maximized.
Since the spacecraft is assumed to be spinning, this means that the two measured
magnetic field components perpendicular to the spacecraft spin axis are nominally
equal in magnitude and opposite in sign. If the random errors indeed dominate, it
follows that the measurement error variance will be independent of the choice of &
and €, while the sensitivity to b will be maximized. If, on the other hand it is the
systematic model error which dominates, then it will be advantageous to choose &
and € close together to minimize this.

To judge the relative importance of these two contributions to the error in low
Earth polar orbit, we note that the geomagnetic field has a magnitude of approxi-
mately 300 mG at the equator and 600 mG at the poles. Since the orbital period of
a near Earth spacecraft is approximately 100 minutes, the time to travel from the
equator to the pole is a quarter orbit or 1500 seconds. It follows that a typical de-
rivative of |H|* with respect to time is given by

dHF| _ (600> — (300)°

2 ~ 2
5 1500 (mG)?/sec = 180 (mG)*/sec (62)

For a typical time between measurements of 10 seconds, this amounts to
|AF* = 1800 (mG)* (63)

We assume that the contribution of the w’s is much less. The typical random error,
on the other hand, is approximately

|Agrem| ~ 4|H| o (64)

where o is the standard deviation of the individual magnetometer measurements
(per axis). Taking o = 2 mG and an average value of 450 mG for the geomagnetic
field leads to

AfF*™ =~ 1800 (mG)* (65)

The two contributions are roughly equal. The above discussion considered only lin-
ear terms in the model errors. When we take account of quadratic and higher-order
errors, then clearly the systematic errors will be rather more important. Note also
that we have chosen a sampling interval of 10 seconds. Had we chosen a sampling
interval of 30 seconds, then the systematic error would have tripled while the ran-
dom error remained the same. Clearly, to optimize Acufia’s algorithm, we wish to
take the sampling interval to be no larger than 10 seconds.
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For small At we can obtain a very approximate expression for the typical sys-
tematic error in the estimate of the j-th component of b using Acuiia’s algorithm,
which is

1
2w|H|

independent of Ar. Here, w is the magnitude of the angular velocity, which we have
chosen to be 5 rpm. At a sampling interval of 10 seconds, the random error will be
approximately the same amount.

Acufia’s algorithm is the only choice for magnetometer bias determination when
there is no reliable magnetic field model. However, if a reliable field model is avail-
able, then one can obtain greater accuracy by accounting explicitly for the system-
atic error term, which is the case for the other algorithms in this study. Also,
differencing the magnetometer measurements necessarily discards half of the data.
Thus, Acufia’s algorithm is not the ideal algorithm for spacecraft in low Earth orbit,
though it is certainly the preferred algorithm when the magnetic field in space is no
longer dominated by the main field of the Earth.

The TWOSTEP Method

The TWOSTEP algorithm [6] is based on the RESIDG algorithm of Gambhir
[1, 2], but has been considerably improved and extended.

d|HJ*

lAbj’ e =

~ 0.4 mG (66)

Given a sequence of variables X, £ = 1, ..., N, the centering method defines
center values of the sequence according to the prescription
— LA |
X=7"2 =X (67)
=1 0%
where
1 &1
=2 (68)
a k=1 O

and centered values according to
Xx=X—X, k=1,...,N (69)

On the basis of these center and centered quantities, it can be shown [6] that the
quartic cost function of equation (6) can be written exactly as

J(b) = J(b) + J(b) (70)
where
1

1 & .
> E — 2By - b — ju)? + terms independent of b (71a)
k=1

J(b) =
and

J(b) = l—(z — 2B - b + [b]> — 1)? + terms independent of b (71b)
Equations (71) give the negative-log-likelihood functions of the centered and cen-

ter data respectfully with respect to the magnetometer bias vector. The TWOSTEP
algorithm consists first of finding the value of b which minimizes J(b). Because
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J(b) is a quadratic function of its argument, the estimate of the bias from this first
step, the centered estimate b*, is unambiguous and has the solution

N
- - 1 _
b* = B, >, — (& — u)2Bx (72a)
k=1 0%
and the estimate error covariance of the centered estimate is given by
- - N 1 o -1
By = Fu' = | 2 —4BBI (72b)
k=1 0%

