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Abstract

The general problem of determining the attitude
deterministically, that is, directly without the op-
timization of a cost function, from measurements
of angles and directions is examined. While there
is no continuous ambiguity for this problem, be-
cause effectively three data are given, nonetheless,
the attitude still has generally a finite degeneracy
which can be removed only by the addition of
further data. Specific algorithms are developed
for all cases, and the nature of the degeneracy is
explored in detail.

Introduction

It is customary to divide algorithms for esti-
mating three-axis attitude into two classes. The
first class uses a minimal set of data, correspond-
ing to three scalar measurements, and then solves
three possibly non-linear equations to obtain the
attitude. This class is generally referred to as
“deterministic,” a name which has been popular-
ized by Wertz.!. The other class of algorithms,
generally referred to as “optimal,” determine the
attitude by minimizing an appropriate cost func-
tion. Such algorithms are called for when more
than three scalar measurements are processed to
obtain a more accurate estimate of the attitude.
Perhaps the best known deterministic algorithm
in current use is the TRIAD algorithm,? in use
since at least 1964,3 while the best known opti-
mal algorithm nowadays is certainly the QUEST
algorithm,? in frequent use for computing space-
craft attitude since 1979.
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The overwhelming prevalence of complete
vector data for determining spacecraft attitude and
the availability of the QUEST algorithm for nearly
two decades has largely obviated the need to calcu-
late spacecraft attitude from anything but complete
vector data. In fact, even the TRIAD algorithm
is in infrequent use nowadays, since the compu-
tational burden of the QUEST algorithm and its
competitors (for example, the SVD and FOAM
algorithms of Markley*S and recently published
algorithms by Mortari®®) is not much greater and
provides additional enhancements.

Deterministic  attitude-determination  algo-
rithms, although in infrequent use still find appli-
cation. A recent example was the need to de-
termine three-attitude for the Oscar-30 spacecraft
from the observed geomagnetic field vector from a
three-axis magnetometer (TAM) and the observed
angle between the geomagnetic field vector and
the Sun line from a spinning digital solar aspect
detector (SDSAD). One of the methods developed
in this paper is, in fact, the one employed for the
processing of Oscar-30 attitude data.’

With the exception of studies of the TRIAD
algorithm,? no systematic studies have been taken
of deterministic three-axis attitude determination
methods. It turns out that apart from the TRIAD
algorithm, which, in fact, uses more than three
effective scalar measurements for the construction
of the direction-cosine matrix,!® deterministic al-
gorithms do not in general lead to unambiguous
results for the attitude. The data may admit two-
fold, four-fold and eight-fold degeneracies in the
attitude solution. This is the subject of the present
work.

294



Nature of the Measurements

Attitude measurements are generally of angles.
Thus, if S is some direction fixed in the spacecraft,
for example, the axis of a focal-plane sensor, and
if W is a direction of some object in space (or
of a measurable vector field at the spacecraft,
such as the geomagnetic field) coordinated in the
spacecraft body frame, then the most basic vector
measurement is simply

d=§ - W+Ad (1)

where d is the measurement and Ad is the mea-
surement noise. In general, we also know the
representation of the partially observed direction
in our reference coordinate system (typically geo-
centric inertial, which we will refer to in this work
as the space frame). We write the space- refer-
enced vector as V, and this is connected to the
body- referenced vector W by the direction-cosine
matrix A,

W= AV (2)

Thus, our basic measurement model is
d=S8TAV + Ad (3)

In general we assume that Ad is normally dis-
tributed with mean zero and variance o3

Ad ~ N(0, o3) (4)

The measurement d is of a direction-cosine, from
which we may unambiguously obtain the angle
(i.e., arc length) between W and §, if we restrict
its value to lie in the interval [0, #]. For this
reason we will refer to d henceforth as an angle
measurement.

