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MAN, LIKE THESE ATTITUDES ARE TOTALLY RANDOM!

II. OTHER REPRESENTATIONS

∗

Malcolm D. Shuster

∗∗

Knowing the uniform probability density function for the attitude quater-

nion we derive expressions for the other attitude representations. We

show that given our knowledge of the quaternion uniform probability

density function there are three di�erent methods by which the uni-

form probability density function of these other representations may be

generated. Numerical methods are presented for generating uniformly

distributed random samples of each of the attitude representations as a

function of random samples having a uniform probability density function

on the interval [0, 1].

GENERATING UNIFORM PROBABILITY DENSITY FUNCTIONS

We saw in the previous paper that the uniform probability density function of any attitude

representation can be derived from

pξ (ξ′) = pξ (ι)
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∣

α=ι

. (I-34)

Here the notation (I-34) denotes Eq. (34) of Part I (Ref. 1). We call this method the group

method, because it relies only on the knowledge of the particular form of the group operation.

This equation is not always of practical use. For one thing, it may happen that pξ (ι) vanishes, in

which case the Jacobian determinant is in�nite at α = ι, and the expression is unde�ned there.

Also, if the composition rule for the representation, as for the Euler angles, is very complicated,

then the Jacobian determinant will be extremely di�cult to evaluate. Hence, we must �nd

another way for most representations.

One method is to use our knowledge of the uniform pdf of the vector components of the

quaternion, namely

pη(η′) =
1

π2
√

1 − |η′|2
. (I-43)
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It follows then from Eq. (I-26) and the transitive properties of the Jacobian determinant that

for any three-dimensional attitude representation ξ we can write the uniform pdf as

pξ (ξ′) = pη(η′(ξ′))

∣

∣

∣

∣

∂η(ξ′)
∂ξ′

∣

∣

∣

∣

. (1)

In general, it is much easier to evaluate the Jacobian determinant in Eq. (1) than in Eq. (I-43).

We call this method the transformation method.

There is also a third way, which uses the result for the uniform pdf for the quaternion with

the four components treated as independent, as given by Eq. (I-65). The advantage here is that

the pdf of the 4-component quaternion is so simple. We derive this expression now.

We examine a change of variables from (q1, q2, q3, q4) to (q, ξ1, ξ2, ξ3), where q is the magnitude

of the quaternion and (ξ1, ξ2, ξ3) are the three components of the three-dimensional representation

of the attitude. Generally, we know the Euler-Rodrigues symmetric parameters as a function of

the three-dimensional representation ξ. That said, the functional form of the change of variables

can obviously be written as

q̄± = ±q η̄(ξ) , (2)

and we must consider both signs explicitly, because η̄(ξ) is, supposedly, a single-valued function

of ξ. Clearly, the pdf of q and ξ can be written as

pq, ξ (q′, ξ′) = pξ (ξ′) δ(q′ − 1) . (3)

From Eq. (1) we must also have that

pq, ξ (q′, ξ′) =
∑

±

pq̄(q̄±(q′, ξ′))
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∣

. (4)

Substituting the uniform pdf for the 4-component quaternion yields

pξ (ξ′) δ(q′ − 1) =
∑

±

1
π2
δ(q̄′T± q̄

′
± − 1)
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∣

∣
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∣

∣

∣

∂q̄±(q′, ξ′)
∂(q′, ξ′)

∣

∣

∣

∣

. (5)

Integrating now over q′ from 0 to ∞ leads to the very simple formula

pξ (ξ′) =
1
π2

∣

∣

∣

∣

∂q̄(q′, ξ′)
∂(q′, ξ′)

∣

∣

∣

∣

q′=1
. (6)

Equation (6) is certainly the "royal road" to calculating uniform pdf's for three-dimensional

attitude representations. Note that the Jacobian determinant has the same value for both q̄+ and

q̄−, so we need write only one term. Equation (6) provides a ready way to calculate the uniform

pdf for any three-dimensional attitude representation. We call this the quaternion method for

deriving the uniform pdf of a three-dimensional attitude representation.