The centered estimate b* and the center measurement z have been shown to be in-
dependent sufficient statistics for the magnetometer bias vector under the assumption
that the measurement noise on the magnetometer readings is white and Gaussian.
The second step consists of using the centered estimate as an initial value and
computing the corrected estimate by applying the Gauss-Newton method to the full
negative-log-likelihood function, which we write equivalently as

P - 1
Jb) = — (b — BBy — b*) + ——( — 2B b + b — @’

+ terms independent of b (73)

for which the minimization is straightforward and rapid. The centered estimate by
itself, the first step, provides a consistent estimate of the magnetometer bias, which
will provide adequate accuracy in most cases. Note that the centered estimate also
requires some iteration to recompute the weights, as discussed in [6]. Because the
TWOSTEP method has been derived rigorously, it admits various statistical tests as
figures of merit and special techniques for treating cases of poor observability.

Intermezzo

‘We have presented six methods above for the estimation of magnetometer biases
without information about the attitude. Three of these are single-step methods:

¢ Davenport’s approximation
e Acuiia’s algorithm
e The centered estimate of TWOSTEP.

The other three methods are infinite processes:

¢ Naive quartic scoring
¢ The fixed-point method
o TWOSTEP (the complete algorithm).

One may also consider an iterative process initiated with Davenport’s approxima-
tion, a process studied by Davenport [4], or with Acufia’s algorithm [S]. These it-
erative processes will certainty not be as efficient as TWOSTEP because the
centered approximation is a much better approximation of the global minimum. We
consider these possible algorithms also but present the results in less detail.
Davenport’s approximation and the centered estimate, originally proposed by
Gambhir but considerably refined here, are very different in character. The centered
estimate achieves its simplicity by discarding one linear combination of the meas-
urements. No approximations are made, however, except for the initial universal
assumption that the measurement noise on the magnetometer readings is white
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and Gaussian. For this reason, the centered estimate is consistent. If the amount of
data becomes infinite or if the measurement noise becomes vanishingly small, then
with probability 1.0 the centered estimate will yield the correct value of the bias.
Davenport’s approximation, however, achieves a solution by changing the depend-
ence of the measurements on the magnetometer bias. Thus, it cannot yield the cor-
rect value of the bias except in the special case that the bias vanishes identically.

Davenport’s approximate method has other disadvantages. Because the centered
estimate yields the maximum likelihood estimate of the bias given the reduced sub-
set of the data, this estimate may be used as a sufficient statistic, to be combined
with the remaining datum. No information is required from the centered data other
than the centered estimate, the associated estimate error covariance matrix, and the
cross-covariance of the centered estimate with the remaining datum (which we have
shown to vanish identically). There is no need to recompute any quantity with the
centered data. Davenport’s approximation, because it is simply an ad hoc functional
approximation, does not provide a maximum-likelihood estimate for any subset of
the data. For our present purposes, therefore, it provides at best an initial value for
naive quartic scoring.

Acuiia’s algorithm is also not consistent and in low Earth orbit provides no more
than a good starting point for naive quartic scoring. However, one advantage it has
over Davenport’s approximation is that the approximation is not arbitrary. The cen-
tral assumption of Acuiia is that the change in the measured magnetic field due to
the rotation of a spinning spacecraft far exceeds that due to the orbital motion of
the spacecraft. This assumption is largely justified. In cases where one does not
possess a field model, for example, when one is very far from the Earth, Acufia’s
algorithm is the only available means for estimating the magnetometer bias.

Of the three infinite processes, TWOSTEP is the most appealing. It is the only
method which has a consistent estimate as a starting value, and therefore, asymp-
totically will have an initial value closest to the global maximum of the likelihood.
if we consider naive quartic scoring initialized by Davenport’s approximation or
Acuiia’s algorithm as fourth and fifth infinite processes, then it is surely the best
method of five.

An additional advantageous property of TWOSTEP is that the center correction
contains little information when the data is isotropic. This further increases the like-
lihood that TWOSTEP will converge to the global maximum of the likelihood. It is
likely that in many cases, the center correction will be insignificant.

Numerical Examples

The algorithms treated in this work have been examined for two typical scenar-
10s: a spacecraft spinning at 15 rpm and an inertially stabilized spacecraft. The
spacecraft orbit has been chosen to be circular with an altitude of 560 km and an
inclination of 38 deg. The geomagnetic field in our studies has been simulated
using the International Geomagnetic Reference Field (IGRF (1985)) [10-13],
which has been extrapolated to 1994, These are the simulation parameters that we
used in reference [6].