For a vector sensor we effectively measure the
three direction cosines of W, with respect to three
orthonormal axes fixed in the spacecraft. For the
case of a vector magnetometer, this is accom-
plished by measuring the three components of the
magnetic field directly with respect to three or-
thogonally oriented scalar magnetometers, each of
which measures a single component of the mag-
netic field. We may then reconstruct W unam-
biguously given the alignment matrix of the vector
magnetometer. For focal-plane sensors, such as
star cameras and vector Sun sensors, we measure
effectively the ratio of the z- and y-components of
the line or lines of sight to the z-component of this

same direction. Given the alignment matrix of the
sensor, and knowing that the z-component of the
line-of-sight is positive, we may again reconstruct
W unambiguously.!t 2

Thus, for a vector sensor we are led to the ef-
fective measurement model for the direction mea-
surement

W= AV + AW (5)

with
E{AW} =0 (6a)
E{AWAWT} = Ry, (6b)

where Ry, must be singular because of the norm
constraint on W and satisfy

Ry W =0 | (7)

A useful approximate covariance matrix for direc-
tion measurements is the QUEST model,> 1 which
has been used for the analysis of the QUEST and
TRIAD algorithms,?

Ry, = a%-v (sts - WT) (8)

We expect this algorithm to be a particularly
faithful representation of the effective direction-
measurement error for a focal-plane sensor with
a limited field of view. Henceforth, we will refer
to W as a direction measurement.

Since we are interested only in deterministic so-
lutions, we will attempt to construct the direction-
cosine matrix from the measurements under the
assumption that we may neglect the measurement
noise. We are led, therefore, to consider three
measurement scenarios:

Scenario 1: Two Directions

We wish to determine the three-axis attitude
given the two measurements

W, =AV, k=12 (9)

Scenario 2: One Direction and One Angle

We wish to determine the three-axis attitude
given the two measurements

W, = AV, (10a)
d, = 8§74V, (10b)
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Scenario 3: Three Angles

We wish to determine the three-axis attitude
given the three measurements
d,=S8STAV,, k=1,2,3 (11)
These represent the minimum number of mea-
surements of each type (directions only, directions
and angles, angles only) for which the attitude so-
lution will have at most a finite degeneracy. We
know already that Scenario 1 will not generally
have solution because A is overdetermined, and a
deterministic solution will require that one datum
be discarded, as we shall see below. For the other
two scenarios a solution will indeed be possible.
Note that when we compute the attitude covari-
ance matrix, the noise terms must be added to the
definition of the measurement vector and taken
into account explicitly.

Three-Axis Attitude from Two Directions

Scenario 1 above is simply that of the TRIAD
algorithm, whose derivation we shall repeat here.
because it is very short and will be of value in
later discussion.

We begin by constructing two dextral (right-
handed orthonormal) triads of unit vectors from

the observations and the reference vectors,
namely
&=V, 5, =W, (12a)
V, xV W, x W
f‘2= ‘1 ‘.2, -2__ ‘1 ‘2 (12b)
[V, x V,| {W, x W,|
£, =1 x Ty, §;=5, x8§, (12¢)

In the absence of measurement noise, these ancil-
lary vectors would satisfy

§, = Af,, k=1,2,3 (13)
or, equivalently,
M, =AM, (14)
with
M,=(8, 5 3], M. =[t &, f3] (15)

and the right members of Equation (15) denote
3 x 3 matrices labeled by their columns. The

matrices Af, and M, are both proper orthogonal
because the two triads of column vectors are each
dextral. Hence. we may solve Equation (14) for
A 10 obtain

A= MM (16)

This is the TRIAD algorithm.> >

Although the attitude is over-determined by the
data, the TRIAD algorithm is deterministic, as
opposed to the QUEST algorithm, which finds an
attitude solution optimally from the same data.
To understand the nature of the TRIAD algo-
rithm, note that it is sufficient to find 4 which
satisfies Equation (13) for k =1 and &k = 3. By
construction, the TRIAD attitude satisfies