We now commence the systematic derivation of the uniform pdf for the common three-

dimensional attitude representations. We will use principally the �rst two methods, especially

the second, since it is often easier than calculating the determinant of a 4×4 matrix. The reader

may use Eq. (6) to check our results.
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The Rodrigues Parameters

The 3× 1 matrix of Rodrigues parameters (the Rodrigues vector) is related to the quaternion

and the axis and angle of rotation by

2

ρρρ =
η

η4
= tan(θ/2) 
n , (7)

The composition rule is

2

α ◦ρρρ′ =
α +ρρρ′ − α ×ρρρ′

1 − α ·ρρρ′
. (8)

whence
∣

∣

∣

∣

∂(α ◦ρρρ′)
∂α

∣

∣

∣

∣

α=0
=
∣

∣

∣det
(

I3×3 − [[ρρρ′ ]] +ρρρ′ρρρ′T
)∣

∣

∣ =
(

1 + |ρρρ′|2
)2
, (9)

where

2

[[ v ]] ≡





0 v3 −v2

−v3 0 v1

v2 −v1 0



 . (10)

It follows again from Eq. (I-34), after computing pρρρ(0) from Eq. (I-38), that

pρρρ(ρρρ′) =
1

π2(1 + |ρρρ′|2)2
. (11)

The calculation of the determinant in Eq. (9) is tedious. A simpler method, therefore, is to

apply the implicit function theorem directly to Eq. (I-43), calculating the Jacobian determinant

|∂(η1, η2, η3)/∂(ρ1, ρ2, ρ3)| instead of the result of Eq. (9), and then calculating the pdf for

the Rodrigues parameters from the pdf already calculated for the vector components of the

quaternion using the relations

pρ(ρρρ′) = pη

(

η(ρρρ′)
)

∣

∣

∣

∣

∂(η′1, η
′
2, η

′
3)

∂(ρ′1, ρ
′
2, ρ

′
3)

∣

∣

∣

∣

, and η(ρρρ) =
ρρρ

√

1 + |ρρρ|2
. (12ab)

This calculation would be equally tedious except that the vector components of the unit quaternion

and the Rodrigues parameters are both proportional to the axis of rotation 
n. Hence, the only

interdependence of these two representations that should be of interest is that of |η|, the

magnitude of η, on |ρρρ|, the magnitude of ρρρ. If we write in the usual short-hand

pη(η′) d3η′ = pρρρ(ρρρ′) d3ρρρ′ (13)

or

pη(η′) |η′|2 d|η′| d2Ω

n

′ = pρρρ(ρρρ′) |ρρρ′|2 d|ρρρ′| d2Ω

n

′ . (14)

then it is evident that we must have

∣

∣

∣

∣

∂η′

∂ρρρ′

∣

∣

∣

∣

=
|η′|2

|ρρρ′|2
∂|η′|
∂|ρρρ′|

=
1

(1 + |ρρρ′|2)5/2
. (15)

The same result can be derived using the transitivity of the Jacobian determinant and the sequence

of transformations (η1, η2, η3) → (η, θ, φ) → (ρ, θ, φ) → (ρ1, ρ2, ρ3), where the second and third

sets of coordinates are the spherical coordinate representations of η and ρρρ, respectively. Note

that η and ρρρ are parallel.
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From Eq. (15) and

pη(η
(

ρρρ′)
)

=

√

1 + |ρρρ′|2

π2
(16)

we arrive again at Eq. (11). It is left as an exercise for the reader to show that Eq. (6) leads to

this same result.

The Modi�ed Rodrigues Parameters

For the modi�ed Rodrigues parameters

2

we have (for the positive form)

p =
η

1 + η4
= tan(θ/4) 
n , and ρρρ(p) = 2 p/(1 − |p|2) . (17ab)

The pdf can be most easily calculated from the pdf of the Rodrigues vector, and again the

Jacobian determinant can be obtained from the calculation of a single radial derivative with the

results

pρρρ

(

ρρρ(p′)
)

=
(1 − |p′|2)4

π4(1 + |p′|2)4
,

∣

∣

∣

∣

∂ρρρ′

∂p′

∣

∣

∣

∣

=
8 (1 + |p′|2)
(1 − |p′|2)4

. (18ab)

Hence,

pp(p′) =
8

π2(1 + |p′|2)3
, (19)

where we restrict |p′| to the region |p′| ≤ 1. One could have extended the domain of p to all

space, but we chose to avoid in�nite values of the representation, nor do we wish to have a

representation which is non-unique.