For purposes of simulation we have assumed as in reference [6] an effective
white Gaussian magnetometer measurement error with isotropic error distribution
and a standard deviation per axis of 2.0 mG, corresponding to an angular error of
approximately 0.5 deg at the equator. We have assumed also that the x-axis of the
magnetometer is parallel to the spacecraft spin axis, which always points toward the
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TABLE 1. Comparison of Single-Step Algorithms for Noise-Free Data

Model Bias (mG) Centered Estimate Davenport Acuna

[ 10, 20., 30] [ 10., 20., 30.] [ 10, 20., 30.] [ 20., 20., 30)]
[ 30., 60., 90] [ 30., 60., 90.] [ 30., 50., 90.] [ 40., 60., 90.]

[ 60., 120., 180.]
[100., 200., 300.]
[200., 400., 600.]

[ 60.,120., 180.]
[100., 200., 300.]
[200., 400., 600.]

[ 60., 120., 180.]
[ 99., 196., 263.]
[198., 397., 561.]

[ 70., 120., 180.]
[110., 200., 300.]
[210., 400., 600.]

Sun. The Sun direction makes an angle of approximately 40 degrees with the orbit
plane. Thus, for a spinning spacecraft we expect the estimation errors for the mag-
netometer bias to be largest for the x-component. The magnetometer data were
sampled every eight seconds. All entries in the tables for the estimated magne-
tometer bias and the associated standard deviations are in mG.

We examine first the three single-step methods, that is, the centered estimate,
Davenport’s approximation, and Acuiia’s algorithm. To highlight the inconsistency
of the last two methods, we examine the behavior of both methods for noise-free
data. The results for two orbits of data for the spinning spacecraft are shown in
Table 1. The equivalent results for noisy data are presented in Table 2. (Note that
confidence intervals are provided only when the algorithm itself can provide them.
Heuristic algorithms, like those of Davenport and Acufia, do not provide a ready
means for computing the confidence interval.)

TABLE 2. Comparison of Single-Step Algorithms for Noisy Data

Model Bias (mG) Centered Estimate

[ 10, 20., 30.] [ 998 = 0.09, 19.87 = 0.10, 29.97 + 0.10]
[ 30., 60., 90.] [ 30.00 = 0.09, 60.00 = 0.10, 90.16 = 0.10]
[ 60.,120., 180.] [ 60.02 = 0.09, 119.98 = 0.10, 180.05 * 0.10]
[100., 200., 300.] [100.00 = 0.09, 199.82 = 0.10, 300.01 = 0.10]

[200., 400., 600.] [200.04 = 0.09, 400.05 = 0.10, 600.12 = 0.10]

Model Bias (mG) Davenport’s Approximation
[ 10, 20., 30] [ 995, 19.89, 29.74]
[ 30, 60., 90.] [ 29.99, 60.04, 90.17]

[ 60., 120., 180.]
[100., 200., 300.]
[200., 400., 600.]

[ 60.00, 119.98, 180.05]
[ 83.05, 170.57, 253.67]
[190.04, 380.19, 570.39]

Model Bias (mG)

Acufia’s Approximation

[ 10, 20. 30]
[ 30., 60., 90.]
[ 60., 120., 180.]
[100., 200., 300.]
[200., 400., 600.]

[ 892, 2007, 29.57]
[115.89, 59.84, 90.56]
[143.65, 120.50, 180.10]
[190.15, 199.69, 300.54]
[303.90, 400.10, 600.21]
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For small values of the magnetometer bias, Davenport’s approximation yields
quite acceptable results. For values of the magnetometer bias comparable to or
greater than the magnitude of the ambient magnetic field, the errors in Davenport’s
approximation become unacceptably large. These statements hold both for the
noise-free and the noisy data. This behavior is to be expected since for small val-
ues of the bias the contribution of the [b|* term in the measurement model will be
smallest. Note that within numerical roundoff error the centered estimate yields the
exact value of the bias for noise-free data, as it must. For small values of the mag-
netometer bias vector, Davenport’s approximation shows small errors which do not
appear in the first few significant digits, and hence are lost in Table 1. To within
numerical roundoff error, the centered estimate yields the exact result.

Tables 1 and 2 show also that Acufia’s algorithm has a very large error owing
to the small variation of the magnetic field as measured along the magnetometer
x-axis. Because of this, the matrix which is inverted in equation (57) is nearly
singular and the modeling errors of the estimator are greatly magnified. Perfor-
mance would have improved dramatically if the spacecraft attitude motion had not
been confined to rotation about one axis. This is the procedure recommended by
Acuiia [5].

