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TWOSTEP: A Fast Robust
Algorithm for
Attitude-Independent
Magnetometer-Bias
Determination

Roberto Alonso' and Malcolm D. Shuster?

Abstract

A fast robust algorithm is developed for the inflight estimation of magnetometer biases
when the attitude is not known. This algorithm combines the convergence in a single step of
an heuristic algorithm currently in use with the correct treatment of the statistics of the
measurement, and does this without discarding data. The new algorithm works well even
when the magnetometer bias is comparable in magnitude to the ambient magnetic field. The
algorithm performance is examined using simulated data for both spinning and inertially
stabilized spacecraft.

Introduction

At orbit injection, often the only attitude sensor operating is the vector magne-
tometer. Frequently, the spacecraft is spinning rapidly, and, if the spacecraft is not
in an equatorial orbit and not at too high an altitude, it is possible on the basis of
this sensor alone (and, of course, a knowledge of the spacecraft position) to deter-
mine the spin rate and the spin-axis attitude of the spacecraft. At the same time, the
accuracy of the magnetometer data may be compromised by large systematic mag-
netic disturbances on the spacecraft, often the result of space charging during
launch or from electrical currents within the spacecraft. Thus, some means is usu-
ally needed to determine this bias quickly. Since the three-axis attitude of the space-
craft usually cannot be determined at this stage, the desired algorithm must not
require a knowledge of the attitude as input.
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The above situation occurs for nearly every spacecraft. For spacecraft equipped
with only a vector magnetometer and a Sun sensor, three-axis attitude will rely on the
magnetometer data. In this case, the spacecraft attitude cannot be used directly to de-
termine the magnetometer bias vector by transforming the reference magnetic field to
magnetometer coordinates using the computed attitude and then comparing this trans-
formed reference field with the magnetometer measurement. For such a mission,
which occurs quite often, algorithms of the type discussed in this paper are required.’

Our study focuses on near-Earth spacecraft, for which a reasonably accurate
magnetic field model exists (certainly for magnetic latitudes of less than 70 deg).
Obviously, for scientific studies in which one wished to refine the geomagnetic
field model, one would require complete attitude knowledge, at least as a practical
matter. The algorithm studied in this work is adequate for calibrating parts of the
attitude control system, such as for determining the ambient magnetic field for mo-
mentum dumping. For a spacecraft with moderate attitude accuracy requirements
(say, approximately 1 deg/axis), which is almost always the case for spacecraft at
orbit injection, it is adequate for calibrating the magnetometer for the attitude de-
termination system as well.

A number of algorithms have been proposed for estimating the magnetometer
bias. The simplest is to solve for the bias vector by minimizing the weighted sum
of the squares of residuals which are the differences in the squares of the mag-
nitudes of the measured and modeled magnetic fields [1]. Unfortunately, this leads
to a cost function which is quartic in the magnetometer bias vector. To avoid the
naive minimization of a quartic function of the magnetometer bias, a number of
alternative methods have been proposed. These comprise the centered algorithm
of Gambhir [1, 2], Davenport’s quadratic approximation [3], and Acuifia’s model-
independent method [4]. The new method, which we call TWOSTEP, is an im-
provement and considerable extension of Gambhir’s algorithm. Gambhir’s
algorithm did not treat properly the correlations introduced by the centering
process, nor did it attempt to correct for the possibly significant amount of data
which the centering process discards. The new algorithm suffers from neither of
these drawbacks and is very robust and efficient as well. The present paper presents
the development of this new algorithm. The comparison with other methods will be
carried out in a succeeding work [5].

The Measurement Model
We begin with the model
Bk:Aka+b+€k, k=1,,N (1)

where By is the measurement of the magnetic field (more exactly, magnetic induc-
tion) by the magnetometer at time #; Hy is the corresponding value of the geomag-
netic field with respect to an Earth-fixed coordinate system; A, is the attitude of the
magnetometer with respect to'the Earth-fixed coordinates; b is the magnetometer
bias; and &y is the measurement noise. The measurement noise, which includes both
sensor errors and geomagnetic field model uncertainties, is generally assumed to be
white and Gaussian. This is probably a poor approximation, since the errors in the

*One could also treat both the attitude and the magnetometer-bias vector in a Kalman filter. That ap-
proach adds significant complexity to the computations and may not yield a better result than the method de-
veloped here.
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geomagnetic field model are certainly correlated, and, in fact, generally dominate
the instrument errors. However, for the sake of argument we shall assume here that
the errors are white and Gaussian.