For the negative form of the vector

m =
η

1 − η4
= cot(θ/2) 
n (20)

we �nd equally easily

pm(m′) =
8

π2(1 + |m′|2)3
, (21)

but we restrict m to the region |m′| ≥ 1.

The Rotation Vector

It is easiest to compute the pdf for the rotation vector

2

from that of the vector components

of the quaternion. We note that

θ = θ 
n , and η(θ) = sin(|θ|/2) 
n , (22ab)

from which it follows that

pη

(

η(θ′)
)

=
1

π2 cos(|θ′|/2)
, and

∣

∣

∣

∣

∂η′

∂θ′

∣

∣

∣

∣

=
sin2(|θ′|/2) cos(|θ′|/2)

2 |θ′|2
, (22cd)

and �nally

pθ(θ′) =
sin2(|θ′|/2)

2π2 |θ′|2
=

1 − cos(|θ′|)
4π2 |θ′|2

, (23)

de�ned in the region 0 ≤ |θ′| ≤ π ,



MAN, LIKE THESE ATTITUDES ARE TOTALLY RANDOM II 401

The Axis and Angle of Rotation

We see immediately that the result for the rotation vector can be factored as

pθ(θ′) d3θ′ =
(

1 − cos(|θ′|)
π |θ′|2

) (

1
4π

)

|θ′|2 dθ′ dΩ

n

′ = pθ(θ′) dθ′ p

n

(
n′) dΩ

n

′ . (24)

We note that pdf does not depend on 
n

′
at all, hence, we must have

pθ(θ′) =
1 − cos(θ′)

π
, p


n

(
n′) =
1

4π
(25ab)

To understand Eq. (25) we note that the unit axis vector 
n is parameterized in terms of

spherical angles as


n =





sin α cos β

sin α sin β

cos α



 , 0 ≤ α ≤ π , 0 ≤ β < 2π . (26)

Here, α is the angle between the z-axis and n̂, and β is the dihedral angle about the positive

z-axis from the xz-plane to the plane containing the z-axis and n̂. Thus,

d3θ′ = (θ′)2 dθ′ d2

n

′
with d2


n

′ ≡ sin α′ dα′ dβ ′ ≡ d2Ω

n

′ , (27)

and the integral of d2Ω

n

′ over all directions is 4π. The range of θ′ is 0 ≤ θ′ ≤ π. Otherwise, the

representation will not be unique almost everywhere.

Note that for |θ′| � 1 that pθ(θ′) is nearly constant, as would be expected from the fact that

in�nitesimal angles add by approximately componentwise addition.

The Symmetric Sequence of Euler Angles

For the 3-1-3 Euler angles

2

we begin again with the pdf for the vector components of the

quaternion. De�ning �rst, in the notation of Ref. 5,

R313(ϕ, ϑ, ψ) ≡ R(3̂, ψ)R(1̂, ϑ)R(3̂, ϕ) , (28)

the vector components of the quaternion are then given by

η =





s(ϑ) c(ϕ − ψ)

s(ϑ) s(ϕ − ψ)

c(ϑ) s(ϕ + ψ)



 , (29)

where

s(x) ≡ sin(x/2) , c(x) ≡ cos(x/2) . (30)

Hence, from η′4 = c(ϑ′) c(ϕ + ψ) it follows that

pη

(

η(ϕ′, ϑ′, ψ ′)
)

=
1

π2 |c(ϑ′) cos(ϕ′ + ψ ′)|
, (31)

and
∣

∣

∣

∣

∂(η′)
∂(ϕ′, ϑ′, ψ ′)

∣

∣

∣

∣

= s(ϑ) c2(ϑ′) |c(ϕ′ + ψ ′)|/4 , (32)

whence

p313(ϕ′, ϑ′, ψ ′) =
sin ϑ′

8π2
, (33)
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which is de�ned on the intervals 0 ≤ ϕ′ < 2π, 0 ≤ ϑ′ ≤ π, 0 ≤ ψ ′ < 2π. The identical result holds

for the other �ve symmetric sets of Euler angles.

We may write this result equivalently as

p313(ϕ′, ϑ′, ψ ′) = pϕ(ϕ′) pϑ(ϑ′) pψ (ψ ′) , (34)

with

pϕ(ϕ′) =
1

2π
, pϑ(ϑ′) =

sin ϑ′

2
, pψ (ψ ′) =

1
2π

. (35abc)

Again, the same pdf will be obtained for any symmetric sequence of Euler angles.