We can gain a greater appreciation of the behavior of these three algorithms if
we examine the normalized errors defined by

1 S -
7= = lb™ = bRy (b — b¥) - 3] (74)
which should have mean zero and standard deviation unity. We can define likewise
1 -
N = %[(bLme — b{) Py (b™ — bf) — 3] (75a)
i -
m = 2l = bXTPRb™ ~ bY) — 3] (75b)

These functions are normalized to the covariance matrix of the random estimation
error for the centered approximation in order that these three figures of merit can
have a common scale. Davenport’s approximation and the Acufia algorithm do not
provide a ready measure of their estimation errors. A comparison of the quantities
is given in Table 3. Note that the samples of 77 behave in fact like a random variable
with mean zero and variance one, which is not always the case for 7, and n4. For
small to moderate values of the magnetometer bias vector, Davenport’s approxi-

TABLE 3. Comparison of Normalized Errors for the Single-Step Methods Applied to
Noisy Data

Model Bias (mnG) ] mw Ma

[ 10, 20., 30.] —0.50 -0.67 3.22 X 10°
[ 30., 60., 90.] -0.70 -0.01 3.78 x 10°
[ 60., 120., 180.] -0.54 -1.09 3.59 X 10°
{100., 200., 300.] 0.09 143 X 10° 4.17 X 10°

[200.. 400.. 600.] —0.67 591 X 10° 5.54 X 10°
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TABLE 4. Comparison of Single-Step Algorithms for Noisy Data and Two-Axis Slews

Model Bias (mG) Centered Estimate

[ 10., 20, 30.] [ 10.00 £ 0.10, 1991 = 0.11, 30.16 % 0.11]
[ 30, 60., 90.] [ 29.91 + 0.10, 59.99 = 0.11, 89.99 * 0.11]
[ 60., 120., 180.] [ 59.95 + 0.10, 119.81 = 0.11, 179.58 % 0.11]
[100., 200., 300.] [ 99.83 * 0.10,199.76 * 0.11,299.58 % 0.11]
[200., 400., 600.] [199.96 * 0.10, 400.03 * 0.11, 600.12 % 0.11]
Model Bias (mG) Davenport’s Approximation

[ 10, 20., 30] [ 10.02, 19.89, 30.16]

[ 30, 60., 90.] [ 29.87, 60.03, 90.03]

[ 60., 120., 180.] [ 59.81,119.80, 179.52]

(100., 200., 300.] [ 83.86, 179.35, 250.32}

[200., 400., 600.] [169.66, 347.30, 495.07)

Model Bias (mG) Acufia’s Approximation

[ 10, 20., 30] [ 10.65, 19.94, 30.51]

[ 30, 60., 90.] [ 29.39, 60.27, 90.01]}

[ 60.,120., 180.] [ 60.27,119.72, 179.53]

[100., 200., 300.] [ 99.75, 200.07, 300.07]

[200., 400., 600.] [199.39, 400.27, 600.01}

mation of the magnetometer bias performs well. For values of the magnetometer
bias vector comparable to the ambient magnetic field, however, we see from Table 3
that the errors in Davenport’s approximation are on the order of 50 & and are there-
fore useful only as an initial value for minimization of the full quartic cost function.
Acuiia’s algorithm should not be criticized too harshly since it has been applied to
a case where it cannot be expected to give reasonable results. Nonetheless, the re-
sults about two axes are quite good, leading us to believe that it would provide a
useful result if all three components of the bias were made observable.

To obtain the true measure of the performance of Acufia’s algorithm compared
to the others, we have considered the case of a spacecraft which is alternately spin-
ning about the magnetometer x-axis at 1 rpm for one orbit, and then for one orbit
about the magnetometer y-axis at one 1 rpm. The data has been sampled at a rate
of one sample every ten seconds. The results are shown in Tables 4 and 5. We see

TABLE 5. Comparison of Normalized Errors for the Single-Step Methods Applied to
Noisy Data and Two-Axis Slews

Model Bias (mG) U] no yn

[ 10, 20., 30] 0.07 0.10 24.00
[ 30., 60., 90.] —0.85 -0.59 15.59
[ 60., 120., 180.] 0.16 9.66 11.47
[100., 200., 300.] 1.57 1.09 x 10° 1.45

