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Focal-Plane Representation of
Rotations

Malcolm D. Shuster!

Abstract

The general mathematical formalism for representing rotations in terms of focal-plane
coordinates is presented. Explicit and recursive expressions are given for the focal-plane
transformation expansion coefficients, and the reconstruction of the rotation matrix from
the focal-plane coefficients is presented.

Introduction

While it is common to represent attitude by a 3 X 3 matrix transforming column
vectors in three-space, attitude sensors frequently measure only two-dimensional
quantities, the stereographic projection of a direction onto a plane, the focal plane.
Instrument calibration is therefore expressed most frequently in terms of these focal-
plane coordinates rather than in terms of the three-dimensional vectors. The latter
would, in fact, constitute an enormous inconvenience. The most common parame-
terization of focal-plane calibration are the coefficients of the two-dimensional Tay-
lor expansion of the corrected focal-plane coordinates in terms of the uncorrected
focal-plane coordinates. Since these same coefficients can represent rotations, how-
ever, some ambiguity necessarily exists between sensor calibration and sensor atti-
tude. As a first step in resolving this ambiguity, we explore in the present work the
representation of rotations by focal-plane polynomial coefficients.

The focal-plane coordinates which we will examine in this work represent a very
idealized instrument, essentially an idealized (non-diffractive) pin-hole camera.
Real instruments do not behave exactly like pin-hole cameras. However, the purpose
of sensor calibration generally is to relate the true measurements to some idealized
measurement of purely geometrical significance. Thus, a deeper understanding of
the idealized focal-plane coordinates which are the subject of this work is not with-
out practical importance. Our philosophy is similar to that which we have taken pre-
viously in processing attitude measurements, in which we have considered sensors
which measure a complete direction expressed as a unit three-vector [!]. Although
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no sensor works this way, such an abstraction permits us to separate sensor calibra-
tion from attitude determination. The present work falls in the middle ground be-
tween those two activities.

Focal-plane sensors are a subset of vector sensors, and the applicability of the rep-
resentation presented here is somewhat more limited than the earlier line-of-sight
measurement model [1]. It is limited to sensors which truly incorporate focal planes
in some way, such as Sun and star sensors. It would not be a useful representation at
all for the description of magnetometers, however, where one measures three inde-
pendent components of a field, nor might it be enlightening for horizon scanners,
where the intrinsic measurements are very different from focal-plane coordinates.

We begin by presenting the general transformation of the focal plane in two di-
mensions and that of a rotation in three dimensions. We then proceed to a closed-
form expression for the transformation of focal-plane coordinates due to a rotation
and the examination of three special cases, rotation about the two focal-plane axes
and about the normal to the focal plane at the origin (the boresight). We next develop
explicit expressions for the Taylor expansion of a rotation in terms of focal-plane co-
ordinates. These are not the most efficient means of computing these coefficients,
however. We therefore present as well an efficient recursion relation for these coeffi-
cients. Finally, we develop inverse expressions for reconstructing the 3 X 3 rotation
matrix from the focal-plane expansion coefficients. The present work treats only the
parameterization of rotations in terms of focal-plane coordinates. The estimation of
distortions of the focal plane due to deformations and their separation from rota-
tional degrees of freedom have been treated in a recent report [2]. The development
of these ideas to create an attitude determination algorithm based directly in the fo-
cal plane will be presented in a later work.

Geometrical Preliminaries

Generally, we represent a direction in space by the 3 X 1 matrix of its compo-
nents with respect to a basis. For this study we will choose the basis such that the
z-axis is the boresight of the sensor observing the vector, and the focal plane, there-
fore, will be parallel to the xy-plane. We write in the usual way

17
w=|Ww 1
1A

The caret denotes a unit vector. We define the focal-plane coordinates by

W W,
= — and = — 2
=W YW (2
and, therefore,
W = 1 ) 3)
Vix? + y2 + 1 T

Equations (2) and (3) present our simple model of focal-plane coordinates, which
can be related to any unit vector in a manner independent of the sensor.
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Parameterization of Focal-Plane Transformations

x = H )
y

denotes the ideal undistorted focal-plane coordinates, and x’ the distorted focal-
plane coordinates, then we write, in general

If the 2 X 1 column matrix x

x' = x + F(x) (5)

or in terms of components

X[ |x Fi(x,y)
[y’] u " [Fz(x,y)] ©

Generally, one assumes that the two functions F(x,y) and F,(x,y) are given by
polynomial series

