
TAMU/AAS Richard H. Battin Astrodynamics Symposium, College Station, Texas, May 20�21, 2000

AAS 00�267

A MOST VISIONARY PAPER ON THE

FOCAL-PLANE REPRESENTATION OF ROTATIONS

Malcolm D. Shuster

∗

The general mathematical formalism for representing rotations

in terms of focal-plane coordinates is presented. Explicit and

recursive expressions are given for the focal-plane transformation

expansion coe�cients, and the reconstruction of the rotation matrix

from the focal-plane coe�cients is presented.

INTRODUCTION

While it is common to represent attitude by a 3×3 matrix transforming column vectors

in three-space, attitude sensors frequently measure only two-dimensional quantities,

the stereographic projection of a direction onto a plane, the focal plane. Instrument

calibration is therefore expressed most frequently in terms of these focal-plane coordinates

rather than in terms of the three-dimensional vectors. The latter would, in fact,

constitute an enormous inconvenience. The most common parameterization of focal-

plane calibration is the coe�cients of the two-dimensional Taylor expansion of the

corrected focal-plane coordinates in terms of the uncorrected focal-plane coordinates.

Since these same coe�cients can represent rotations, however, some ambiguity necessarily

exists between sensor calibration and sensor attitude. As a �rst step in resolving this

ambiguity, we explore in the present work the representation of rotations by focal-plane

polynomial coe�cients.

The focal-plane coordinates which we will examine in this work represent a very

idealized instrument, essentially an (non-di�ractive) idealized pin-hole camera. Real

instruments do not behave exactly like idealized pin-hole cameras. However, the

purpose of sensor calibration generally is to relate the true measurements to some

idealized measurement of purely geometrical signi�cance. Thus, a deeper understanding
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of the idealized focal-plane coordinates which are the subject of this work is not without

practical importance. Our philosophy is similar to that which we have taken previously in

processing attitude measurements, in which we have considered sensors which measure a

complete direction expressed as a unit three-vector

1
. Although no sensor works this way,

such an abstraction permits us to separate sensor calibration from attitude determination.

The present work falls in the middle ground between those two activities.

Focal-plane sensors are a subset of vector sensors, and the applicability of the

representation presented here is somewhat more limited than the earlier line-of-sight

measurement model

1
. It is limited to sensors which truly incorporate focal planes in

some way, such as Sun and star sensors. It would not be a useful representation at all

for the description of magnetometers, however, where one measures three independent

components of a �eld, nor might it be enlightening for horizon scanners, where the

intrinsic measurements are very di�erent from focal-plane coordinates.

We begin by presenting the general transformation of the focal plane in two dimensions

and that of a rotation in three dimensions. We then proceed to a closed-form expression

for the transformation of focal-plane coordinates due to a rotation and the examination

of three special cases, rotation about the two focal-plane axes and about the normal to

the focal plane at the origin (the boresight). We next develop explicit expressions for

the Taylor expansion of a rotation in terms of focal-plane coordinates. These are not

the most e�cient means of computing these coe�cients, however. We therefore present

as well an e�cient recursion relation for these coe�cients. Finally, we develop inverse

expressions for reconstructing the 3 × 3 rotation matrix from the focal-plane expansion

coe�cients. The present work treats only the parameterization of rotations in terms

of focal-plane coordinates. The estimation of distortions of the focal plane due to

deformations and their separation from rotational degrees of freedom have been treated

in recent reports

2, 3
. The development of these ideas to create an attitude determination

algorithm based directly in the focal plane will be presented in a later work.

GEOMETRICAL PRELIMINARIES

Generally, we represent a direction in space by the 3 × 1 matrix of its components

with respect to a basis. For this study we will choose the basis such that the z-axis is

the boresight of the sensor observing the vector, and the focal plane, therefore, will be

parallel to the xy-plane. We write in the usual way

(1) Ŵ =

[

W1
W2
W3

]

.

The caret denotes a unit vector. We de�ne the focal-plane coordinates by

(2) x =
W1

W3
and y =

W2

W3
.

and, therefore,

(3) Ŵ =
1

√

x2 + y2 + 1





x
y

1



 .
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The focal-plane coordinates, x and y are the speci�c focal-plane coordinates, that is,

they are the measured distances in the focal-plane of the sensor, divided by the focal

length. The use of these dimensionless variables eliminates uninteresting powers of the

focal length in our expressions and makes our formulae much more manageable.

Equations (2) and (3) present our simple model of focal-plane coordinates, which can

be related to any unit vector in a manner independent of the sensor.