To eliminate the dependence on the attitude, we transpose terms in equation (1)
and compute the square, so that at each time

IH = [AHL = |Bc — b — & a)
= B = 2Bx - b + |b* — 2(Bx — b) - & + |&af (2b)
If we now define effective measurements and measurement noise according to
7= By’ — [H (3a)
w=2Bc—b)- & — |&f (3b)
then we can write
z%=2By b — b + 1, k=1,...,N 4

Thus, even with the assumption that the original magnetometer measurement
noise is white and Gaussian with covariance matrix 2, the effective measurement
noise is not exactly white or Gaussian and will contain both Gaussian and y? com-
ponents. Thus, if

&~ N(0,Z) ®)
and

Flexel} =0 for k#¢ (6)

where E{ - } denotes the expectation, it follows that
e = E{n} = —tr(Zy) (7a)
ot = FE{vi} — ui = 4B, — b)"Z(B. — b) + 2(tr2d) (7b)

Here tr( - ) denotes the trace operation. In addition,
E{vve) = mepe for k # € 8)

so that the 1 — . are white. Generally, we assume that the noise & is small com-
pared to the geomagnetic field, which is certainly true in low-Earth orbit. Then to
a large degree 1, is Gaussian and we can write approximately

e~ N, o) 9

Note that By in equation (3b) is a random variable, being equal to B + &
Thus, we could rewrite equation (4) more correctly as

z = 2B - b — |b* + w, k=1,...,N €]
with
= 2(B™ — b) - & + |&f (3b")

However, we cannot know B without calculating A, which we wish specifically
to avoid. Hence, we must fall back on equations (3b) and (7) as the governing equa-
tions of our effective measurement model. In general, the error introduced in this
way will be very small, because ui < of, by nearly four orders of magnitude, in
fact, if we do not exceed 70 deg in magnetic latitude.
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Scoring

Given the statistical model above, the negative-log-likelihood function [6] for the
magnetometer bias is given by

1
J(b) 2 k=1
which is quartic in b. Here zi denotes the realization of z, i.e. the actual value ob-
tained in the data, to distinguish it from the random variable z;. A prime will be
used to designate the realization of a random variable throughout this paper. This
rule will not apply to the By, because these always denote the value in the data.

The maximum-likelihood estimate maximizes the likelihood of the estimate of
the bias, which is the probability density of the measurements (evaluated at their
sampled values) given as a function of the magnetometer bias. Hence, it minimizes
the negative logarithm of the likelihood (equation (10)), which thus provides a cost
function.

Since the domain of J has no boundaries, the maximum-likelihood estimate for
b, which we denote by b*, must satisfy

i{
ob | v

Note that only the first of the three terms under the summation depends on the mag-
netometer bias. Unless one wishes to estimate parameters of the measurement
noise, there is no reason to retain the remaining two terms.* This quartic depend-
ence can be avoided if complete three-axis attitude information is available, since
the bias term then enters linearly into the measurement model (q.v. equation (1)) as
in the work of Lerner and Shuster [7].

The most direct solution is obtained by scoring, which in this case is the Newton—
Raphson approximation. Since an a priori estimate of the magnetometer bias is
generally not available, we consider the sequence’

bk =0 (12a)
NR __ J.NR __ 37 NR _lﬂ NR -

bivi = b; [ababT(b‘ )] ah(bl ) i=01,.... (12b)
This sequence is obtained by expanding J(b) to quadratic order in (b — b}'®?), set-
ting the gradient of the truncated series to zero, and solving for bi,,. If for some
value of i we are sufficiently close to the maximum-likelihood estimate, then as i
tends to infinity, b will tend toward a minimum or maximum of J(b). Unfortu-
nately, the quartic nature of J(b) leads to multiple minima and maxima so that the
convergence to the desired global minimum is by no means guaranteed.

A modification of equations (12) in frequent use is to replace the Hessian matrix
(the matrix of second partial derivatives) of J(b), by its expectation value, the Fisher
information matrix Fj,. Under not very restrictive conditions, as the amount of data
becomes infinite (or for even small samples for Gaussian measurement noise, as as-

1
> [;(zz — 2By - b + b’ — p)’ + log of + log 277] (10)
k

=0 (an

*“In fact, the standard deviations do depend on the bias vector as shown by equation (7b). However, we take
the point of view that the standard deviations are functions of the true value of the bias vector. The depend-
ence of the estimate of the bias vector on the weights is not very strong in any event.

*Throughout this work we shall use & as the time index and i as the iteration index.
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sumed here), the estimate error covariance matrix B, becomes the inverse of the
Fisher information matrix. The procedure of replacing the Hessian matrix by the
Fisher information matrix, called the Gauss-Newton method, usually results in
some simplification through the discarding of complicated terms with vanishing
mean, but does not address the problem of multiple critical values.

The Centered Estimate

In order to avoid the minimization of a quartic cost function, let us define in a
manner similar to Gambhir [1, 2} the following weighted averages

LA — Mo
ZEEE—W, B=5"2 =B (13ab)
= k=1 Ok
LA Mol
V=70 2— L=0) Sm (13cd)
k=1 0' k=1 Ok
where
1 N1
=2 (14)
ag k=1 0k
Then it follows that
7=2B-b- b+ 7 (15)
If we define now
L=u-—1 B.=B,-B (16ab)
h=u-—7, = e — u (16cd)

then subtracting equation (15) from equation (4) leads to
Z=2B.-b+#  k=1,...,N (17)

This operation is called centering.