Fl(x,y) = dg,0 + ajpX + dog,1y + az,oxz + axy + ao‘zyz + ... (73)
Fz(x,y) = b0,0 + bl,()x + bO,ly + bz’()x2 + blley + b()vzyz + ... (7b)

For transformations arising from the physical distortion of the instrument, the func-
tions F(x,y) and Fy(x, y) generally assume very small values over the entire focal
plane of the sensors. Generally, the first three terms in each series will be the
largest. Coefficients arising from the misalignment of the focal plane, as measured
from the a priori alignment, are also generally small and will affect mostly the
terms aoy, do,1, boo, and b,y. However, if the coefficients represent the attitude of
the sensors, with respect to axes external to the spacecraft, then all coefficients may
be quite large, as we shall see below.

Parameterization of Rotations

We tend to represent rotations in the full three-dimensional space as functions
of three parameters. If we choose these three parameters to be the components of
the rotation vector 6, then the rotation may be represented by a 3 X 3 orthogonal
matrix R

R(0) = cos 033 + (1 — cos O)AfT + sin O[[A]] 8)
with
0
6=10, and fi=— )
6]

Here, [[v]] denotes the 3 X 3 antisymmetric matrix

0 V3 -V,
bil=]|-vs O vy (10)
Va2 —V) 0

For misalignments, the rotation vector 8 is generally quite small and can often be
treated as infinitesimal. The quantity 8 in equation (9) is the angle of rotation, and
fi the axis of rotation.
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Focal-Plane Representation of Rotations
Consider the action of a rotation R on a vector [x, y, 1]".

X Rnx+R12y+R|3
R y = R21X + Rzzy + R23 (11)
1 R31X + R32y + R33

U

The third component of the vector U is generally not unity, and therefore the first
two components of U do not correspond to focal-plane coordinates. To make the
third component unity, however, we simply divide the right member of equation (11)
by the third component to obtain

’

X
1
Y= Ryx + Ryy + R T "
or
i ey e
, _Rux + Ruy + Ry (13b)

y - Rg].x + R}zy + R33

This is the action of a rotation in three dimensions on the focal-plane coordinates of
a unit vector. Equations (13) are a special case of the collinearity equations, which
have important applications in Photogrammetry [3, 4].

Examples of Focal-Plane Representations of a Rotation

Let us consider rotations about the three axes. These will provide additional in-
sights into the nature of the rotations in the focal plane and give us special cases
against which we can test the more general formula.

A rotation about the x-axis is given by

1 0 0
R%,00)=10 cos#, siné8, (14)
0 -—sin 8, cos 8,

Substituting values for the elements of R in equations (13) yields

' a ! al (15a)
X = : =
—sin 6,y + cos 8, cosf 1 — tan 6y
6,y + sin 6 tan 6, +
y' _ cos 0,y sin 0 _ an o, y (]5b)

—sin 6,y + cos 6, 1 — tan 6,y
A rotation about the y-axis is given by

cos G, 0 —sin6,
R(§,60,) = 0 1 0 (16)
sinf, 0 cos6,

with corresponding focal-plane representation
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x — tan @
X=r——% (17a)
I + tan 0,x
1
¥ = : (17b)

cos 0, 1 + tan O,x
And, finally, a rotation about the z-axis is given alternately by

cos 03 sinf; O

R(Z,05) = | —sin 83 cosB; O (18)
0 0 1
and
x" = cos f;x + sin O3y (19a)
y = —sin 0;x + cos 03y (19b)

which is obviously a rotation in the focal plane. For infinitesimal rotation angles 6,
0,, 85, which are the angles of rotation about the three coordinate axes, we have

+ —
x'= X ¥ Oy~ 0 (20a)
I + 6x — 0,y
—0:x + 6
y =Rt (20b)
1 + Ozx - 01)7

which to linear order in the angles becomes
X =x—0;+ 60y — 0x" + 0xy + ..., (21a)
y’=y+01—03x—02xy+01y2+.... (2lb)

Thus, infinitesimal rotations of the sensor show up as the following sets of distor-
tion parameters:

Rotation about the x-axis: bgg, a1, bo2
Rotation about the y-axis: apg, b1, a0
Rotation about the z-axis: ag., b1

Focal-Plane Expansion of a General Rotation

Simple expressions can be obtained for the focal-plane coefficients for an arbi-
trary rotation. Assuming that R;; # 0, let us define

@ = R3 /Ry and B = Rxn/Ry (22)
Then equation (13a) can be written as

!