PARAMETERIZATION OF FOCAL-PLANE TRANSFORMATIONS

If the 2 × 1 column matrix x,

(4) x ≡
[

x
y

]

,

denotes the ideal undistorted focal-plane coordinates, and x′ the distorted focal-plane

coordinates, then we write, in general,

(5) x′ = x + F (x) ,

or in terms of components

(6)
[

x′

y′

]

=
[

x
y

]

+
[

F1(x, y)
F2(x, y)

]

.

Generally, one assumes that the two functions F1(x, y) and F2(x, y) are given by poly-

nomial series

F1(x, y) = a0,0 + a1,0 x + a0,1 y + a2,0 x
2 + a1,1 xy + a0,2 y

2 + . . .(7a)

F2(x, y) = b0,0 + b1,0 x + b0,1 y + b2,0 x
2 + b1,1 xy + b0,2 y

2 + . . . .(7b)

For transformations arising from the physical distortion of the instrument, the functions

F1(x, y) and F2(x, y) generally assume very small values over the entire focal plane of the

sensors. Generally, the �rst three terms in each series will be the largest. Coe�cients

arising from the misalignment of the focal plane, as measured from the a priori alignment,

are also generally small and will e�ect mostly the terms a0,0, a0,1, b0,0, and b1,0. However,

if the coe�cients represent the attitude of the sensors, with respect to axes external to

the spacecraft, then all coe�cients may be quite large, as we shall see below.

PARAMETERIZATION OF ROTATIONS

We tend to represent rotations in the full three-dimensional space as functions of

three parameters. If we choose these three parameters to be the components of the

rotation vector θ, then the rotation may be represented by a 3 × 3 orthogonal matrix R

(8) R(θ) = cos θ I3×3 + (1 − cos θ) n̂ n̂T + sin θ [[ n̂ ]] ,
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with

(9) θ ≡ |θ| , and n̂ ≡
θ

|θ|
.

Here, [[ v ]] denotes the 3 × 3 antisymmetric matrix

(10) [[ v ]] ≡





0 v3 −v2

−v3 0 v1

v2 −v1 0



 .

For misalignments, the rotation vector θ is generally quite small and can often be treated

as in�nitesimal. The quantity θ in Eq. (9) is the angle of rotation, and n̂ the axis of

rotation.

FOCAL-PLANE REPRESENTATION OF ROTATIONS

Consider the action of a rotation R on a vector [ x, y, 1]T .

(11) U ≡ R

[

x
y
1

]

=

[

R11x + R12y + R13
R21x + R22y + R23
R31x + R32y + R33

]

.

The third component of the vector U is generally not unity, and therefore the �rst

two components of U do not correspond to focal-plane coordinates. To make the third

component unity, however, we simply divide the right member of Eq. (11) by the third

component to obtain

(12)

[

x′

y′

1

]

=
1

R31x + R32y + R33
R

[

x
y
1

]

.

or

x′ =
R11x + R12y + R13

R31x + R32y + R33
,(13a)

y′ =
R21x + R22y + R23

R31x + R32y + R33
.(13b)

This is the action of a rotation in three dimensions on the focal-plane coordinates of a

unit vector. Equations (13) are a special case of the collinearity equations, which have

important applications in Photogrammetry

4, 5
.

EXAMPLES OF FOCAL-PLANE REPRESENTATIONS OF A ROTATION

Let us consider rotations about the three axes. These will provide additional insights

into the nature of the rotations in the focal plane and give us special cases against which

we can test the more general formula.
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A rotation about the x-axis is given by

(14) R(x̂, θ1) =

[ 1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

]

.

Substituting values for the elements of R in Eqs. (13) yields

x′ =
x

− sin θ1 y + cos θ1
=

1
cos θ1

x

1 − tan θ1 y
,(15a)

y′ =
cos θ1 y + sin θ1

− sin θ1 y + cos θ1
=

tan θ1 + y

1 − tan θ1 y
.(15b)

A rotation about the y-axis is given by

(16) R(ŷ, θ2) =

[ cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

]

,

with corresponding focal-plane representation

x′ =
x − tan θ2

1 + tan θ2 x
,(17a)

y′ =
1

cos θ2

y

1 + tan θ2 x
.(17b)

And, �nally, a rotation about the z-axis is given alternately by

(18) R(ẑ, θ3) =

[ cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

]

,

and

x′ = cos θ3 x + sin θ3 y ,(19a)

y′ = − sin θ3 x + cos θ3 y ,(19b)

which is obviously a rotation in the focal plane. For in�nitesimal rotation angles θ1, θ2,