W, = AV, (17)

exactly. The equation for k = 3, however is equiv-
alent to

( Wz - (Wl ' WZ)WI )

|W2 - (Wl ) Wz)w1|

=A (?2'(‘:’1'\?2)‘?1 ) (18)
lvz - (Vl : VZ)VII

Thus, equivalently, one of the four equivalent
scalar data is discarded by removing the compo-
nent of W, which is in the direction of W,, and
similarly for V, and V,, and readjusting the nor-
malization of the two vectors to be unity. Thus,
effectively, the only information contained in W,
which is used by TRIAD algorithm is an angle.
Nonetheless, the TRIAD algorithm is not equiva-
lent to the construction of the attitude matrix for
the second scenario, because this angle is not an
arc length, as in the measurement model of Equa-
tion (1), but rather a dihedral angle, and therefore
contains sign information about the rotation. It is
this difference that is responsible for the fact that
the result of the TRIAD algorithm is unambigu-
ous, while the attitude computed for each of the
two other scenarios will show at least a two-fold
ambiguity.

Covariance Analysis of TRIAD

The attitude covariance matrix is defined as
the covariance matrix of the attitude error vector,
which is defined as the rotation vector of the very
small rotation taking the true attitude into the
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estimated attitude. Thus if A,,,. denotes the true
attitude and A* denotes the estimated attitude,
then

A =C(A0) A (19)

true
where

sin(}6]) — cos(]0]) 2
)|+ ———— ([0
o 00+ —m = (e
(20)
is the formula for a proper orthogonal matrix

parameterized by the rotation vector'® and

0 6 -6
(e}l = [—93 0 6 } (21)
6, —6, O

C(6) = Iys + —5—

Note that for |A6*| << 1 we have that
C(A8") = Iy, 5 +[[ 06" ]| + O(A6')  (22)
The attitude covariance matrix is defined as
P,, = E{00" 06T} (23)

The attitude error vector is related to the error
in a particular attitude representation in the same
way that the body-referenced angular velocity vec-
tor is related to the temporal derivatives of the
same attitude representations. Defining the atti-
tude covariance in this way eliminates the mischief
created by the redundancy or the singularity asso-
ciated with the attitude representations.

The covariance matrix of the TRIAD algorithm
has been computed elsewhere? and will not be
repeated here. The result, assuming the QUEST
Model, is stated most simply as

- 1 s o2
(Pe;l;mAD) = ;2_— (sts - W1w-1r)
W,

8,87 (24)

Wz

where )
§, =W, x5, (25)

Attitude from One Direction and One Angle

Consider now the set of measurements posed
by Equations (10). To solve for the attitude in
. this case we begin by seeking all direction-cosine

matrices A which satisfy W, = AV,. These are
given by
A=R(W,,0)4, (26)

whcrc A, is any direction-cosine matrix satisfying

= A,V,; R(W,, 8} is the rotation matrix for
a rotatlon about the axis W, through an angle 6,
and 6 is any angle satisfying 0 <9<2m RW,0)
is given by Euler’s formula

R(#, 0) = cos8 I3+ (1 — cos8) BT +sind([a]]
(27)

with [[@]] defined in Equation (21).
To prove the assertion of Equation (26), as-
sume that there exist two distinct direction-cosine

matrices, A and A,, satisfying W, = AV, and
W, =4 , V., respectively. Then

W, =A4(4714,)V, (28a)

= (A4;1) A,V (28b)

= (AAT )W, (28c)

Thus, W, must be the axis of rotation of the rota-
tion matrix AA1. Since AA7! must be different
from the identity matrix, the axis of rotation is
well-defined and unique. Hence,

AA7' = R(W_, 6) (29)

for some angle . Equation (26) now follows
from Equations (28). Every direction-cosine ma-
trix given by Equatlon (26) satisfies W = AV
Therefore, there is a continuum of solutlons sat-
isfying this equation.