The centered measurements, equation (17), are no longer quadratic in the mag-
netometer bias vector, so that using the centered measurements alone we can solve
for b* in a single iteration of the Newton—Raphson or Gauss-Newton method.
However, the centered measurement noise is no longer uncorrelated. Thus, one can
no longer write the negative-log-likelihood function in the form of equation (10),
that is, as the sum of N squares. Nonetheless, in practice one has generally ignored
this correlation and determined the bias from an approximate cost function of
the form

All

1 ~
JPox(h) = Z%— 2By - b — ) (18)
2 :10’

?ﬁ"l\)

and achieved reasonable results in spite of the lack of mathematical consistency and
rigor, arguing that one was only discarding a single measurement out of many. In
actual practice, these calculations have usually assumed a constant weighting and
neglected the contribution of . Gambhir’s RESIDG algorithm [2], however, is
presented with variable weights, although the correlations are not treated correctly,
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and it was assumed that fi, = 0. In addition, Gambhir included all N measurements
without justification, since they are not independent.

We shall see below that one can discard much more than 1/N of the accuracy by
this operation, but we shall see also that equation (18) is closer to being correct than
one might have imagined. Note that the sum is from 1 to N — 1, since the centered
measurements are not independent.

LA
2 —=u= (19)
k= 0'
Minimizing J*"*(b) over b leads to
N-1 1 _
e — pageror ¥ — (7, — 2B (20)
k=1 Tk

with the estimate error covariance matrix given approximately by

N—1 -1
P = (Fr™) ™" = [ b) —4Bkﬁz] 1)
k=1 Ok
Note that fi, will vanish if the original measurement noise &,k = 1, ..., N, is iden-

tically distributed. The approximate centered estimator converges in a single itera-
tion because the cost function is exactly quadratic. However, equations (20) and
(21) rest on incorrect statistical assumptions.

A Statistically Correct Centered Algorithm

The original measurements, zx, K = 1, ..., N, may be replaced by the centered
measurements, Z;, k = 1, ..., N — 1, and the center value z, without loss of in-
formation. This follows from the fact that the centered measurements and center
measurements are obtained from the original measurements by a nonsingular linear
transformation. The measurement equations are given by equations (15) and (17).
The centered data have the advantage of depending only linearly on the magne-
tometer bias. However, they have the disadvantage that the centered measurement
noise is correlated. Therefore, the negative-log-likelihood function for the centered
data alone cannot be written as the sum of N — 1 squares. To write a statistically
correct cost function for the centered data (making the approximation that the
measurement noise 1 1s Gaussian) we define

Z =[2%, ... 5] B=[B.,B,. By (22ab)
M=l oo i, V=[0, 00,50 (22¢d)
and write
Z=2Bb+V 23)
with
V ~ N(M, R) (24)

Here ’Jzis the covariance matrix of T/ and _j\"i is the mean. The stacked measure-
ment B is an (N — 1) X 3 matrix, and R is an (N — 1) X (N — 1) positive-
definite matrix whose elements are fully populated.
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The negative-log-likelihood function for this stacked centered measurement is
simply
. 1 = ~ ~ o~ o~ ~ ~
J(b) = 3[(2’ —2Bb — M)"R(Z — 2Bb — M)
+logdet R + (N — 1) log 2] (25)

Equation (18), because it neglects cross terms, expresses the incorrect assump-
tion that R is diagonal. We do not make this approximation here. Minimizing the
negative-log-likelihood function of equation (25) leads directly to the correctly cen-
tered estimate

b* = WB™R 'B) 2B R N(Z - M) (26)
with estimate error covariance matrix
By = WB"R'B)! 27)

For large quantities of data, the naive evaluation of equations (26) and (27) can
be a formidable task. Therefore, we seek the means of inverting the matrix in equa-
tion (25) explicitly. By direct substitution

Rie = E{(n — p)(ve — o) — (n — p)(7 — &)

- -we—p)+ @} (28)
It is a simple matter to show that
E{(n — wd(ve — po)} = oic e (29a)
En — )@ — w} = (v — p(w — p)} =7 (29b)
Hv -t =0 (29¢)

with &, the usual Kronecker delta, which is equal to unity when the two indices are
equal and zero otherwise.

Hence
Ry = 018 — 02 (30)
which has the simple inverse
~ | o3
(R Ve = =8 + 5 31)
T [r{ens

where o is the variance of ». Substituting this expression into equation (25)
leads to

J(b) = Z: — 2By - b — fu)? + terms independent of b (32)
The statistically correct cost function for the centered data looks exactly like the

naive expression of equation (18) except that the summation is now from 1 to N, a
truly remarkable result. The minimization is simple now and leads directly to

N
- ~ 1 o
b* =R, >, — (& — u)2By (33)

=10k
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and the estimate error covariance of the centered estimate is given by

N —1
Eb = F},_bl = [2 —1—24]’;1(]?{:, (34)
k=1 Ok

This correctly centered estimate is more attractive than the heuristic estimate of
RESIDG. It is simple, and it treats the correlation of the centered measurement
noise correctly. Although similar in form, it is very different in character from the
centered estimate of Gambhir [1, 2]. The only drawback to the correctly centered
algorithm lies in the exclusion of certain data, namely, the center term z, the effect
of which we investigate and eliminate in the next section.

