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MAN, LIKE THESE ATTITUDES ARE TOTALLY RANDOM!

I. QUATERNIONS
∗

Malcolm D. Shuster

∗∗

We address the problem of modeling the probability density function

of the attitude quaternion when there is no a priori knowledge of the

attitude of any kind. We �rst de�ne generally, on the basis of purely

physical arguments, what is meant by such a probability density function

and develop a general expression from which the probability density

function for any three-dimensional attitude representation can be de-

termined. We then calculate explicit expressions for this completely a

priori probability density function for the attitude quaternion, both for

the vectorial components alone and as a function of all four components

treated independently in R4
.

INTRODUCTION

Generally, one needs to model a totally random attitude for which there is no a priori

information in two situations:

1. In simulation when one wishes to test an algorithm for all attitudes in a �uniform� and

unbiased manner; and

2. In Bayesian attitude estimation, when there is no a priori information on the attitude.

In the present work, which is in two parts, we address ourselves entirely to the �rst topic.

The second topic will be treated at length in a succeeding paper devoted to Bayesian techniques

in attitude estimation.

In order to carry out �uniform� simulation tests of an attitude-dependent algorithm, one must

be able to generate random samples of the attitude which have a probability density function

1

(pdf) which is uniform in the sense that no set of attitudes will be more probable than another.

Unfortunately, except in the most trivial cases, it is not obvious how to construct the pdf
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of a random variable which is �uniform� in this way. As it turns out, it is possible to generate

an unambiguous expression for the pdf, if the random variable and a given operation forms a

group.

As a �rst step to deriving the more general methods, consider the very simple case of attitude

about a �xed axis of rotation, so that the only attitude degree of freedom is the angle of rotation.

This case will serve as an example in miniature of our general approach.

We write the pdf of the angle as pθ(θ′) where θ is the random variable, which serves here

also as a label on the pdf, and θ′ is a possible value of the sampled angle, the realization of the

random variable. If there is no a priori knowledge of any kind on the angle of rotation, then the

pdf of the angle of rotation should be the same independent of the �xed direction, perpendicular

to the axis of rotation, from which the angle of rotation is measured. Thus, if the reference

direction is rotated by an angle −c, the random angle of rotation becomes equivalently θ+ c, and

we must have

pθ(θ′) = pθ+c(θ
′) , (1)

with the addition of angles being understood as modulo 2π. However, it is also true that

pθ+c(θ
′) = pθ(θ′ − c)

∣

∣

∣

∣

d(θ′ − c)
dθ′

∣

∣

∣

∣

= pθ(θ′ − c) . (2)

Hence,

pθ(θ′) = pθ(θ′ − c) . (3)

Since c is arbitrary it follows that pθ(θ′) must be independent of θ′, whence, from the constraint

that the total probability be unity, it follows that

pθ(θ′) =
1

2π
, (4)

the answer which we expected intuitively.

This derivation makes clear why the pdf for θ without any a priori knowledge is a constant

function of θ′, but not the pdf for θ2
as a function of (θ′)2

under these same conditions, since

the composition rule for the later is not simple addition.

The key equation here is Eq. (1), which relates the �uniformity� of the pdf to a physical

process, the selection of the reference point. The next step is to change the relation between

the two random variables to an equation describing the dependence on the argument of the pdf.

From there one calculates the explicit function for the pdf.

These same steps will be followed for three-axis attitude, with the following di�erences: (1)

the change of variable will involve at least three coordinates, and will not be as simple as Eq. (2);

the composition rule is not simple addition for any attitude representation, but is non-linear, as

a result of which the �uniform� pdf of the attitude will never be a constant function in Euclidean

space. Clearly, since we assume no prior information from measurements, the only knowledge

of the attitude that can be used to construct the pdf for these �uniform� distributions is the

nature of the composition rule for the representation.

It should be said at this point that not all of the results presented in this work can be said

to be original, even though the author has derived them independently. This area was studied

by mathematicians in the �rst half of the twentieth century, and belongs to the Theory of

Representations of Compact Groups, whose study requires the knowledge of Measure Theory,

Topology, Group Theory, and the Theory of Di�erentiable Manifolds, none of which are part of

the usual education of aerospace engineers at any degree level.

Fortunately, the results needed by aerospace engineers can be derived solely on the basis of

Riemann-Stieljes integration, which forms a part of every undergraduate Calculus course. The

vast majority of the results in this work are new, although many of the new results are not of

particular interest to pure mathematicians, whose focus is on rotations as an abstract compact
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Lie group and not on the speci�c attitude representations and their application to problems of

Engineering.