[200., 400., 600.] —0.84 5.09 X 10° 15.59
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that in these cases Acufia’s algorithm performs quite well, though not as well as the
centered algorithm. Note that Davenport’s approximation is superior to Acuiia’s al-
gorithm for small values of the bias vector, where the quadratic term is negligible
and has little effect on Davenport’s method, while the model errors are relatively
large in Acuiia’s algorithm. When the bias vector is large compared to the ambient
field, however, then the reverse is seen to be true, since the quadratic terms now
dominate and Davenport’s approximation is no longer justified, while the large bias
swamps the model errors in Acufia’s method, which yields very useful results. Note
that if errors in the field model were large compared with instrument error, the situ-
ation which prevails when one studies the magnetic fields of other celestial bodies
than our own, then Acufia’s method would be superior to both the centered algo-
rithm and TWOSTEP.

For the same spinning spacecraft that was the subject of Tables 2 and 3, we have
examined the convergence of the iterative algorithms. The algorithms tested are:
naive quartic scoring; the fixed-point method; and TWOSTEP. The first two meth-
ods are initialized at b = 0. This is emphasized in the tables by showing the value
(0, 0, 0) as the zeroth iteration for the bias. The centered estimate is a finite proce-
dure and does not require an initial value. Therefore, no zeroth iteration is indi-
cated. However, if the o must be calculated from an assumed value of the bias, as
we have chosen to do in this study, it is wise to recompute these variances at b* and
then recompute b* for consistency. This was the procedure followed in the present
study. In the naive quartic scoring algorithm, the sigma’s have been recomputed at
each iteration. In the table entries for TWOSTEP, the first entry (Iteration 1) is the
centered estimate b*, followed by iterations of the center correction. The results for
the spinning spacecraft are shown in Table 6. For all three algorithms tested the in-
finite process was terminated when convergence had occurred to two decimal
places. Table 7 gives the results for an inertially stabilized spacecraft in the same
configuration described at the beginning of this section. In both Tables 6 and 7, data
was sampled for 25 minutes. The true value of the magnetometer bias was chosen
to be [200., 100., —200.] mG.

For the spinning spacecraft, as shown in Table 6, all algorithms performed well.
However, naive quartic scoring required five iterations in order to attain conver-
gence to two decimal places, while the fixed-point method required 30 iterations to
reach this same degree of convergence. The TWOSTEP algorithm required only a
single iteration of the center correction to attain this accuracy. The improvement
over the centering approximation, however, was only one part in 10,000, so that the
centering approximation by itself was surely adequate.

For the inertially stabilized spacecraft on the other hand, the results are much dif-
ferent. Naive quartic scoring has converged to a false minimum, while the fixed-
point method has diverged. This divergence of the fixed-point method was even
observed for the spinning spacecraft for a different value of the seed used in the
random-number generator for the measurement noise. In contrast to the other algo-
rithms, the TWOSTEP algorithm has again converged to two decimal places in a
single iteration of the center correction with the centering approximation again
providing adequate accuracy.

The values of the magnetometer bias and the random-number seed in the nu-
merical example of Table 7 were not accidental. It was chosen to demonstrate the
dangers of naive quartic scoring and the fixed-point method. It is well to ask, then,
what is the frequency of these diseased occurrences? Of 100 different simulations
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TABLE 6. Comparison of Iterative Methods of Magnetometer Bias Determination for a
Spinning Spacecraft with b™* = [200., 100., —200.] mG

Iteration Bias Estimate (mG)

Naive Quartic Scoring

[ 0.0, 0.0, 0.0 j
[ 2428, 67.61, —153.34]
[ 95.88, 102.08, —201.97]
[ 195.32, 100.31, —200.92]
[ 200.48, 99.92, —220.52]
[ 200.46, 99.93, —200.51]

+[0.28, 0.24, 0.24]

LN EaEWwWN =0

Fixed-Point Method

0 [ 0.0, 0.0, 0.0 ]
1 [—41.62, —49.57, 108.28]
2 [ 67.14, 15523, —323.16]
3 [ 105.37, 146.01, —300.63]
4 [ 142.43, 135.51, —276.27]
5 [ 170.51, 125.55, —254.08]
10 [ 204.14, 103.66, —208.10]
20 [ 200.85, 100.09, —200.86]
30 [ 20046, 9993, —200.51]
44 [ 20046, 99.93, —200.51]
TWOSTEP
1 [ 20048, 99.93, —200.51]
*[0.28, 0.24, 0.24]
2 [ 200.46, 99.93, —200.51]