We note in passing that the calculation of the remaining terms in equation (32)
is not difficult. The result, which is developed in the appendix, is simply

~ 1 ]3] 1 N
J(b) = ?{2 |:—2(2L — 2B+ b — i)* + log o7 + log 277]

k=1] O%
— [log @* + log 277]} (35)

The Complete Solution with Correction for Centering

The rigorously centered algorithm derived above is no more complicated than
the naive centered algorithm presented earlier. From the standpoint of computa-
tional burden, the more rigorous treatment of the statistics has merely added one
more term (out of N) to the summation. However, equation (35), because it has
been derived rigorously, affords us the possibility of computing the correction aris-
ing from the discarded center measurement z. (Note the nomenclature: center term
or center measurement for z, centered measurements forthe Z,, k = 1, ..., N.)

Instead of the measurement set {%, k = I, ..., N — 1;z}, we may now consider
the measurements to be effectively {f)*, 7}, since for a linear Gaussian estimation
problem, the maximum-likelihood estimate is a sufficient statistic [6], as we shall
demonstrate explicitly below. Therefore, to determine the complete maximum like-
lihood estimate b*, we must develop the statistics of these two effective measure-
ments more completely.

Note that up to now we have regarded b* as the result of the estimation pro-
cess depending only on the data. However, if we wish now to use the bias esti-
mate as an effective measurement, then we must distinguish between the estimate
b*', i.e., the computed value of the magnetometer-bias vector, which depends only
on the data {zi; kK = 1, ..., N} and the estimator b*, (a random variable) which is
the identical function of the random measurement variables {z; k=1, ..., N}.
Henceforth, when a given relation is true mutatis mutandis for both the estima-
tor and the estimate, and the content allows, the statement will be made for the
estimator.

To see that b* is a sufficient statistic for b, substitute equation (17) into equa-
tion (33). This leads to

N

- ~ 1 . -
b* =B, >, (2B« - b + & — 2By (36)

k=1 Ok
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which we may rewrite as

N

~ - T .
b* =b + B, >, 2B — ) (37a)

k=1 Ok
=b+ W (37b)
The last term is just the (zero-mean) estimate error. Obviously
¥ ~ N(0, By) (38)

It follows that we can write
- 1 - - -
J(b) = ?(b — b*')'P;'(b — b*’) + terms independent of b (39)

which can be verified by expanding equation (32) and completing the square in b.
But this is just the data-dependent term of the negative-log likelihood function of b
given equations (37b) and (38). It is equation (39) which makes b* a sufficient sta-
tistic for b. Equation (39) is very useful, because it allows us to investigate the ef-
fect of corrections to the centered formula using only our knowledge of b* and B,,.
We do not have to refer again to the N centered measurements Zx, k = 1, ..., N.

We must now combine b* and 7 to obtain a complete representation of our data
for the computation of b. Recall equation (15)

Z=2B-b—|pP+ 7 (15)

with
7~ N, ) (40)
Note that z, which, unfortunately, is a nonlinear function of b, is nonetheless an ex-
tremely accurate measurement, more accurate than the other measuresments by
typically a factor of 1/ /N, because @ is smaller typically than the other variances
by this factor. Thus, simply centering the data and discarding z can entail a signifi-

cant loss of accuracy if the sensitivity of zZ to b is not small.
What is the correlation between ¥, and ¥? Calculating this explicitly, gives

A I
Ew(v — n)} = 2Pbbk§1 ;inE{(f’k — @ — w)} (41a)
LA
= 21’1;1;}(21 ;%BkE{(Vk - @ —w — @ - W@ - )} (41b)
=28, %Bk(c—ﬂ - o) (41¢c)
k=1 0k
=90 414d)

Thus, ¥, and 7 are uncorrelated. Since the measurement errors were assumed to
be Gaussian, it follows that ¥, and 7 are independent. The joint probability den-
sity function of ¥, and v is therefore the product of the two individual proba-
bility density functions. Thus, the two corresponding negative-log-likelihood
functions add

J(b) = J(b) + J(b) (42)
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with J(b) given by equation (39) and

J(b) = %[%(Z’ —2B-b + |b? — w) + logo* + log 277] 43)
The weight associated with the center term J(b) is equal to the sum of all the
weights of J(b). Thus, when B — b™ is not small, the loss of accuracy from dis-
carding the center term can be substantial, as we shall see explicitly in some of the
numerical examples. We can determine the relative importance of these terms to the
estimate accuracy by computing the Fisher information matrix #, to obtain

F—E—az] —15—62]~ +E—627 =F, + F, (44a)
b b abT ababT b abT o T T a

=Py + i(ﬁ ~b)YB — b)T (44b)

52
= Py (44c)

The estimate error covariance matrix will be the inverse of this quantity. If the
distribution of the magnetometer measurements is “isotropic,” that is, if B — b™
vanishes, then J(b) will be insensitive to b. It is in this case that the centering
approximation obviously leads to the best results. If, however, one attempts to de-
termine the magnetometer bias from a short data span, say, from an inertially sta-
bilized or Earth-pointing spacecraft, then B — b™ will be equal to the similar
expression for a typical value of the magnetic field, and the formerly discarded cen-
ter term which will provide half or more of the accuracy, especially for the compo-
nent along B — b™*.