Equation (26) is equivalent to

A=A RV, 0) (30)
with identical A, and 8. This follows from Ref. 10

A,R(V,,8)= A, R(V,, 0)AT 4

= R(onl; G)Ao
= R(W,, 0)4, (31)

Having found a candidate matrix A, which char-
acterizes the set of direction-cosine matrix which
satisfies Equation (10a), we now determine the
values of &, for which Equatlon (10b) is also sat-
isfied.
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We must now find a single A, which satisfies
W, = 4,V,. Let us look for an A, of the form
A, = R(a,, 6,) (32)
For the special case that W, = V, the choice
of i, is arbitrary provided we choose §, = 0.
Likewise, for the special case that W, = =V, we
may choose fi, to be any direction perpendicular
to V, and 6, = =. In all other cases, we may
chose _ R
W, xV,
W, x V|

n,

(33)

Thus, in every case, we can chose @, to satisfy

-

i -V, =a,-W, =0

(-4

(34)

a fact which will be useful later. Assuming Equa-
tion (33)

[[ﬁouvl = —ﬁo X v1
— W xVy v,
W, xV,|
_ _Vy x(V, xW,)
W, xV,|
— wl —‘(wl .‘ l)vl (35)
W, x V|
Thus,
R(d,, 8,)V, =cos8, V,
sinf, - - - -~ s
- - (W, -V,)V
e (W, - (W, 9,)%)
= |cosé, — (le.Y.l) sing,| V,
IWIX 1|
sinf, 5 (36)
W, x V| '

For W, # £V, W, and V, are linearly indepen-
dent, and a unique solution exists for §,, namely,

sing, ={W, x V|, cos,=(W,-V,) (37)
which yields

8, = arctan, (|W, x V |, (W,-V))) (38)

where arctan,(y, z) is the function which com-
putes the arc tangent of y/z and in the correct
quadrant. This is just the familiar FORTRAN
function ATAN2Z.

The quaternion corresponding to A, is has a
very simple form. To calculate this quaternion we
note first that

5
cos(6,/2) = ,/1—+—°2°f’-—°
— 1+ WI 'v1
v 2

cos(f,/2) >0

(39)

and

for |6]<7  (40)

Likewise,

sin(8,) = 2 sin(6,/2) cos(6,/2) (41)

so that

sin(6,)
2 cos(8,/2)
- [W, x Vv,
94/ LT w,-V,
2
- W, x V|
\/2 1+W, V)

sin(8,/2) =

(42)

Hence,

IW1 X Vll Wl X \"1
Y20+ W, 7)) WiV,
W, x V,

20+W,-V))

sin(8,/2) B, =

, (43)

and the corresponding quaternion is given by
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W, x V,
2(1+W,-V))

1’1+W1'v1
2

1+W,- v, [ (XY
= ——-—2'——- 1+“],.1.v1 (44)




which can now be computed without the need to
compute 6. The Rodrigues vector (also called
the Gibbs vector) p, is given obviously by Ref. 10
W, x V
po= —h—2— (45)
1+W,.V,

and the matrix 4, is given equivalently by

(W, x V) (W, x V)T

A, = (W, V) s +

1+W, -V,
+{[W, x A (46a)
=st3+[[w1 xv1” ‘
S Wl e

Given 8, we must now compute 8. Define
W;=4,V, (47)
Then 6 is a solution of
§, R(W,, ) W3 =d, (48)
Substituting Euler’s formula leads to
5, [W3 —sing (W, x W3)
+ (1 —cos8) (W, x (W, x v‘v;)] =d, (49)

which can be rearranged to yield

[82 - (W, x (W, x W3))] coso
+ [gz . (W1 x W;)] sin 8
= (5, W (W, -W3)-d, (50)

There are clearly two solutions for ¢, in general.
To see this define

B= {18, W, x W)

+ [82 (W, x (W, x v‘v;))]’}”z

(51a)
=8, x W,||[W, x Wj|, (51b)
ﬁ = arctan2 (Sz . (Wl X W;))
8, (W, x (W, x v‘v;)))
(51¢)

Then Equation (49) can be rewritten as
Beos(6 ~ B) = (8,  W,) (W, W3)—d, (52)

From Equation (52) we see that a necessary con-
dition that a solution exist is that

I8, W) (W, - W3) = dy| <15, x W, [|W, x Wj|
(53)
If this condition is satisfied, then 8 has the solutions

1 (sz'wl)(wl Wé) *dz

8 =B+ cos™ - = = =
[S, x W, ||W, x W3

(54)

and the inverse cosine is indeed two-valued. Given
A, and 6 we can now construct the direction-
cosine matrix solutions according to Equations (26)
and (46). This is the algorithm that was developed
in support of the Oscar-30 mission.