+[0.28, 0.24, 0.24]

with the measurement noise parameters and data span as given above, and with
the components of the magnetometer bias sampled uniformly on the interval
[—300, 300] mG, it was found that naive quartic scoring converged to the wrong
value in six cases, while the fixed-point algorithm converged to the wrong value or
diverged in 38 cases. For the failures of naive quartic scoring, the magnetometer
bias vector was in all six cases of comparable magnitude to the ambient magnetic
field. In five of these six cases, using Davenport’s approximation as an initial value
for naive quartic scoring led to convergence to a local minimum which was far from
the true bias vector. In these five cases, however, we found that choosing the posi-
tive sign in equation (49) led to a good approximation of the true minimum, after
which quartic scoring converged to the correct result. Thus, it would seem that
Davenport’s arguments [4] for the choice of sign in equation (49) require that the
bias be small compared to the ambient field. Acufia’s algorithm was tested for these
same six cases and found to be a good initial value for locating the minimum of the
cost function in only three cases. Davenport’s and Acufla’s methods were not tested
for the other 94 cases. In contrast to this, in no case did the TWOSTEP algorithm
require more than two iterations to the center correction in order to converge to the
correct answer to within two decimal places.
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TABLE 7. Comparison of Iterative Methods of Magnetometer Bias Determination for
an Inertially Stabilized Spacecraft with b'" = [200., 100., —200.] mG

Iteration Bias Estimate (mG)

Naive Quartic Scoring

0 [ 0.0, 0.0, 0.0 ]
1 [ 422.89, —482.10, 1564.72]
2 [ 401.53, —210.59, 763.69]
3 [ 32048, -—85.56, 376.61]
4 [ 28175, -—28.67, 197.82]
5 [ 266.71, —8.40, 131.05]
6 [ 263.37, -4.93, 117.73]
7 [ 26307, —4.86, 116.97]
8 [ 263.05, —4.86, 116.95]
Fixed-Point Method
0 [ 0.0, 0.0, 0.0 ]
1 { 0.48, —8.45, —1647]
2 [ 7.14, -16.50, —20.00]
3 [ 1077, —19.67, —20.64]
10 [ 12.54, —33.46, —23.00]
20 [ 13.85, —5520, —27.65]
30 [ 20.73, —93.34, —38.63]
40 [ 1555.84, 77542 —34.25]
41 [—5102.70, —9605.79 —3786.40]
42 [4.36,9.62,6.60,] X 108
43 [-0.56, ~0.97, —1.41] X 10"®
44 [2.11,1.31,7.02] X 10%
45 [—1.57,0.55, —6.41] x 10'®#
TWOSTEP
1 [ 200.45, 98.92, —197.04]
+{0.28, 0.46, 1.30]
2 [ 199.90, 99.86, —199.82]
3 [ 19991, 99.85, —199.80]

*[0.13,0.13,0.17]

As a final test we have compared TWOSTEP with Acufia’s algorithm under
optimal conditions for the latter. Two orbits of data were generated, one with
the spacecraft spinning about the x-axis at 1 rpm and the other with the spacecraft
spinning about the y-axis at this same rate. In this example, Acuifia’s algorithm will
benefit from the most advantageous conditions. The great advantage of Acuiia’s al-
gorithm is that it doesn’t require a model for the magnetic field. Its disadvantage is
that it makes approximations which introduce systematic errors. We saw in Tables 4
and 5 that the TWOSTEP algorithm was the best algorithm when the statistical
model was known to be Gaussian. The question is whether the uncertainties in the
statistical model assumed by TWOSTEP are more important than the systematic
errors inherent in Acuiia’s algorithm. To test this we have allowed the noise model
to have mismodeling errors and have compared the TWOSTEP algorithm with
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Acuiia’s algorithm for the colored noise model and “realistic” noise models of ref-
erence [6]. In both cases we have assumed a moderate magnetometer bias vector
(30., 60., 90.) mG. The results are shown in Table 8. The absolute error is the mag-
nitude of the difference of the estimate from the true value.

In the above examples the performance of the two algorithms is very similar.
More extensive studies have shown that for both models one algorithm is some-
times better than the other by as much as a factor of two, with either method having
equal probability of being better. This confirms again the excellent performance of
TWOSTEP and the very good performance of Acufia’s algorithm in this situation.