Because b* provides a consistent estimator of the magnetometer bias vector, its
errors are characterized by the Fisher information matrix, which can then be used
to assess the need to compute the correction due to the discarded center term. If a
diagonal element of the Fisher information F,, of the center term alone computed
at b* is large compared to the corresponding element of F;, then we must compute
the center correction. If it is much smaller in all three cases, the center term may be
discarded without worry. We are thus led to the following two-step algorithm,
which we call TWOSTEP:

e We compute the centered estimate b*’ of the magnetometer bias and the co-
variance matrix B, using the centered data and equations (33) and (34).

e At the centered estimate b*’ we compute Fy, and Fy, from equations (34) and
(44b). If the diagonal elements of F, are sufficiently small compared with the
corresponding elements of Fop

[f‘bb]mm < C[be]mm, m = 1, 27 3 (45)

then we will terminate the computation of the magnetometer bias at the com-
putation of b* and accept this value as the estimate with the estimate error co-
variance matrix given by the inverse of Fy,. Otherwise,

e Using the centered estimate b*’ as an initial estimate, the correction due to the
center term is computed using the Gauss—Newton method

b = b — Fu'(b)g(by) (46)
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where the Fisher information matrix Fi,(b) is given by equation (44), and
the gradient vector is given by the sum of the gradients of equations (39)
and (43)

g(b) = &(b) + &(b)
=Pab — b9 — 2@ ~ 2B b+ b - @2B-b) @)

e The last step is iterated until
7 = (bi — bi_))"Fu(bi1)(b; — b;_)) (48)
is less than some predetermined small quantity.

Since the centered estimate was consistent, we expect that
8= (b*" — b*)P,'(b*" — b*') (49)

will not be large. If b*’ were the exact value of b, then we should expect that this
quantity would be y*(3), which has mean 3 and variance 6. The mean and variance
of & should be typically smaller than this. A large value of § might indicate con-
vergence to a non-global minimum of J(b).

How large should ¢ be in the test for computing the center correction, equa-
tion (45)? If we choose ¢ to be 0.5, then the center correction will be computed only
if it improves the accuracy by at least 20 percent. If we choose ¢ to be 0.1, then the
center correction will be computed only if it improves the accuracy by at least
5 percent. A reasonable value for ¢ seems to be somewhere between these two num-
bers, depending on the taste of the user.

Numerical Examples

The new algorithm developed in this work has been examined for two typical
scenarios: a spacecraft spinning at 15 rpm and an inertially stabilized spacecraft.
The spacecraft orbit has been chosen to be circular with an altitude of 560 km and
an inclination of 38 deg. The geomagnetic field in our studies has been simulated
using the International Geomagnetic Reference Field (IGRF (1985)) [8], which has
been extrapolated to 1994. More recent field models are available, but IGRF (1985)
is adequate for our simulation needs.

For purposes of simulation we have assumed an effective white Gaussian mag-
netometer measurement error with isotropic error distribution and a standard devi-
ation per axis of 2.0 mG, corresponding to an angular error of approximately
0.5 deg at the equator. We have assumed also that the x-axis of the magnetometer
is parallel to the spacecraft spin axis, which always points toward the Sun. The Sun
direction makes an angle of approximately 40 degrees with the orbit plane. Thus,
for a spinning spacecraft we expect the estimation errors for the magnetometer bias
to be largest for the x-component. The magnetometer data were sampled every
eight seconds. All entries in the tables for the estimated magnetometer bias and the
associated standard deviations are in mG.

Table 1 displays the results for the case of a spinning spacecraft and Table 2 for
an inertially stabilized spacecraft. We have generally displayed all iterations up to
convergence to two decimal places. The results are seen to be quite good in all
cases. In only a few cases (in Table 3 below) were more than one iteration of the
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TABLE 1. Performance of TWOSTEP for a Spinning Spacecraft

Step Bias Estimate (mG)

b™ = [10., 20., 30.] mG

centering approximation [9.99, 20.10, 29.97]
+[0.07, 0.06, 0.11]
with center correction [9.99, 20.10, 29.97]

+[0.07, 0.06, 0.11]
b™e = [100., 200., 300.] mG

centering approximation [100.17, 199.88, 299.94]
+[0.09, 0.08, 0.14]
with center correction [100.17, 199.88, 299.94}

+[0.09, 0.08, 0.14]

center correction required to this accuracy. In most cases, the centering approxi-
mation alone was sufficient to this level of accuracy. Nearly 200 different cases
were simulated in testing the algorithm. The above cases were typical except that
for Table 2, we have modified the field model slightly so that the third component
of the bias would be less observable from the centered data alone. This was done
to illustrate more acutely the possible importance of the center correction.