[ Rux + Rpy + Ry,
¥ = —
R, l + ax + By

(23)

Assuming that Rs3 is sufficiently large in magnitude that the magnitudes of « and 3
are less than unity, we may expand the denominator in a power series to yield

l 0
X =—(Rnx + Ruy + Riz) 2, (—Diax + By (24)
Ry k=0



386 Shuster

Applying now the binomial theorem leads to

1 - Sk A _
xX'=—(Rux + Ry + Ri3) 2 (—1)"2 () (ax)l(ﬁ)’)k ! (25)
R k=0 i=0 \ 1
where the binomial coefficient is defined as’
k!
k _— =i=
(l,> S T 26)
0 otherwise
We may rewrite equation (25) more symmetrically as
| o N I S A W
X' =—(Rux + Rpy + R13)2 2(_1)'“( . ])CYIBJX‘Y" 27
Ris i=0 j=0 1
Carrying out the multiplications and redefining the indices as needed leads to
x = 2 Za,-,jx"yj (28)
i=0 j=0

with

) W A i+ -1\ .,
@ =" R3)3 {(l i ]>alBjR'3 - (l L )QHBJR”
_ <l + i - 1>aiBj—lRlz} (29)

Substituting for @ and 3 leads finally to

Y (—1)"*/'{(1' + j)RmRé.R{;z (i +j- 1>RHR.%:'R£2
Lj = D . - i . TS

— -
R i R/ i—1 R3y’ !

i+ j—1)ReRyRY
- ( : ) TR o

though equation (29) is easier to manipulate, and for greater clarity we shall retain
«a and $ in our formulas in the sequel. The equivalent expression for y" can be ob-
tained by making the substitutions

.x, e y’, a,"j e bi.j and R]({ e Rz({, f = 1,2,3 (31)
to yield
y =2 2 byx'y (32)
i=0 j=0
with
(=) (i+ j\RaR4RS: (i + j— L\RuR:y'Rb
bij=—F— )T T . oo
R33 4 R33" i — 1 RS3J
i+ j— 1\RuRLRE'
(s e

*Normally, the binomial coefficients are not defined outside the interval 0 = i = k. The definition
here will eliminate the need for indicating case restrictions in many of the formulas which follow.
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An Alternate Formula for the Coefficients®

An alternate formula can be derived for the coefficients by noting that for i > 0,
j>0

S i i A
(’ - )=.’ .<’ .’) and (’ / )=%<’ .’) (34)
i— 1 i+ j i i i+ j i

Substituting these expressions into equation (29) yields

(G A NN A A Y
a,'j = *2—— J‘ a B" l(R|2R33 - R13R32)
R3; l

i+j—-1 i1
+ j a' B(R,Rs; — Ri3R3) (35a)
and likewise

i+ -1\
b; = (_—2_ 'i a'B ' (RuR3 — R3Ry)

R
AR e B A
+ j a' BARNRy — RyuRy) (35b)
Recalling that R is a proper orthogonal matrix, we have
Ri2R3; — Ri3R3 = —Ry, (36a)
RiiR33 — Ri3R3 = Ry, (36b)
R2R3 — RyisR3; = Ry (36¢)
R2iR33 — RunRy = —Ry, (36d)

Equations (35) become

— 1yt i+ j -1\ .. i+ -1y
= S o (7 o] o

) AR VA S e R i+ -1\
by = (_")T—_I:(l J >a'/3r1R11 - (l J )a'lﬁjRu] (37b)
R3, t J

The computation of the focal-plane expansion coefficients up to and including
third-order terms 1s straightforward and given by

R13 R22 R21 R22R3I 2
X=l—l+lFx+]|-=pPh+]|-——1Ix
[R] [R] [ Ré]y [ Raa]

[ L RuR RyuR}
+ 3 ("'R22R32+ R21R3|) Xy —+ L33_2 y2 4 224 31 x3
LR33 R -_

R R
+ —il (2R»R+; — RyR3) x2y + —12(R22R32 — 2R2R3) xy2
R33 R33
[ RuR%L]
T (38a)
L R3 ]y