Because of the importance of the quaternion in all areas of attitude analysis a great deal of

attention is devoted to the representation of the probability of the four-component quaternion.

In fact, we study this problem twice, using approaches which o�er very di�erent insights. The

�rst approach, more familiar to mathematicians, replaces the unit 3-sphere of the quaternion with

a �nite covering of overlapping open sets. On each open set the quaternion and its probability

density function have a di�erent parameterization, but simple relationships exist relating these

where the open sets overlap, and these provide a rigorous though somewhat clumsy means for

evaluating the probability density function for any value of the unit quaternion. In a roundabout

way the constancy of the quaternion probability density on the unit 3-sphere is demonstrated,

and this is used to construct the probability function in Euclidean 4-space. The second approach,

more familiar to theoretical physicists, examines the probability density function from the outset

in the full four-dimensional space (which thus includes quaternions of arbitrary norm) and uses

the Dirac δ-function to construct a simple explicit form. In this way one avoids the segmentation

of the unit hypersphere, and one arrives at a concise and global description of the quaternion

probability density in which the geometrical properties of the probability density are manifest.

These studies of the pdf for the four-component quaternion lead in Part II of this work to a very

simple formula for the probability density function for any uniformly distributed three-component

representation of the attitude.

We preface this work with a section on mathematical preliminaries. The section is intended

largely to introduce notation and to refresh the reader's memory of multivariate calculus,

probability distributions, and groups. This material is not presented with mathematical rigor, but

the statements made there are, nonetheless, rigorously true.

MATHEMATICAL PRELIMINARIES

Univariate Probability Distributions

We de�ne the probability function

1

of a one-dimensional random variable x as

Px(x′) ≡ probability that x < x′ ≡ Prob

(

{x < x′}
)

. (5)

Here x denotes the random variable and x′ a possible value that can be realized by this random

variable (the realization of x). We assume that Px(x′) is de�ned on some continuous interval,

either limit of which may be in�nite. If we write the interval formally as [xi, xf ], then we must

have P(xi) = 0 and, by convention, Px(xf ) = 1.
If now y(x) is a continuous, strictly increasing function of x over the entire domain of y(x),

then, de�ning similarly

Py(y′) ≡ Prob

(

{y < y′}
)

, (6)

we must have

Py

(

y(x′)
)

≡ Prob

(

{y < y(x′)}
)

= Prob

(

{x < x′}
)

= Px

(

x′
)

, (7)

so that a probability function is a function in the usual sense.

∗
Equation (7) requires that y(x) be

strictly increasing. Had we chosen y(x) = −x, for example, we would have had Px(x′) = 1−Py

(

y(x′)
)

.

If the probability functions for x and y are di�erentiable as well, we can write

Px(x′) =
∫x′

xi

px(x′′) dx′′ , Py(y′) =
∫ y′

yi

py(y′′) dy′′ , (8)

∗
Note that the symbol y is doing triple duty: (1) as a random variable, (2) as a function y(x), and (3) as a label for the

probability and probability density functions.
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with px(x′) and py(y′) the respective probability density functions (pdf), which we take to be

piecewise continuous functions of their respective arguments

px(x′) =
dPx(x′)
dx′

, py(y′) =
dPy(y′)

dy′
, (9)

Let us suppose further that y(x) is, in addition, a di�erentiable function of x. Then, in obvious

notation,

∫x2

x1

px(x′) dx′ =
∫ y2

y1

py(y′) dy′ =
∫x2

x1

py

(

(y(x′)
)

(

dy(x′)
dx′

)

dx′ , (10)

from which it follows that

px(x′) = py

(

y(x′)
)

(

dy(x′)
dx′

)

. (11)

We call such a function a density. The probability function is a function; the probability density

function is a density.

Discontinuous Probabilities

What if Px(x′) is not di�erentiable almost everywhere and not even continuous? Suppose, for

example, that Px(x′) is di�erentiable at every point of [xi, xf ] except at the point x1 at which it

has a �nite discontinuity, i.e.,

lim
x′→x1
x′<x1

Px(x′) = Px(x−1 ) , lim
x′→x1
x′>x1

Px(x′) = Px(x+1 ) , (12)

with Px(x−1 ) < Px(x+1 ). Then the probability of x realizing exactly the value x1 is

Prob({x = x1}) = lim
ε→0+

(

Px(x1 + ε) − Px(x1 − ε)
)

= Px(x+1 ) − Px(x−1 ) > 0 . (13)

The point x1 is said to be a point of concentration, because there is a �nite probability that

x′ = x1 exactly.