In Table 1, the confidence intervals for the centered estimate are indistinguish-
able from those of the final result incorporating the center correction, and the esti-
mates themselves are identical to two decimal places. As mentioned earlier, we can
avoid an unnecessary computation of the center correction by examining the Fisher
information matrices Fy, and Fy, immediately following the computation of the cen-
ter correction. This is well illustrated by the present examples. Consider the ex-
ample of the spinning spacecraft in Table 1 for the small bias value. Here the Fisher
information for the centered estimate F;, computed at b has the value

192.82 —0.87 0.77
Fp=| —087 25876 7.98|(mG)> (50a)
077  7.09 80.61

TABLE 2. Performance of TWOSTEP for an Inertially Stabilized Spacecraft

Step Bias Estimate (mG)

b = [10., 20., 30.] mG

centering approximation [9.92, 20.00, 29.68]
+[0.14, 0.33, 0.98]
with center correction [9.94, 19.94, 29.92]

+[0.11,0.17, 0.11]
b = [100., 200., 300.] mG

centering approximation [99.92, 200.01, 299.68]
+[0.14, 0.33, 0.98]
with center correction [99.94, 199.94, 299.92]

*+[0.11,0.17, 0.11]
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while the Fisher information for the center correction alone Fj, has the value

7.686 —0.325 -0.630
Fup = | —0.325 0.013 0.027 | (mG)? (50b)
—0.630 0.027 0.052

The information for all three axes is smaller for the center correction than for the
centered estimate by a factor of from 25 to 2000. Hence, it is not expected that the
center correction will be statistically significant, as is borne out by Table 1, where
we observe the lack of change in the confidence intervals and the goodness of the
center approximation. One the basis of this comparison of the two Fisher informa-
tion matrices %, and Fy, we would determine that the computation should be ter-
minated after the evaluation of b*.

Consider Table 2 on the other hand. In this case the spacecraft is inertially stabi-
lized and the observability of the magnetometer bias vector is expected to be much
poorer. Thus we find for this case that

7623 —7.30 -7.86
Fy,=1-730 4566 14.25|(mG)? (51a)
-786 1425 5.89

while the Fisher information for the center correction alone F, has the value

443 1084 28.12
Fi, = | 10.84 2658 68.92 | (mG)™> (51b)
28.12 6892 178.70

From a comparison of the Fisher information matrix, we anticipate: an insignificant
improvement in the estimate of b, because the (1, 1)-element of the Fisher infor-
mation matrix for the center correction is smaller than the corresponding element
for the center estimate by a factor of 17; a modest improvement in the estimate of
b, because the (2, 2) elements of the two Fisher information matrices are compa-
rable (the standard deviation of the error in the final estimate of b, should therefore
be smaller than that for b, only by 20%); and a very noticeable improvement in the
accuracy of b3 by taking account of the center correction, because roughly 30 times
more information resides in the center correction for that component than in the
centered estimate.® This is borne out by Table 2, although there is noticeable im-
provement in all three components of the bias vector due to correlations. The cor-
rection of the third component, however, is the largest. In this case we must
absolutely consider the center correction, since for one of the components of b*' it
provides most of the information. Since the centered estimation already provides a
consistent estimate, it is likely (though not certain) that only a single iteration of the
center correction will be necessary, even though the cost function is quartic.

Note in Tables 1 and 2 the similarity of the fractional parts of the estimates for
the small and large values of the bias, the result of using the same seed for the simu-
lation of random noise in each case. A different seed was used in Tables 1 and 2,
however.

°This statement can only be very approximate because of the large correlations which are sometimes present
in the Fisher information matrices.
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Robustness of TWOSTEP

Thus far, both the estimator and the data have used identical statistical assump-
tions, in particular, it has been assumed that the fundamental magnetometer meas-
urement noise is white and Gaussian. In general, it is neither of these, although
estimators nearly always assume such a measurement noise model. This is the case
for TWOSTEP. To test the sensitivity to these sweeping and not totally correct mod-
eling assumptions, we have examined two cases. In the first case, we have replaced
the white Gaussian noise sequence & by a colored noise sequence described by a
first-order Markov process driven by white noise. The “time constant” of the
Markov process has been chosen to correspond to an orbital arc length of 18 deg,
consistent with the correlation length associated with the neglected orders of the
harmonic expansion of the magnetic field model. The power spectral density of
the white-noise driving term has been chosen so that the covariance matrix of
the stationary first-order Markov process will match that of the Gaussian white-
noise model used in Tables 1 and 2. The results are shown in Table 3. The iteration
index “1” is the centering approximation, further indices refer to iterations of the
center correction. The quality of the estimates has deteriorated somewhat because
the estimator now contains model errors. As a result, the actual errors are outside
the error bounds computed by TWOSTEP based on its now incorrect assumptions
on the nature of the measurement noise. However, the results are still quite good.

In a further numerical experiment, we have attempted to model the measurement
noise as realistically as possible. To this end we have considered the properties of
magnetometers constructed at NASA Goddard Space Flight Center [4]. These are
characterized by a white noise and ripple effects of about o, = 0.6 mG per axis. In
addition, the usable range of the magnetometer, from —600 mG to +600 mG is

TABLE 3. Performance of TWOSTEP for Colored Noise

Iteration Bias Estimate (mG)

Spinning Spacecraft — magnetometer bias = [10., 20., 30.] mG
1 [10.24, 20.68, 30.69] = [0.09, 0.10, 0.10]
2 [10.18, 20.68, 30.69] = [0.09, 0.10, 0.10]

Spinning Spacecraft — magnetometer bias = [100., 200., 300.] mG
1 [100.91, 200.09, 300.16] = [0.09, 0.10, 0.10]