Covariance Analysis

The two direction-cosine matrices constructed
by the above algorithm solve Equations (10) ex-
actly. Therefore, if attitude solutions exist, they
each certainly minimize the cost function

1 - - 1 . N
J(A) = — W, AV, P+—-15,-4¥,-d? (55)
Tw 9a,
1

where oy, and o, are standard deviations defined
earlier.

The calculation of the Fisher information is
tedious but straightforward. The result for the
attitude covariance matrix is

|-

Pe.e1 = (sta - Wlw’{)

o4

&

3

1 x7e . X7* Qo
+ E‘ (W3 x8;) (W3 xS§,)T. (56)
.

Note that generally
Wi #8, (57)

even in the absence of measurement noise. For
this reason we have used the notation S, rather
than W3. Note also that Py, will not exist unless

W, (W3 x8,)#0 (58)
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or, equivalently, unless
§2 : (w1 X (Av:z)) = (sz) : (Sz x W) #0 (59)

Even though the direction-cosine matrix may be
defined in this case the geometry represents an
extremum situation in which the sensitivity of the
attitude to the measurements vanishes along one
direction in parameter space.

A TRIAD-like Algorithm

Instead of first calculating the direction-cosine
matrix from the data and then determining a vector
W3 which satisfies Equation (47), we might try
instead to calculate this W3 directly, without first
determining the attitude, and, once this vector has
been determined, calculate A using the TRIAD
algorithm.?

To compute W3 we write

Wi =aW, +b§2+c-X.V—1—x—S—2—

W x gz‘ (60)

which is possible provided that W, # %S,. It
then follows that

WI-W;=a+b(W1-S2)=V1-\72
(61a)
S, Wi=a(W,.8,)+b=4d,, (61b)
W3 Wi =a?+2b(W,-S,)+b02+c2=1
(61c)

The solution for a and b is immediate and is given
by

1 n "
_ V,-V,) - (W,-S8,)d,),
T (0, ¥3) = (W, -8,) z)(sza)
1 N
= — - = (W, -85,)(V,-V
g (B (WS T

The solution for ¢ is now given by

c=\/1- (a2 +2ab(W,-§;) +52).  (63)

This last calculation can be simplified by noting
that
a?+2ab(W, -S,) + b?

1

= W xS [d% ~2d, (V- V,) (W, - §,)
1 XS,

+ (Y, ¥,)7] (64)

The lack of a unique solution is now obvious from
Equation (59). Although the TRIAD algorithm?
can now be used to calculate the attitude from the
four vectors V,, V,, W, and W3, the measured
unit vectors are no longer uncorrelated and the
attitude covariance matrix is still that computed
earlier (Equations (40) or (49)).

While the present algorithm is clearly more
efficient than that developed above, it also suf-
fers from some numerical problems. Because of
round-off error it is not guaranteed that W3 is a
unit vector. Worse still, large measurement errors
may cause the argument of the square root in
Equation (63) to be negative.