If there is a point of concentration, a pdf cannot be written for the probability function Px(x′)
in the usual way. We can, however, write the pdf for Px(x′) formally as

px(x′) = px(x′) +
(

Px(x+1 ) − Px(x−1 )
)

δ(x − x1) , (14)

where px(x′) is a �nite piecewise-continuous function de�ned by

px(x′) ≡







dPx(x′)
dx′

for x′ 6= x1

0 for x′ = x1

, (15)

and δ(x) is the Dirac δ-function, which satis�es

δ(x) = 0 for x 6= 0 , (16a)
∫∞

−∞
δ(x) dx = 1 , (16b)

f (x) δ(x) = f (0) δ(x) , (16c)
∫∞

−∞
f (x) δ(n)(x) dx = (−1)n

∫∞

−∞

dnf (x)
dxn

δ(x) dx , (16d)

∫∞

−∞
f (x) δ

(

g(x)
)

dx =
∑

i

∫∞

−∞
f (x)

∣

∣

∣

∣

dg

dx
(xi)

∣

∣

∣

∣

−1

δ(x − xi) dx , (16e)
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where δ(n)(x) denotes the n-th derivative of δ(x), and the xi are the roots of g(x).
Equations (16d) and (16e) state that we can treat the δ-function like an ordinary density

function with respect to a change of variable or to integration by parts. That would follow if we

wrote

δ(x) = lim
σ→0+

1
√

2πσ2
e−x

2/2σ2
≡ lim

σ→0+
δσ (x) . (17)

Equations (16d) and (16e) will hold for δσ (x) for every positive value of σ. Equations (16c),

(16d), and (16e) will then hold in the limit that σ → 0+
provided that: (i) f (x) is continuous at

x = 0 (for Eq. (16c)); (ii) dnf/dxn is continuous at x = 0 (for Eq. (16d)); (iii) g(x) is di�erentiable

and f (x) is continuous at each of the xi (for Eq. (16e)). Note that because of Eq. (16e) the

Dirac δ-function, is, in fact, a density. The Dirac δ-function is not a function in the usual sense,

but only a formal shorthand for the presence of a discontinuity in the probability function and,

accordingly, a point of concentration.

Multivariate Probability Distributions and the Implicit Function Theorem

For the multivariate case in n dimensions the probability density is de�ned by

P
x

(x′) ≡ Prob

(

{x1 < x
′
1, . . . , xn < x

′
n}
)

, (18)

with x = [x1, x2, . . . , xn]
T
and the multivariate pdf, assuming that P

x

(x′) is su�ciently di�erentiable,

is de�ned by

p
x

(x′) ≡
∂

∂x′1

∂

∂x′2
. . .

∂

∂x′n
P
x

(x′) , (19)

whence

P
x

(x′) =
∫x′1

xi,1

∫x′2

xi,2

· · ·
∫x′n

xi,n

p
x

(x′′) dx′′1 dx
′′
2 . . . dx

′′
n , (20)

and
∫xf,1

xi,1

∫xf,2

xi,2

· · ·
∫xf,n

xi,n

p
x

(x′′) dx′′1 dx
′′
2 . . . dx

′′
n = 1 , (21)

assuming that the domain of px(x′) is rectangular. As in the one-dimensional case, in n-dimensions

the probability function can have discontinuities. These can be at a point, on a curve, on a

surface, or on a hypersurface. The situation is much more complicated than on the real line.

We will encounter an example of a probability discontinuity on a hyperspherical surface in our

treatment of the pdf for the four components of the quaternion.

In n dimensions the rule for a change of variables is provided by the implicit function

theorem,

2, 3

which may be stated for the present purposes as follows: Let the multivariate

function y(x) = [y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)]
T

be such that for every x

′
in the domain of

y(x) the Jacobian matrix

[

∂y′

∂x′

]

ij

=
[

∂(y′1, y
′
2, . . . , y

′
n)

∂(x′1, x
′
2, . . . , x

′
n)

]

ij

≡
∂y′i
∂x′j

(22)

exists and has non-zero determinant everywhere in the domain of y(x). If f (y′) is a piecewise-

continuous function, then the implicit function theorem tells us that the integral over y

′
can be

transformed to an integral over x

′
according to

∫

Y
f (y′) dny′ =

∫

X
f
(

y(x′)
)