2 [100.98, 200.09, 300.16] + [0.09, 0.10, 0.10]
Inertially Stabilized Spacecraft — magnetometer bias = [10., 20., 30.] mG

1 [10.80, 19.76,32.91] * [0.17,0.26, 0.77]

2 [10.56, 20.16, 31.68] = [0.09, 0.09, 0.11]

3 [10.56, 20.16, 31.69] = [0.09, 0.09,0.11]
Inertially Stabilized Spacecraft — magnetometer bias = [100., 200., 300.] mG

1 [100.16, 198.71, 302.99] + [0.17, 0.26, 0.76]

2 [ 99.67, 199.53, 300.47] = [0.09, 0.09, 0.11]

3 [ 99.67,199.52, 300.49] + [0.09, 0.09, 0.11]




TWOSTEP: An Aigorithm for Attitude-Independent Magnetometer-Bias Determination 447

usually represented digitally by 12 bits, corresponding to a resolution of
0.29 mG = A. Thus, we may regard the telemetered field to be given (in counts) by

Bi™ = Int[(AHx + b + w)/A] (52)

where Int( - ) is the function which computes the greatest integer for each compo-
nent of its argument, and w, is Gaussian white noise whose covariance is given by
(0.6 mG)* L1x3. The measurements would then be reconstructed from telemetry ac-
cording to the prescription

B. = A[BI™ + [0.5, 0.5, 0.5]"] (53)

For the model geomagnetic field model errors we have used the harmonic ex-
pansion coefficients of IGRF(85) up to order 10 to compute the raw measurements,
but have used the coefficients only up to order 8 in the estimator. The TWOSTEP
estimator assumes only the known random and quantization errors, that is, it
assumes

AZ
S, = (o% + E) Lix3 (54)

The results of the magnetometer bias determination given this mismatch between
measurement noise and estimator are shown in Table 4. The results again clearly
show errors that are significantly larger than the statistical limits computed from the
estimators error model but are quite acceptable also in this case. Note that propor-
tionately the agreement is greater for the larger biases in both Table 3 and Table 4,
because the modeling errors are proportionately smaller. We see in these examples
of mismodeling some of the few cases where more than one iteration of the center
correction has been needed. The result of that further iteration can hardly be called
significant, however.

TABLE 4. Performance of TWOSTEP for “Realistic’ Measurement Noise Simulation

Iteration Bias Estimate (mG)

Spinning Spacecraft — magnetometer bias = [10., 20., 30.] mG
1 [9.82, 20.14, 30.06] = {0.03, 0.03, 0.03]
2 [9.77,20.15, 30.06] = [0.03, 0.03, 0.03]

Spinning Spacecraft — magnetometer bias = [100., 200., 300.] mG
1 [99.77, 200.13, 300.00] = [0.03, 0.03, 0.03]

2 [99.74, 200.12, 300.00] = [0.03, 0.03, 0.03]
Inertially Stabilized Spacecraft — magnetometer bias = [10., 20., 30.] mG

1 [9.85, 20.26, 30.53] = [0.05, 0.08, 0.23]

2 [9.73, 20.45, 30.52] * [0.03, 0.03, 0.03]

Inertially Stabilized Spacecraft — magnetometer bias = [100., 200., 300.] mG
1 [98.82, 200.36, 300.02] = [0.05, 0.08, 0.23]
2 [99.82, 200.36, 300.02] = [0.03, 0.03, 0.03]
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Discussion

A new algorithm, TWOSTEDP, has been developed, which is efficient and robust,
and which leads to a consistent estimate of the magnetometer bias at both steps of
the algorithm. Its ability to converge in all cases (nearly 200 have been simulated
by the authors) is due to the fact that, if the magnetometer bias is observable at all,
the centering approximation will yield a consistent and unambiguous result. Thus,
the center correction, in most cases, makes little improvement in the estimate.

An important component in the development of the algorithm was the correct
treatment of the correlations introduced by the centering process. We have shown
that the correct treatment leads to a the centered negative-log-likelihood function
which is the sum of squares.

An obvious characteristic of the centered estimate, the first step in TWOSTEP is
that it is often good enough.” The Fisher information associated with b genuinely
characterizes the quality of the centered estimate. A comparison of this and the
Fisher information associated with the center term can be used to decide whether it
is worthwhile to carry out the center correction. This was demonstrated explicitly
in the previous section. We see that a careful statistical treatment of the magne-
tometer bias gives us many more insights into the behavior of the estimator.

Note that the variances o7 given in equation (7b) are functions of b. We have
taken them to be functions of the true value of b and not of the corresponding model
variable which appears in the cost function. Had we taken b to be a parameter of
o} also, then we would have differentiated also the factors 1/0% and the terms
log o7 appearing in equation (10). This latter approach would, in principal, have been
more correct, but might have led to convergence problems because of the nonlin-
earity. However, a consistent estimate of b can be obtained for any set of the values
for the o#, so that the added complication of making o a function of b in the cost
function is not justified. Nonetheless, for consistency, once b* has been determined
from our initial set of ¢, which were computed using b = 0, we have recomputed
the o7 using b* as the “true” value and repeated the centering step to obtain an “im-
proved” but hardly very different value for b*. This, our two-step method typically
incorporates at least two iterations in the first step alone, and combines both scor-
ing and fixed-point techniques. In a more realistic calculation, of course, one should
give up the approximation that the effective magnetometer errors are isotropic and
white. However, experience has shown us that the estimates are not very sensitive
to the choice of the o2, at least not for the orbit considered, which never comes within
50 degrees of the poles. Thus, the choice of the ot does not seem to be important
to the estimation problem. The difficulties that have been encountered up to now in
estimating the magnetometer bias vector without knowledge of the attitude did not
arise from an unrealistic modeling of the error levels but rather from the improper
treatment of the non-quadratic nature of the cost function. Our goal in developing
the TWOSTEP algorithm was not to make insignificant gains in computation times
but to develop an algorithm which was more reliable than its predecessors.