Note that Eq. (33) would be di�cult to obtain from Eq. (I-34) because the pdf vanishes at

ι = (0, 0, 0). Either L'H
opital's rule would need to be invoked when taking the limit of Eq. (I-36),

or Eq. (I-36) would need to be evaluated at a di�erent value of α. In addition, the application

of the composition rule for the 3-1-3 Euler angles

3

would not be simple.

The Asymmetric Sequence of Euler Angles

For the 3-1-2 Euler angles the calculation of the Jacobian determinant for the transformation

from the vector components of the unit quaternion to the 3-1-2 Euler angles is an ordeal.

Therefore, we seek a method to avoid this calculation and rely instead on the invariance

principle set forth in Eq. (I-32).

Consider the direction-cosine matrix generated by a 3-1-2 sequence of Euler angles:

R312(ϕ, ϑ, ψ) = R(2̂, ψ)R(1̂, ϑ)R(3̂, ϕ) . (36)

We note that

2̂ = R(1̂, π/2) 3̂ , (37)

from which it follows that

2

R(2̂, ψ) = R
(

R(1̂, π/2) 3̂, ψ)
)

= R(1̂, π/2)R(3̂, ψ)RT(1̂, π/2) . (38)

Thus,

R312(ϕ, ϑ, ψ) = R(1̂, π/2)R(3̂, ψ)RT(1̂, π/2)R(1̂, ϑ)R(3̂, ϕ)

= R(1̂, π/2)R(3̂, ϕ)R(1̂, ϑ − π/2)R(3̂, ϕ) , (39)

or

R312(ϕ, ϑ, ψ) = R(1̂, π/2)R313(ϕ, ϑ − π/2, ψ) . (40)

From the invariance property of the pdf, it follows that the probability density function of

(ϕ, ϑ, ψ)312 will be the same as the probability density function of (ϕ, ϑ− π/2, ψ)313. To see this,

note that Eq. (40) can be written as

(ϕ′, ϑ′, ψ ′)312 = (0, π/2, 0)313 ◦ (ϕ′, π/2 − ϑ′, ψ ′)313 , (41)

from which it follows that

p(ϕ, ϑ, ψ)312
(ϕ′, ϑ′, ψ ′) = p(0, π/2, 0)313◦(ϕ, ϑ, ψ)313

(ϕ′, π/2 − ϑ′, ψ ′) , (42)

and by Eq. (I-32)

p(0, π/2, 0)313◦(ϕ, ϑ, ψ)313
(ϕ′, π/2 − ϑ′, ψ ′) = p(ϕ, ϑ, ψ)313

(ϕ′, π/2 − ϑ′, ψ ′) . (43)
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Hence,

p312(ϕ′, ϑ′, ψ ′) = p313(ϕ′, ϑ′ − π/2, ψ ′) =

∣

∣

∣

∣

sin(ϑ′ − π/2)
8π2

∣

∣

∣

∣

=
cos ϑ′

8π2
, (44)

which is de�ned over the region 0 ≤ ϕ′ < 2π, −π/2 ≤ ϑ′ ≤ π/2, 0 ≤ ψ ′ < 2π.
Similarly to Eq. (34) we can write

p312(ϕ′, ϑ′, ψ ′) = pϕ(ϕ′) pϑ(ϑ′) pψ (ψ ′) , (45)

with

pϕ(ϕ′) =
1

2π
, pϑ(ϑ′) =

cos ϑ′

2
, pψ (ψ ′) =

1
2π

. (46abc)

While the pdf for the 3-1-2 Euler angles does not vanish at ι = (0, 0, 0), the application of the

composition rule for the 3-1-2 Euler angles would be hampered by the fact that no closed-form

expression is currently known for it,

3

and an intermediate representation would need to be used.