∣

∣

∣

∣

∂y(x′)
∂x′

∣

∣

∣

∣

dnx′ , (23)

where |∂y′(x′)/∂x′| denotes the absolute value of the determinant of the Jacobian matrix. The

absolute value of the determinant of the Jacobian matrix (henceforth, for brevity: the Jacobian
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determinant) must be used lest the sign of the integral depend on the ordering of the elements

of x and y. Here X and Y are the domains of integration with Y the image of X or, equivalently,

X the pre-image of Y. Except in the case that every component of y(x) is a monotonically

increasing function of every component of x, the multivariate probability function will not satisfy

a relation analogous to Eq. (11). Thus, in general,

P
x

(x′) 6= P
y

(

y(x′)
)

, (24)

One avoids this problem by de�ning the multivariate probability function not as a function of

coordinates as in Eq. (18) but as a function of sets in general. If X is a subset of the domain

of y(x), say a multivariate interval, and y(X) is its image in the range of y(x), then

P
x

(X) = P
y

(

y(X)
)

. (25)

This idea was already implicit in Eqs. (5) and (18). The multivariate probability density function

is a density in the previous sense, since it is de�ned at a point

p
x

(x′) = p
y

(

y(x′)
)

∣

∣

∣

∣

∂y(x′)
∂x′

∣

∣

∣

∣

. (26)

The Rotation Group

Every attitude representation forms a group.

4

A group G = {G, ◦ } consists of a set of objects

G = { α, β, . . . } and an operation ◦ which satisfy the following conditions:

(1) For any two α and β in G, α ◦ β is also in G .

(2) The operation is associative

α ◦ (β ◦ γ) = (α ◦ β) ◦ γ . (27)

(3) There exists an identity element ι in G which satis�es

ι ◦ α = α ◦ ι = α (28)

for every α in G .

(4) For every α in G there exits an inverse element α−1
such that

α ◦ α−1 = α−1 ◦ α = ι . (29)

These properties allow us to write and solve algebraic equations for the attitude representations

in a general manner without having to reduce them to numerical form.

For the rotation matrix or direction-cosine matrix (DCM), G is the set of all proper orthogonal

3 × 3 matrices; the group operation is matrix multiplication; the identity element is the 3 × 3
identity matrix; and the inverse of a DCM is just its transpose. For the attitude quaternion, G

is the set of all 4× 1 arrays with unit norm; the group operation is quaternion composition;

5

the

identity element is the quaternion [0, 0, 0, 1]T ; and the inverse of η̄ is η̄∗ with

η̄∗ ≡
[−η
η4

]

. (30)

Properties like these hold true for every representation of the attitude, although in some cases, as

for the Euler angles, the nature of the group property may not be very transparent.

6

What enters
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into our calculation of the pdf's for uniformly distributed representations of random attitude is

the analytic form of the group operation.

UNIFORM ATTITUDE PROBABILITY DENSITIES

A uniform attitude probability density function

1

is one which makes all attitudes �equally�

probable. To understand what this means, let the random attitude representation be denoted by

ξ. As before, we write the pdf as pξ (ξ′) where ξ′ denotes the value of a possible realization of

ξ. Note �rst that a uniformly distributed random attitude cannot mean that in general

pξ (ξ′) = pξ (ξ′′) (31)

for arbitrary values ξ′ and ξ′′ of the attitude representation, which would say that the pdf was a

constant function of the attitude representation. Equation (26) shows that this cannot be true

in general, because the pdf is a density. Hence, if the pdf were a constant function for one

choice of the attitude representation, on performing a change of variable to a di�erent choice

of the attitude representation, it would cease to be a constant function because of the factor of

the Jacobian determinant.

An attitude representation by de�nition is the representation of a rotation. Thus, if ξ is the

representation of the uniformly distributed random attitude from the space coordinate frame to

the body coordinate frame, then ξ ◦ χ is the representation of the rotation from a new space

frame to the body frame, with the representation of the (constant) rotation from the old to the

new space frame being χ−1
. Likewise, if ζ−1

is the the representation of the (constant) rotation

carrying the old body axes to new body axes, then the random representation of the attitude

from the old space axes to the new body axes becomes ζ ◦ ξ. Thus, for the pdf of the attitude

to provide no information we must have

pξ (ξ′) = pξ◦χ (ξ′) = pζ◦ξ (ξ′) = pζ◦ξ◦χ (ξ′) , (32)

for all values of ξ′ no matter what the choice of χ and ζ , so long as they have �xed values. The

rightmost member of Eq. (32) is the most general statement of the invariance but will not be of

practical use in the development of this work.