*The formulas of this section hold only for i > 0, j > 0.
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R23 R12 RH Rlszl 2
Sl Eeanll Bl Il il B S Bl AUl el B
Y [R] [ Ris] [R%Jy [R]

1 R Ry — Ry R3,
+ —R_:::}(R[ZR}z — R11R31):|Xy + [—R—;]yz + [T x>
R3 2 Ry 2
+ | =7 (2R3 R5 + RyRy) |xy + | 7 (—RaRs + 2R\Ry) [xy
| R3 R3;
[ 2
RuR
1 | Ruf 32])13 v (38b)
| R:

A Recursion Relation for the Coefficients

The computation of these coefficients can be made considerably less burdensome
by the use of a recursion relation. Let us recall equation (23)

LR]]X + Rlzy + R13

x = 23)
R33 I + ax + By
Noting that
1 +
_ g __ex*By (39)
1 + ax + By 1+ ax + By
and substituting this expression into equation (23) leads to
1
x = R—(Rnx + Ry + Riz) — (ax + By)x' (40)
33

and substituting equation (28) into equation (40) leads to

3

Z aai—l,jxiyj - Z ZBai,j—lxiyj 41

1j=0 i=0 j=1

Mg

i

1
X = —(Rnx + any + RI3) -
R33

It

Comparing this result with equations (37) now yields

1
ai; = R—(R135i05j0 + Rududjo + Ri26u0bj1) — (1 — di)aai-1; — (1 — 8,)Bai;

33

(42a)
and similarly for b;;
1
bi; = E—(R235i05j0 + Rubinbjo + R28wdji) — (1 = Sw)abi-i; = (I = 8,0)Bbi ;-
33
(42b)

In equation (42), 6; is the Kronecker symbol, and it is to be understood that a; and
b;; vanish whenever one of the indices is negative. It is easily verified that this for-
mula generates immediately the coefficients of equations (37).

To compute the focal-plane expansion coefficients recursively we therefore follow
the following steps:

o Calculate
aop,0, 41,0, ao.lbo,o, bio, bo.i

from the first three terms of equations (38a) and (38b), respectively.
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e Given {a;;, b;;|i + j < k}, compute the coefficients for i + j = k according

to
dro = —Qdi-1,0, bio= —abi (43a)
Aip—i = —QQi—tji = PAik-i-1, i=12,...k—1 (43b)
bisoi = —ab; i — Bbisi-1, i=12,...,k—1 (43¢)
Aox = _Bao,k—i, bor = _Bb(),k—l (43d)

Construction of R From the Focal-Plane Coefficients

The first three terms of each of equations (38) provide us with the elements of the
first and second rows of the rotation matrix R, to within factors of the unknown R 3;
or its square. Rj; and the remaining two elements may be determined from

R3; = R\ \Ray — RiaRy, (44a)
Ry = R;Ry — RisRy, (44b)
Ry = Ri3Ry — R\ Ry (44c)
Thus, the rotation matrix is given in terms of the focal-plane coefficients by
‘Yzbm —‘)’Zblo Ydoo
R = —v*aq yla Yboo 45)

_‘)’3(0006101 + boobor) _73(0()0010 + boobio) Y
where

1
R——=
V awbo — anbio

Note that all of the equations containing the focal-plane coefficients become singu-
lar when R;; = 0. Hence, this case must always be excluded. Such a case is obvi-
ously not of practical concern, since the convergence of the series is not guaranteed
unless

(46)

|Ry| > 1/V2 (47)
and the series will certainly diverge if
IR < 1/V3 (48)

At intermediate values the convergence will be determined by the specific values of
R; and R3. In practical applications, we will wish to apply the formulas derived
here not to an arbitrary rotation but to a misalignment, in which case R;; is always
very close to unity.

Summary

We have developed a complete set of formulae for computing the two-dimensional
Taylor series for the transformation of a focal plane caused by a rotation and the in-
verse transformation. Such formulae could be used, for example, to estimate the atti-
tude directly from the focal-plane measurements, though it is generally easier to
work in three dimensions [1] with unit vectors rather than contend with a multitude
of terms in a Taylor series. The estimation of distortion coefficients in the (unavoid-
able) presence of misalignment, therefore, requires special care. This has been ex-
amined in a previous work [2] and is the subject of further investigations [5].
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