Marginal Uniform PDF's for the DCM and Other Representations

A formulation of the joint probability density function for the elements of the direction-cosine

matrix (DCM) is of uncertain value, since the variables would be subject to six constraints, which

would need to be implicit in the functional form of the joint pdf of all nine elements. While

a complete description of this joint pdf lies outside our capacities and our interest, a partial

description is still possible and enlightening. For the symmetric sets of Euler angles, we have

seen that cos ϑ is uniform on the interval [−1, 1], while for the symmetric sets of Euler angles

it is sin ϑ which has a uniform distribution on this interval. If we examine the formulae for the

DCM as a function of the twelve sets of Euler angles, we �nd that

R121(1, 1) = cos ϑ , R231(1, 2) = sin ϑ , R321(1, 3) = − sin ϑ ,

R132(2, 1) = − sin ϑ , R232(2, 2) = cos ϑ , R312(2, 3) = sin ϑ , (47)

R123(3, 1) = sin ϑ , R213(3, 2) = − sin ϑ , R313(3, 3) = cos ϑ ,

where the subscript labels the Euler-angle sequence, and the arguments label the matrix element

of the DCM. Note that the diagonal elements of R are associated above with a symmetric

sequence of Euler angles and the matrix element is cos ϑ, while the o�-diagonal elements of R
are associated with an asymmetric sequence of Euler angles, and the matrix element is ± sin ϑ.
Thus, it follows that each matrix element of a uniformly distributed random DCM, must be

uniformly distributed on [−1, 1]. It is obvious also from any table of the DCM as a function of

the twelve sets of Euler angles that the correlation between any two di�erent elements of the

DCM must vanish. In summary,

Rij ∼ U (−1, 1) , i, j = 1, 2, 3 , (48)

E{Rij Rk`} =
1
3
δik δj` , i, j, k, ` = 1, 2, 3 . (49)

Where E{ · } denotes the expectation. Note that although the nine elements are uncorrelated,

they are certainly not independent.

The same is not true for the four elements of the quaternion. If we integrate Eq. (I-43) over

any two of the components of η′, we will �nd for the remaining component

pηi
(η′i) =

2
π

√

1 − (η′i)2 , i = 1, 2, 3, 4 . (50)
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That this is true also for η4 has not been proved but will become obvious in the next section.

Thus, the components of the uniformly distributed random unit quaternion are not distributed

uniformly. However, the four components of the uniformly distributed random quaternion are

uncorrelated

E{ηi ηj} =
1
4
δij , i, j = i, 2, 3, 4 . (51)

The four components of the uniformly distributed random quaternion are uncorrelated but not

independent.

The three Cartesian components of the uniformly distributed random Rodrigues vector, modi�ed

Rodrigues vector and rotation vector are also uncorrelated, but not independent. (The lack

of correlation among the Cartesian components of the Rodrigues vector is not very interesting,

since the variances of these components are in�nite.) The spherical components of these three

representations and of the vector components of the quaternion when uniformly distributed

random vectors are independent. The uniformly distributed random Euler angles, for all twelve

sets, are independent, hence uncorrelated. Thus, it would seem to be characteristic of the known

uniformly random attitude representations that the elements be uncorrelated.

GENERATING A UNIFORMLY DISTRIBUTED RANDOM

ATTITUDE SEQUENCE

High-level computer languages generally have in their function libraries routines for computing

samples of a random variable uniformly distributed on the interval [0, 1]. If xi is the i-th sample

of this random variable, then samples of an equivalent random variable y, distributed uniformly

on the interval [a, b] can be generated according to

yi = a + (b − a) xi . (52)

In the more general case, if we wish to transform samples of a random variable y uniformly

distributed on [a, b] to samples of a random variable z(y) with pdf pz(z
′), then we �rst note that

under the assumption that z(y) is a monotonically increasing function of y

∫ z(y′)

z(a)
pz(z

′′) dz′′ =
∫ y′

a

py(y′′) dy′′ =
1

b − a

∫ y′

a

dy′′ . (53)

Thus, the function z(y) is obtained by solving the equation

Pz(z
′) ≡

∫ z′

z(a)
pz(z

′′) dz′′ =
y′ − a
b − a

(54)

for z′. Our ability to �nd a closed-form expression for z(y), therefore, depends on our ability to

�nd a closed-form expression for the probability function Pz(z
′) which can be inverted.

Most frequently it is a uniformly random sequence of quaternions which are desired, or

a uniformly random sequence of direction-cosine matrices, for which the computation of the

quaternion is generally an e�cient intermediate step. Thus, we will focus in this section on the

generation of uniformly random sequences of quaternions.