Practitioners of maximum-likelihood estimation

7

will immediately recognize the signi�cance of

Eq. (32). The representations χ and ζ play the role of parameters of the pdf. Eq. (32) thus

says that the likelihood function is independent of the parameters to be estimated, and hence

the parameters cannot be estimated from the likelihood.

The group properties of the attitude have thus determined the nature of the invariance which

characterizes a uniformly distributed random attitude. To exploit the implicit function theorem

further, however, requires that the discussion be specialized to three-parameter representations

of the attitude. This is because the Jacobian determinant will be indeterminate or vanish (both

outcomes extremely unpleasant) unless all of the variables in its de�nition are independent. Since

there are only three independent attitude parameters, we must set aside for the moment, any

application of our results thus far to the four-component quaternion or the DCM, which have

four and nine parameters, respectively.

We now exploit the implicit function theorem once more. Changing the random variable from

ξ ◦ χ in the second member of Eq. (32) to ξ is equivalent to changing the argument of the pdf

from ξ′ to ξ′ ◦ χ−1
, and similarly for the third member. Applying the implicit function theorem

to Eq. (32) then leads to

pξ (ξ′) = pξ◦χ (ξ′) = pξ (ξ′ ◦ χ−1)

∣

∣

∣

∣

∂(ξ′ ◦ χ−1)
∂ξ′

∣

∣

∣

∣

, (33a)
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and

pξ (ξ′) = pζ◦ξ (ξ′) = pξ (ζ−1 ◦ ξ′)
∣

∣

∣

∣

∂(ζ−1 ◦ ξ′)
∂ξ′

∣

∣

∣

∣

. (33b)

Equations (33) are remarkable in that they tell us that for a uniformly distributed random

attitude, the value of the pdf for one value of the attitude representation is related to the value

of the pdf for a di�erent value of the representation by the Jacobian determinant. Thus, if the

value of the pdf is known for one value of the attitude representation, the value of the pdf for

any other value of the attitude representations can be obtained by choosing χ or ζ appropriately.

The group properties of the attitude representations assure that an appropriate χ or ζ can

always be found. For simplicity, let us chose that initial value of the attitude representation

to be ι, the identity element of representation (corresponding to 0 for the vector components

of the quaternion, the rotation vector, the Rodrigues parameters, and the modi�ed Rodrigues

parameters, to I3×3 for the direction-cosine matrix, or to [ 0, 0, 0, 1 ]T for the quaternion as

discussed in Ref. 5). Then Eqs. (32) can be transformed to

pξ (ξ′) = pξ (ι)

∣

∣

∣

∣

∂α

∂(α ◦ ξ′)

∣

∣

∣

∣

α=ι

= pξ (ι)

∣

∣

∣

∣

∂α

∂(ξ′ ◦ α)

∣

∣

∣

∣

α=ι

. (34)

To obtain Eq. (34) we make the substitution in Eq. (33a) of α = ξ′ ◦ χ−1
, which implies

ξ′ = α ◦ χ. Equation (33a) then becomes

pξ (α ◦ χ) = pξ (α)

∣

∣

∣

∣

∂α

∂(α ◦ χ)

∣

∣

∣

∣

. (35)

Note that we are not carrying out a change of variable, so there is no additional factor of a

Jacobian determinant. We are simply expressing the same numerical value in a di�erent manner.

The numerical values of the respective arguments of Eq. (33a) and Eq. (35) are identical.

Now let χ, whose value is arbitrary, have the value ξ′ yielding

pξ (α ◦ ξ′) = pξ (α)

∣

∣

∣

∣

∂α

∂(α ◦ ξ′)

∣

∣

∣

∣

. (36)

Taking the limit that α → ι then yields the �rst relation in Eq. (34) provided that the limits of

the two factors in the right member exist separately and pξ (ι) not vanish. When this condition

is violated one must either rely on Eq. (36) for values of α di�erent from ι, or else apply

L'H
opital's rule as α→ ι.
Equation (34) implies that the pdf can be uniform in the strict sense, i.e., a constant function,

only if the Jacobian determinant is a constant. This can happen only if the composition rule for

the representation is simple componentwise addition. This is true for no attitude representation

globally. Hence, it is not expected that the pdf will be a constant over all space for any attitude

representation. Note that translations add, so that one expect the uniform pdf for position to

be a constant. Also, the components of the rotation vector for a small rotation add, so that we

should expect the pdf of that representation to be constant to �rst order near the origin.