Three-Axis Attitude from Three Angles

We now seek a direction cosine matrix which
satisfies Equations (11). In general, there will be
an eight-fold degeneracy for this problem. To see
this let us define

1 0 0
a,=]0|, d,=]|1], a;=[0] (65)
0 0 1

and consider the special case

afAG, =d,, k=1,2,3 (66)
Substituting Equation (27) into this equation leads
to

cosf + (1 — cosb)nf =d,, k=123 (67)
where n,, denotes the n-th component of 1. This
leads immediately to the solution for 6

1 3
# = arccos <-2— [Z d;, - 1}) (68)
k=1

The arc cosine is two-valued, but only the principal
value need be taken, since 6 can be restricted
without loss of generality to the interval 0 < ¢ < .
Solving for the components of i now leads to

d; —cosf

. =%
n" 1-cosf

(69)

revealing the sign ambiguity in each component
of 4. The attitude computed from three angles,
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therefore, will generally display an eight-fold am-
biguity.

To construct the attitude we must distinguish
two cases: (1) that two of the Vk, k=123,
are identical, and (2) that the three are distinct.
The case that all three V are identical may be
excluded as that case is equivalent to knowing only
the direction cosines of a single unit vector, which
leads to a continuous degeneracy in the attitude
solution.

Case 1: Two Reference Vectors Identical

If, say, Vl = VZ, then we can construct W;,
defined by Equation (47) from

§,-W;3=d, and §,-Wj3=d, (70)

We therefore know two direction cosines of W3
and we can write in a manner similar to an earlier
calculation above

- -

. . . §, xS
Wi =08, +b8, +c21222 (7))
1S; x S,
and
S, - Wi=a+b(8,-8,) =4, (72a)
§, Wi=a(S§,-8,)+b=4d, (72b)
Wi Wi =a?+2ab(8,-§,)+0*+P=1
(72¢)

which has the solutions

1 . s
e =———— |d; - (S -8 )dz
1Sy x S,f? ( ' P ) (73a)
1 . A
b= —"—1— (d, - (S,-S,)d,} .
I1S; x Sf? ( ' ) (73b)

c=:l:\/ —(a2+2ab(§1-§2)+b7) (730
73c

and
a® + 2ab(§1 . gz) + b?

1 A oA
= m {df +2(8,-8,)d,d; + dg] (74)

There are two possible solutions for Wj. Apart
from this two-fold degeneracy, the problem now

reduces to Problem 1. Therefore. in this case,
there are four possible solutions, from which the
true attitude solution can be determined only on
the basis of additional information.

The above case includes also the situation when
V, = =V, since one may simulataneously change
the signs of V, and S, without changing the atti-
tude.

Case 2: Reference Vectors Distinct

To construct a solution in this case, we note first
that the attitude matrix may be written in terms
of generalized Euler angles’ as

A= R(S;, ¥) R(,, 9) R(V;, ) (75)

provided that

-

S, m,=V; -, =0 (76)
Assuming that we can order our inputs so that
S, # :l:\"3, we can chose
S; x V
= 3% Vs (77)
1S3 % Vsl

Otherwise, any unit vector satisfying Eqs. 76 will
do. In analogy with Scenario 2, we have now that

STR(h,, 9)V, = d, (78)
whence
19 = ’Y d: COS—l [(53 : mo)(mo ’ v3) - d3] (79)
C
where

C= {[és (1, x V3))°

. . & g1 M2
+ (85 (1, x (0, x V3))2}

. (80b)
=S, x i, |, x V,| (80c)
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and we have made the sign ambiguity in the arc co-
sine explicit in Equation (79), it being understood
that the arc cosine itself supplies the principal
value. Clearly, a solution will exist if and only if

|(§3‘ﬁ1°)(ﬁ10-\~’3)—d3| < |§3 ano“ﬁloxvﬂ (81)

If one is able to choose m, in accordance with
Equation (77), one has more simply

< = arctan, (—|§3 x v3|1 _.(§,3 : V3)) (82)
leading to

Y = arctan, (|§3 x Vs, (83 - \73)) + cos™1(dy)
(83)
Let us denote the two solutions by ¥(+) and
define
A,(£) = R(m,, ¥(+)) (84)

The remaining two equations of Equation (11)
may now be written
STR(S3, %) A,(£) R(Vy, 9)V, =d, -
(85a)
STR(S5, ¥) A,(2) R(V3, 9)V, = d,
(85b)