For the vector components of the unit quaternion the inversion of Eq. (54) is not possible in

closed form. To see this we note that the pdf for the magnitude of the vector components of

the unit quaternion is given by

pη(η
′) ≡

∫

pη(η′) (η′)2 d2η̂ =
4(η′)2

π
√

1 − (η′)2
, (55)
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from which we obtain

Pη(η
′) =

2
π

(sin−1 η′ − η′
√

1 − (η′)2) , (56)

This is expressed equivalently and more conveniently in terms of the probability function of the

angle of rotation (Eq. (25a))

Pθ(θ′) =
1
π

(θ′ − sin θ′) . (57)

The right member of neither Eq. (56) nor Eq. (57) can be inverted in closed form, but only by

an in�nite process.

Thus, the magnitude of the vector components of the unit quaternion or the angle of rotation

does not provide a convenient vehicle for generating uniformly distributed random samples of

the attitude representations. A similarly non-invertible function will, in fact, appear equivalently

in the probability function of all the other attitude representations except for the Euler angles.

Let us consider next the 3-1-3 Euler angles. Clearly, both φ and ψ are uniformly distributed

on the interval [0, 2π). The probability function for ϑ is trivial to determine, namely

Pϑ(ϑ′) =
1 − cos ϑ′

2
≡ µ(ϑ′) . (58)

The random variable µ is uniformly distributed on the interval [0, 1], and

ϑ′ = cos−1(1 − 2µ′) . (59)

Thus, we need only compute random samples of φ, ψ , and µ, after which the quaternion may

be calculated from the formula

2

η̄ =









s(ϑ)c(φ − ψ)

s(ϑ)s(φ − ψ)

c(ϑ)s(φ + ψ)

c(ϑ)c(φ + ψ)









, (60)

with s(x) and c(x) as in Eq. (30).

In fact it is unnecessary to determine ϑ′ as an intermediate variable since

s(ϑ′) =
√

µ′ , c(ϑ′) =
√

1 − µ′ (61)

with the positive sign always chosen for the square roots. From the standard formulas and

the uniformly distributed random sequence of quaternions or Euler angles it is then simple to

generate a uniformly distributed random sequence of the other attitude representations, including

the direction-cosine matrix.

Note that if ϕ and ψ are strictly uniform on [0, 2π], then so are ϕ±ψ equivalently when one

treats the addition of angles as being modulo 2π. Thus, we may rewrite Eq. (60) in the form

η̄ =









s(ϑ)c(σ)

s(ϑ)s(σ)

c(ϑ)s(τ)

c(ϑ)c(τ)









, (60')

and a uniform distribution of η̄ is obtained by assuming the identical pdf for ϑ as before and

with σ and τ distributed uniformly on [0, 2π].
Thus, we may propose the following algorithm for the generation of uniformly random

sequences of quaternions:
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The Euler-Angle Method

• Compute samples σ′ and τ ′ of σ and τ, which are independent and are distributed

uniformly on [0, 2π].

• Compute a sample µ′ of µ, which is distributed uniformly on [−1, 1].

• Compute the sample η̄′ of η̄ according to Eqs. (60') and (61).

It is amusing to note that the Euler angles, generally shunned in attitude studies because of their

singularity and the cumbersome trigonometric functions, seem to be the superior representation

for generating uniformly distributed random sequences of attitude in simulation. This said,

we present in passing a very simple algorithm for generating a uniformly randomly distributed

sequence of quaternions directly. This algorithm is based on the result, proved in the previous

sections, that the uniformly distributed random quaternion has constant pdf over the entire

hypersphere S3
.

The Ball in the Box Algorithm

Let xi, i = 1, 2, 3, 4, be independent random variables distributed uniformly on the interval

[−1, 1]. Then [x1, x2, x3, x4] is uniformly distributed in the interior of a hypercube of side

2. Consequently, the samples are distributed uniformly (and uniformly) on any hyperspherical

surface entirely contained in the hypercube. Hence, the algorithm for generating uniformly

distributed random unit quaternions is

• Compute four independent samples, x′i, i = 1, . . . , 4, uniformly distributed on the interval

[−1, 1].

• If a ≡ (x′1)2 + (x′2)2 + (x′3)2 + (x′4)2 > 1, then discard the samples;

else η̄′ = [x′1, x
′
2, x

′
3, x

′
4]T/
√
a.

• Repeat this process until the desired number of sampled unit quaternions has been

generated.

This algorithm requires one more evaluation of a uniformly distributed random sample but

fewer evaluations of special functions than the algorithm for generating uniformly distributed

Euler angles. However, a large fraction of the computations are wasted in the discarded cases.