Equation (34) shows clearly that the entire pdf is determined from the implicit function

theorem (which provides the factor of the Jacobian determinant) and the group property of

attitude representation, which enters into the computation of the Jacobian determinant. The

value of the pdf at ι need not be known ab initio, since it is determined completely from the

condition that the total probability be unity. Thus

1 =
∫

pξ (ξ′) d3ξ′ =
[∫

Ξ
pξ (ι)

∣

∣

∣

∣

∂α

∂(α ◦ ξ′)

∣

∣

∣

∣

α=ι

d3ξ′
]

= 1 , (37)
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and, therefore,

pξ (ι) =
[∫

Ξ

∣

∣

∣

∣

∂α

∂(α ◦ ξ′)

∣

∣

∣

∣

α=ι

d3ξ′
]−1

. (38)

and Ξ is the entire domain of the pdf.

Equations (26), (32), and their consequential results, Eqs. (34), and (38) are the cornerstones

of the present work and its sequel.

THE UNIFORM PDF FOR VECTOR COMPONENTS OF THE QUATERNION

The pdf for the vector components of the quaternion are obtained directly from Eqs. (34)

and (38). The quaternion, we note, is related to the axis and angle of rotation by

5

η̄ =
[

η

η4

]

=
[

sin(θ/2) 
n

cos(θ/2)

]

, (39)

with θ the angle of rotation and 
n the axis of rotation, a unit vector. The quaternion composition

rule for the vector components alone under the constraint that the scalar component be positive

is

5

α ◦ η′ = sgn(α, η′)
(

α4 η
′ + η′4 α − α × η

′) , (40)

where α4 and η′4 are here shorthand for +
√

1 − |α|2 and +
√

1 − |η′|2, respectively, and

sgn(α, η′) = sign

(

α4 η
′
4 − α · η

′) . (41)

Equation (34) for η′4 6= 0 leads to

∣

∣

∣

∣

∂α

∂(α ◦ η′)

∣

∣

∣

∣

α=0
=

∣

∣

∣

∣

∂(α ◦ η′)
∂α

∣

∣

∣

∣

−1

α=0
=

1
η′4

=
1

√

1 − |η′|2
, (42)

and from Eq. (38), pη(0) = 1/π2
. Hence,

pη(η′) =
1

π2
√

1 − |η′|2
. (43)

The author derived this result for the �rst time in 1993, when the problem was �rst posed to

him by Markley. Note that the pdf is constant to �rst order in |η| near η = 0 as predicted by

the discussion following Eq. (34).

We emphasize that it is only through the nature of the composition rule that any information

about the particular attitude representation enters the calculation of the pdf. Equation (39),

although a helpful reminder, plays no role in the derivation of Eq. (43).

The pdf for the quaternion as a four-component object is of particular interest, but its

derivation will be delayed until later in this work because of the complexities arising from the

four-dimensionality.

THE UNIFORM PDF FOR THE FOUR-COMPONENT QUATERNION:

A PARTITIONED APPROACH

We present here a mathematically rigorous derivation of the pdf of the quaternion on the

whole of S3
, the unit 3-sphere.

∗
Previously, we determined pη(η′) restricted to the open

hemihypersphere η′4 > 0. Let us de�ne now eight open hemihyperspheres H (i, κ) according to

H (i, κ) =
{ { η̄′ | η′i > 0 } , for i = 1, 2, 3, 4, κ = 1

{ η̄′ | η′i < 0 } , for i = 1, 2, 3, 4, κ = 2
(44)

∗S2
, the unit 2-sphere, is the familiar spherical surface in three-dimensional space (the surface of the solid unit 3-ball),

S1
is the unit circle.
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Almost every point in S3
belongs to four open hemihyperspheres, and every point of S3

belongs

to at least one open hemihypersphere. (All but eight points in S3
belong to at least two open

hemihyperspheres.) Thus, these eight open hemihyperspheres constitute a �nite open covering

of S3
.

Let us de�ne now

η(1) ≡





η2

η3

η4



 , η(2) ≡





η1

η3

η4



 , η(3) ≡





η1

η2

η4



 (45)

(hence, η = η(4)). It follows trivially that for every η̄ ∈ H (i, κ)

pη(i), κ

(

η′(i)
)

=
C(i, κ)
|η′i|

, i = 1, 2, 3, 4 , κ = 1, 2 , (46)

for some constant C(i, κ). Since the probability density function at every point of S3
is �nite

when written in terms of the appropriate coordinates, it follows that the uniform distribution of

η̄ on S3
cannot have a point of concentration.