More interesting would be the computation of the parameters of 2, which are of
fundamental importance. However, experience has shown that the most significant
errors are those associated with the magnetic field model, which, to be meaningful,
should be represented in a topocentric coordinate system associated with the geo-

"Perhaps we should call it ONESTEP, not very danceable until one recalls the “hop!”
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magnetic dipole field. Such a representation of Z, is impossible without a knowl-
edge of the spacecraft attitude. Therefore, the estimation of error-level parameters,
except at the crudest level, is not appropriate to the present study. For a detailed dis-
cussion of the errors in geomagnetic field models the reader is referred to Langel
[8] and the two special issues devoted to the Magsat mission [9, 10].

TWOSTEP has been shown to work well even when the assumption of white
Gaussian statistics is incorrect. The main reason for this is that the separation of the
cost function into J(b) and J(b) doesn’t really depend on the statistical assump-
tions.® Thus, the TWOSTEP algorithm will lead to an exact minimization of the
cost function even if the statistical assumptions are not justified. There is still a
price to be paid for incorrectly modeled statistics, however, which is that the com-
puted confidence intervals will not be correct, as we have already seen in the nu-
merical examples.

In summary: we have developed a new algorithm for magnetometer bias deter-
mination in the absence of attitude information which is efficient and robust. The
algorithm begins by centering the data and computes an estimate of the magne-
tometer bias b* from this centered data in one step while treating the correlations
between centered measurements correctly. Assuming the magnetometer errors
(apart from the bias) to be white and Gaussian, the estimate so generated will be
statistically consistent. The Fisher information matrix of the centered data provides
a characterization of the accuracy of the estimate, and the Fisher information ma-
trix of the lone center measurement (evaluated at b*) provides a direct assessment
of whether significant improvement can be obtained for the magnetometer bias es-
timate by taking the discarded center measurement into account. If it is important
to take the center measurement into account, then a complete estimate using all data
can be obtained by considering only the centered estimate, the associated Fisher in-
formation matrix, and the center measurement (and the center variance ). The
centered data need not be reprocessed. Since the centered estimate already provides
a good value for the bias, convergence of the center correction is rapid.

TWOSTERP is certainly more sophisticated statistically and more capable than its
predecessor algorithms for attitude-independent magnetometer calibration, more
efficient computationally, and more reliable. Comparisons of different algorithms
are the subject of [5]. Perhaps, most importantly, the new algorithm makes mani-
fest the physical quantities which determine the behavior of the bias estimator. We
hasten to point out that the algorithm can only be as good as the validity of its sta-
tistical model. If the effective measurement noise is incorrectly modeled, then the
new algorithm will certainly show systematic or at least larger errors. This has been
seen in some of the cases examined above where the measurement noise has been
intentionally mismodeled. Although the errors levels were much larger than the
naive statistical predictions in this case, as expected, the accuracy level was cer-
tainly usable.
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Appendix: the Centered Negative-Log-Likelihood Function

To calculate det R, consider the probability density of the measurements given
the parameters p({zx, k = 1, ..., N}|b). We write this as a conditional probability
on the value of b. From the definition of the conditional probability, we can write
this also as

P leb(Zl, ceey Zz’v| b) =Py ZN71,2|b(21,, e i, T Ib)
= Pz ibl@ oo Zv-112, D)pan(@’ | b)
= le,_mzN_l,zrb(Zf, cees ZN-1 |b)Pz|b(Z’ |b) (Al)
The last step results from the fact that 7 is uncorrelated with zy, ..., zv—. Consid-

ered as a function of the parameters, the probability density function is called the
likelihood function. Taking the negative logarithm of both members of equa-
tion (A1) we obtain an equivalent relation (in even more defective notation) for the
corresponding negative-log-likelihood functions

Jb|zi, ..., zv) = J(b|Zi, ..., Zh-1) + J(b|Z) (A2)
or, in our earlier notation,
J(b) = J(b) + J(b) (A3)

If the explicit expressions for J(b) and J(b) from equations (10) and (43), respec-
tively, are now substituted and equation (A3) is solved for J(b), we obtain

N
2
i

Jb) = — 2B, - b — )?

1
2 %

N 1

2 og ot — logo? | + E(N — 1) log 2 (A4)

The first term is just the bias-dependent part of J(b) as given in equation (32). We
now have in addition that

N
log det R 2 log 0% — log &° (AS)

or

2
olol - ok

det R = (A6)
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