If we define now

U () =A,(2)V,., k=1,2,3  (86)

Then Equations (85) become
STR(S;, 4) R(Us(2), )0, (%) = 4,
| (872)
STR(S3, ¥) R(U4(%), )0, () = 4,
(87b)

climinating one rotation. We are now left with two
non-linear equations to solve in two unknowns.
Let us define the 3 x 1 matrices

1 1
¢ = l:sincp} \ and ¥v= [sind;} (88)

cos¢ cosyY

Rewriting Equation (27) as

R(B, ) = i +sinf[[a]] + cos 8 (I;,; — aaT)
= Fy(f) + sin 6 F,(f) + cos 8 F,(a)
(89)
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we define 3 x 3 matrices M (k, ) with elements
M,;(k, ) = ST F;(8;) F;(U3(£)) Up ()
= d;.6,56,0, k=12 (90)

and 6,-7- is the usual Kronecker symbol, which is
unity when the two indices are equal and zero
otherwise. With this new notation, Equation (87)
takes the form

YTM(Kk, £)® =0, k=1,2. (91)

If we define now the 1x3 matrix A(k, +) according
to

Ak, £) = ¥TM(, £), k=12 (92)
then Equation (88) becomes

Ak, £)®=0, k=12 (93)
or, equivalently,

Ay (k, ) + Ay(k, £) sing + Ag(k, £) cosp =0,
k=1,2 (94)

Straightforward application of Cramér’s rule to the
two equations of Equations (94) leads to

ing = Ay (L, £)A,(2, &) — Ag(l, £)A,(2, )
A2(11 i:)A3(2, :‘t) - A3(1v :‘t)A2(2' i)
(95a)
Al(l, :i:)Az(Z, :i:) - Az(l, :}:)A](Z, :t)
O = KL D)A,(2, ) = Ay(1, T)As(2, £)

and, because sin? @ + cos? ¢ = 1, we must have

[Al(l. +)A5(2, £) - Ay(L, 2)A, (2, i)r

AZ(Iv i)AS(Z’ i') - A3(1, i)A2(2v :t)

+ [Al(lr d:)/\2(27 d:) i A2(1! i)Al(zv i)]
Aa(1, £)A,(2, ) - Ay(1, £)A4(2, £)

2
=1
(%)

which must be solved for . Rationalizing the de-
nominators of Equation (96) leads to an equation
which is quartic in each of siny and cosy. By
collecting terms appropriately and squaring, the
equation may be recast in the form

flcosy, £) =0 (97)



where the f(z, &) are polynomials of order 16.
Since we anticipate no more than a four-fold de-
generacy for each sign, this means that 12 of the
roots of each of these two polynomials must be
spurious, leading to impossible values for cosy or
via Equations (95) for cosy or siny. Hence, it is
likely advantageous to perform numerical searches
on Equation (96) directly as a function of the
angle. Expecting, on intuitive grounds, that the
degeneracy is indeed no worse than four-fold for
each value of the sign in Equation (79) or Equa-
tion (83), a numerical search should indeed be
feasible.

Covariance Analysis for the Case of Three Angles

The covariance matrix may be calculated
straightforwardly using the results of Scenario 2.
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k=1 dx

v (S, x AV,) (S, x AV)T  (98)

whose calculation requires, of course, that we know
the correct value of A.

Discussion

We have examined the three minimum data
cases for constructing spacecraft attitude determin-
istically when the measurement consists of direc-
tions or angles. The simplest case, when the data
consists of two directions, is that of the well-known
TRIAD algorithm. The case when the data consist
of one direction and one angle is only slightly more
complicated and shows a two-fold degeneracy in
the attitude solutions. The case when the data
consist of three angles is much more complicated.
The attitude solution in this case is more elaborate
and displays, in general, an eight-fold degeneracy.
While the case of one direction and one angle has
been implemented in actual mission support, it is
unlikely that this will ever be the case when only
three angles are measured.
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