We note further that wherever it is �nite

∣

∣

∣

∣

∂η′(i)
∂η′(j)

∣

∣

∣

∣

=
|η′i|
|η′j|

, i = 1, 2, 3, 4 . (47)

Hence, if ᾱ belongs to both H (i, κ) and H (j, λ), then

C(i, κ)
|αi|

= pη(i), κ

(

α(i)
)

= pη(j), λ

(

α(j)
)

∣

∣

∣

∣

∂α(j)
∂α(i)

∣

∣

∣

∣

=
C(j, λ)
|αj|

|αj|
|αi|

=
C(j, λ)
|αi|

. (48)

It follows that C(i, κ) = C(j, λ) for any two hemihyperspheres. Therefore, for any point of S3

for which η′i 6= 0,

pη(i), κ

(

η′(i)
)

=
C

|η′i|
, i = 1, 2, 3, 4 , κ = 1, 2 , (49)

for a common constant C. Since there are no points of concentration on S3
and S3 =

H (4, 1) ∪H (4, 2) ∪ ∂H (4, 1), with ∂H (4, 1), the boundary of H (4, 1), a set of measure zero, we

can determine C from

1 =
∫

H (4, 1)∪H (4, 2)

pη(η′) d3η′ = 2C
∫

|η′|<1

d3η′
√

1 − |η′|2
= 2π2 C , (50)

whence

pη(i), κ

(

η′(i)
)

=
1

2π2|η′i|
, i = 1, 2, 3, 4 , κ = 1, 2 , (51)

everywhere in S3
that n′i 6= 0.

We can describe the probability density function for the quaternion as a single function of the

quaternion de�ned on all of S3
and avoid the changes of variables associated with Eq. (51). To

accomplish this task we write the general quaternion as a function of the vector components of

the Euler-Rodrigues symmetric parameters (the unit quaternion) and the quaternion length as

q̄ =









q1

q2

q3

q4









=











q η1

q η2

q η3

q
√

1 − |η|2











. (52)
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The Jacobian determinant of the transformation from Cartesian quaternion coordinates to

(q, η1. η2, η3) is given by

∣

∣

∣

∣

∂(q1, q2, q3, q4)
∂(q, η1, η2, η3)

∣

∣

∣

∣

=
q3

|η4|
, (53)

and, therefore,

d4q̄ ≡ dq1 dq2 dq3 dq4 =
q3

|η4|
dq d3η ≡ q3 dq d3σ , (54)

which implies that

d3σ =
1
|η4|

d3η (55)

is the invariant �hyper-area� element on S3
, which should be called more properly the invariant

�volume� element.

From this it follows that

d3
Pη̄(η̄

′) = pη(i), κ

(

η′(i)
)

d3η′(i) =
1

2π2
d3σ′ , i = 1, 2, 3, 4 , κ = 1, 2 . (56)

Equation (56) shows that 1/2π2
is the invariant hypersurface probability density on S3

. Note

again that the value of the probability density is 1/2π2
and not 1/π2

, because we consider the

entire hypersphere and not just a hemi-hypersphere on which each attitude corresponds to a

single quaternion. The uniform pdf of the quaternion in four dimensions has a three-sphere of

concentration.

THE UNIFORM PDF FOR THE FOUR-COMPONENT QUATERNION:

A GLOBAL APPROACH

There is a very di�erent way to develop and understand the results of the previous section.

Instead of a pdf de�ned on S3
, let us consider a scalar function f (q̄) de�ned in four-dimensional

Euclidean space which has the same invariance property mutatis mutandis as the pdf, namely

f (q̄′) = f (p̄ ⊗ q̄′)
∣

∣

∣

∣

∂(p̄ ⊗ q̄′)
∂q̄′

∣

∣

∣

∣

, (57)

for all unit quaternions p̄. Thus, p̄ is a quaternion of rotation, while q̄′ can have arbitrary

norm. We may now treat q̄′ and p̄ as four-component objects, for which the composition rule

is much simpler than for a subset of three components of q̄′. Note that the transformation

induced by p̄ on q̄′ can change only its position on a 3-sphere of constant radius, so that we are

examining equivalently the same transformation as in Eqs. (32) but simultaneously on concentric

hyperspheres rather than only on the unit hypersphere S3
.