To see this, note that the volume of a unit ball in four dimensions is π2/2, and the volume of

a cube of side 2 in four dimensions is 16. Thus, the probability of a successful simulation of a

point in the interior of the unit ball is π2/32 = .308, so that nearly 70% of the samples will be

discarded on average.

An algorithm which discards no sample is the following:

Normal Random Unit Quaternion Generator

Let x′i, i = 1, 2, 3, 4, be sampled from a normal random distribution with mean 0 and standard

deviation σ. Then the joint pdf p
x

(x′), with x ≡ [x′1, x
′
2, x

′
3, x

′
4]T , is simply

p
x

(x′) =
1

(2πσ2)2
exp
(

−
x

T
x

2σ2

)

, (62)

which depends only on the length of x and not on its direction in 4-space. Hence, we are led

to the following generator of uniformly distributed random unit quaternions:
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• Compute four samples, x′i, i = 1, . . . , 4, sampled independently from a normal distribution

with mean 0 and standard deviation 1.

• Compute a ≡ (x′1)2 + (x′2)2 + (x′3)2 + (x′4)2
.

• The unit quaternion is given by η̄′ = [x′1, x
′
2, x

′
3, x

′
4]T/
√
a.

This algorithm has an advantage over the previous one in that it discards no data. However,

to compute an approximate sample from a distribution N (0, 1) most computers simply sample

yi, i = 1, . . . , 12, from the distribution U (0, 1) and set

x′ = y′1 + y
′
2 + . . . + y

′
12 − 6 , (63)

so that every sampled uniformly distributed random unit quaternion requires 48 samples from

U (0, 1). This, however is probably a smaller computational burden than computing two square

roots and four trigonometric functions for each quaternion.

DISCUSSION

There are many uses for the simulation of a uniformly distributed random attitude. First,

it allows one to study the performance of a control system or attitude determination system

when the attitude may not be known at all a priori. This may be particularly useful in testing

"lost in Space" attitude determination and control scenarios. If one believes that the spacecraft

may be tumbling at some point of the mission and wishes to predict the rate of solar power

acquisition, then the simple simulation of a random attitude is certainly much simpler than a

full-scale simulation of the dynamics. Most important, perhaps, is that this study is the �rst step

in an attempt to provide a general probabilistic description of attitude which takes direct account

of the group properties.

Equation (6) provides a simple and direct method for calculating the uniform pdf for any

three-component representation of the attitude. However, this equation requires the computation

of the determinant of a 4 × 4 matrix, while the earlier examples of pdf's for three-component

needed only the determinant of a 3 × 3 matrix and frequently only the determinant of a 1 × 1
matrix, which pose a much smaller burden.

We have presented three di�erent methods for deriving the expression for the uniform pdf

for a three-component representation of the attitude:

• The group method, Eqs. (I-34) and (I-38),

• The transformation method, Eq. (1), and

• The quaternion method, Eq. (6).

The group-theoretic method used to obtain the pdf for the 3-1-2 Euler angles provides a fourth

method. However, it is unlikely that that method will �nd further application.

At this point we may make a remark about the initialization of the Kalman �lter. There are

generally two approaches to this. One is to process a suitable number of the initial measurements

in a batch processor and so obtain an initial estimate and initial error covariance matrix. If the

data consists of directions, as from a star tracker, then this step can be accomplished using the

QUEST algorithm.

4

Some workers, however, initialize the Kalman �lter with a state vector whose components all

vanish and a diagonal state estimate covariance matrix whose variances are exceeding large, say,

even 105
rad. This is unnecessary. Unless one chooses the attitude representation in the �lter

to be the Rodrigues vector, the variance of any of the three components will be �nite and of

magnitude surely smaller than (2π)2
. The covariance matrices are easy enough to calculate from
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the pdf's above. To use a very large covariance is generally uncalled for. Of course, one should

avoid using the quaternion (or, worse, the attitude matrix) for anything except the prediction step

for the state vector, because it is di�cult otherwise to maintain the singularity of the estimate

error covariance matrix.

It is surely remarkable that so many interesting results should be derivable from only two

simple concepts: the group invariance of the uniform pdf, and the implicit function theorem.

While a little knowledge of the attitude may be complicated and unesthetic to describe, the

description of total ignorance of the attitude seems a thing of beauty and wonder.
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