Discussion

After exhaustive testing, the new algorithm, TWOSTEDP, is seen to outperform
overall all of the other algorithms. It is susceptible to none of the diseases which
can cause these algorithms to give erroneous results. Since it begins with a very
good (and consistent) initial estimate for the bias, it is more likely to converge to
the correct minimum than does naive quartic scoring [1] or the fixed-point method
of Thompson et al. [3}, which begin at b = 0. Unlike the centered algorithm of
RESIDG fame [2], it does not discard data ultimately and does the centering in a
statistically correct way, apart from the approximation that the measurement errors
on the attitude-independent derived measurement are Gaussian and uncorrelated,
which is almost certainly not the case. However, TWOSTEP has been shown to per-
form well even in cases of severe mismodeling of the measurement noise {6].

In general, the centered estimate for the magnetometer bias has been observed to
be a better approximation than ignoring the quadratic behavior of [b|* as in the work
of Davenport et al. [4], particularly for moderate to large magnetometer biases. In
many cases, Davenport’s approximation provided a good initial value for iteratively
computing the optimal estimate of the bias from naive quartic scoring. However, as
we have seen, it led to an incorrect final result in at least five percent of the cases
studied.’ In those cases, our numerical experiments seem to indicate that Daven-
port’s prescription for choosing the sign in equation (49) is not correct. Thus, it

TABLE 8. Comparison of TWOSTEP and Acuiia’s Algorithm for Mismodeled
Measurement Noise and Two-Axis Slews. b™ = [30., 60., 90.] mG

Algorithm Bias Estimate (mG) Absolute Error (mG)

Colored Noise Model

Centering Approximation [30.13, 60.24, 89.97] 27

TWOSTEP [30.11, 60.27, 89.971 .30

Acuiia [29.86, 60.07, 90.02)] .16
“Realistic” Noise Model

Centering Approximation [30.30, 60.65, 90.57] 92

TWOSTEP [30.14, 60.96, 90.57] .92

Acuiia [30.92, 60.16, 90.72) 1.18

*It would seem that reference {4] simply did not examine a sufficient number of cases before reaching its con-
clusions. A similar criticism may be made about reference [3], for which the senior author of the present work
bears some culpability.
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seems that greater reliability would be obtained by calculating equation (49) for
both values of the sign and computing the cost function at each final value to ob-
tain the better result. We have not tested this hypothesis extensively, however, and
cannot guarantee that one of the two signs of equation (49) will yield a good ap-
proximation of the magnetometer bias vector when this quantity is large.

Similar comments can be made for Acufia’s algorithm, whose performance suf-
fers noticeably when two orthogonal calibration slews cannot be accommodated in
the mission profile. As we have seen, Acuiia’s algorithm did not provide a useful
initial value for finding the true minimum of the cost function in at least three per-
cent of such cases. However, it should be borne in mind that Acufia’s algorithm is
the only algorithm which functions not only in the absence of knowledge of the at-
titude but also in the total absence of a priori knowledge even of the magnetic field.
Under these very ungenerous circumstances, for which it was designed, it performs
extraordinarily well, provided that there is sufficient independent variation in the
magnetic field measurements along all three axes of the magnetometer. The results
in Table 8 show, in fact, that Acufia’s algorithm behaved equally to or in individual
cases sometimes even better than TWOSTEP for two-axis slews and mismodeled
measurement noise. However, the performance of TWOSTEP on average per-
formed equally well in this case, and it has the advantage of performing very well
in less opportune situations where Acuifia’s algorithm is at a serious disadvantage.

A characteristic of the centered estimate, the first step in TWOSTEDP, is that it
is often good enough. The Fisher information associated with b genuinely charac-
terizes the quality of the centered estimate. A comparison of this and the Fisher
information associated with the center term can be used to decide whether it is
worthwhile to carry out the center correction. This was demonstrated explicitly for
the case of the SAC-B spacecraft in the previous work {6]. We see that a careful sta-
tistical treatment of the magnetometer bias gives us many more insights into the be-
havior of the estimator.

In summary: we have tested the currently known algorithms for attitude-
independent magnetometer bias determination for a number of scenarios. We have
found the TWOSTEDP algorithm to perform well in all cases, while the other itera-
tive algorithms are susceptible to consistency or divergence problems. Among the
single-step algorithms, we have found that the centering approximation, the first
step in TWOSTERP, to be by far the most capable performer overall.
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