Following the conventions of Ref. 5,

p̄ ⊗ q̄′ = { p̄ }L q̄
′ , (58)

with

{ p̄ }L ≡







p4 p3 −p2 p1
−p3 p4 p1 p2
p2 −p1 p4 p3
−p1 −p2 −p3 p4






. (59)

It follows, then, that
∣

∣

∣

∣

∂(p̄ ⊗ q̄′)
∂q̄′

∣

∣

∣

∣

=
∣

∣det { p̄ }L
∣

∣ = 1 , (60)
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because { p̄ }L is a proper orthogonal matrix for any unit quaternion p̄. Thus, we are led to

search for functions of a general quaternion q̄ which satisfy

f (q̄′) = f (p̄ ⊗ q̄′) (61)

for every unit quaternion p̄.
We now restrict q̄′ to have unit length and let f (q̄′) = pq̄(q̄

′). Because the unit quaternions

form a group under quaternion multiplication, we are assured that for every value q̄′′ of the unit

quaternion there exists a value of p̄ such that p̄ ⊗ q̄′ = q̄′′. It follows, therefore, that

pq̄(q̄
′) = pq̄(q̄

′′) . (62)

The uniform pdf of the unit quaternion is a constant function of q̄′.
Since the quaternion of rotation must have unit length, it follows that the quaternion pdf

generalized to a function over all of R4
must have the form

pq̄(q̄
′) = c δ(q̄′T q̄′ − 1) , (63)

where c is a constant and δ(x) is the Dirac delta-function. The delta-function in Eq. (63) restricts

the support of pq̄(q̄
′) de�ned on R4

to S3
.

The constant c is determined again from the condition that the total probability be unity.

Thus,

1 = c

∫

δ(|q′|2 + q′ 24 − 1) dq′4 d
3q′

= c

∫

|q′|2≤1

[

∫∞

−∞

{

1
∣

∣2q′4
∣

∣

δ(q′4 −
√

1 − |q′|2)

+
1

∣

∣2q′4
∣

∣

δ(q′4 +
√

1 − |q′|2)

}

dq′4

]

d3q′

= c

∫

|q′|2≤1

1
√

1 − |q′|2
d3q′ = π2 c . (64)

Therefore, c = 1/π2
and

pq̄(q̄
′) =

1
π2
δ(q̄′ T q̄ − 1) , (65)

and, consequently, from the penultimate line of Eq. (64)

pη(η′) =
∫∞

−∞
pq̄(q̄

′) dq4

∣

∣

∣

∣

q=η
=

1

π2
√

1 − |η′|2
, (66)

which is the same as Eq. (43) above. Note again that Eq. (65) takes the domain of the pdf to

be all of S3
and not only a single hemihypersphere. Equation (63) could also have been written

equivalently as

pq̄(q̄
′) =

1
2π2

δ(
√

q̄′ T q̄ − 1) =
1

2π2
δ(q − 1) . (67)

Equations (63) and (65) are equivalent to Eq. (56).
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THE UNIFORM PDF FOR A RIGID BODY

For a uniform rigid body we must consider the pdf not only of the attitude but also of the

angular velocity. In terms of the attitude matrix and the angular velocity, the composition rule is

(A3, ωωω3) = (A2, ωωω2) ◦ (A1, ωωω1)(A2 A1, ωωω2 + A2ωωω1) . (68)

Thus, if we write the 6 × 1 state vector ξ for the rigid body as

ξ =
[

η

ωωω

]

, (69)

we obtain the Jacobian determinant

∣

∣

∣

∣

∂(α ◦ ξ′)
∂α

∣

∣

∣

∣

α=ι

=

∣

∣

∣

∣

η′4I3×3 + [[ η′ ]] 03×3

−2[[ωωω′ ]] I3×3

∣

∣

∣

∣

=
∣

∣η′4I3×3 + [[ η′ ]]
∣

∣ = η′4 . (70)

Here [[ v ]] denotes the matrix

[[ v ]] ≡







0 v3 −v2

−v3 0 v1

v2 −v1 0






. (71)

The pdf is uniform in ωωω in the strict sense. Thus,

pη,ωωω(η′, ωωω′) =
pη,ωωω(0, 0)
√

1 − |η′|2
= pη(η′) pωωω(0) . (72)

Clearly, pωωω(0) = 0, since the range of ωωω is in�nite, so that we cannot write a pdf for ωωω as easily

as we could for η, the problem with all functions which are constant on in�nite intervals. This

problem occurs because of topological di�erences between the rotation and translation groups.

The former is compact, while the latter is not.

DISCUSSION

We have developed the theory of the uniform probability density function for the quaternion

fairly completely. In part II of the paper,

8

we shall use these results to determine in a very

simple manner, the uniform pdf's of all of the other common representations.
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