θ3, which are the angles of rotation about the three coordinate axes, we have

x′ =
x + θ3y − θ2

1 + θ2x − θ1y
,(20a)

y′ =
x − θ3x + θ1

1 + θ2x − θ1y
.(20b)

For successive in�nitesimal rotations about the three axes we �nd to linear order in the

angles and the focal-plane coordinates

x′ = x − θ2 + θ3 y + . . . ,(21a)

y′ = y + θ1 − θ3 x + . . . .(21b)
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Thus, in a small neighborhood of the origin of the focal plane in�nitesimal rotations

of the sensor show up as the following sets of distortion parameters:

Rotation about the x-axis: b0,0,

Rotation about the y-axis: a0,0,

Rotation about the z-axis: a0,1, b1,0 .

For a0,1 and b1,0 to represent a pure rotation about the z-axis, we must have a0,1+b1,0 = 0.
Hence, the three combinations of parameters, a0,0, b0,0 and (a0,1−b1,0)/2, when small, are

equivalent to the three angles characterizing an in�nitesimal rotation of an in�nitesimal

neighborhood of the origin of the focal plane. This fact is of the utmost importance in

the calibration of focal-plane sensors

2, 3
.

FOCAL-PLANE EXPANSION OF A GENERAL ROTATION

Simple expressions can be obtained for the focal-plane coe�cients for an arbitrary

rotation. Assuming that R33 6= 0, let us de�ne

(22) α ≡ R31/R33 and β ≡ R32/R33 .

Then Eq. (13a) can be written as

(23) x′ =
1
R33

R11 x + R12 y + R13

1 + αx + βy
.

Assuming that R33 is su�ciently large in magnitude that the magnitudes of α and β are

less than unity, we may expand the denominator in a power series to yield

(24) x′ =
1
R33

(

R11 x + R12 y + R13

)

∞
∑

k=0

(−1)k(αx + βy)k .

Applying now the binomial theorem leads to

(25) x′ =
1
R33

(

R11 x + R12 y + R13

)

∞
∑

k=0

(−1)k
k
∑

i=0

(

k

i

)

(αx)i(βy)k−i ,

where the binomial coe�cient is de�ned as

2

(26)
(

k

i

)

≡







k!
i! (k − i)!

0 ≤ i ≤ k

0 otherwise .

We may rewrite Eq. (25) more symmetrically as

(27) x′ =
1
R33

(

R11 x + R12 y + R13

)

∞
∑

i=0

∞
∑

j=0

(−1)i+j
(

i + j
i

)

αiβjxiyj .

2
Normally, the binomial coe�cients are not de�ned outside the interval 0 ≤ i ≤ k. The de�nition here will

eliminate the need for indicating case restrictions in many of the formulas which follow.
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Carrying out the multiplications and rede�ning the indices as needed leads to

(28) x′ =
∞
∑

i=0

∞
∑

j=0

ai,j x
iyj ,

with

(29) ai,j =
(−1)i+j

R33

{(

i + j
i

)

αiβj R13 −
(

i + j − 1
i − 1

)

αi−1βj R11

−
(

i + j − 1
i

)

αiβj−1 R12

}

.

Substituting for α and β leads �nally to

(30) ai,j =
(−1)i+j

R33

{

(

i + j
i

)

R13 R
i
31R

j

32

R
i+j
33

−
(

i + j − 1
i − 1

)

R11 R
i−1
31 R

j

32

R
i+j−1
33

−
(

i + j − 1
i

)

R12 R
i
31R

j−1
32

R
i+j−1
33

}

.

The equivalent expression for y′ can be obtained by making the substitutions

(31) x′ → y′ , ai,j → bi,j and R1` → R2` , ` = 1, 2, 3 ,

to yield

(32) y′ =
∞
∑

i=0

∞
∑

j=0

bi,j x
iyj ,

with

(33) bi,j =
(−1)i+j

R33

{

(

i + j
i

)

R23 R
i
31R

j

32

R
i+j
33

−
(

i + j − 1
i − 1

)

R21 R
i−1
31 R

j

32

R
i+j−1
33

−
(

i + j − 1
i

)

R22 R
i
31R

j−1
32

R
i+j−1
33

}

.

AN ALTERNATE FORMULA FOR THE COEFFICIENTS

3

An alternate formula can be derived for the coe�cients by noting that for i > 0, j > 0

(34)
(

i + j − 1
i − 1

)

=
i

i + j

(

i + j
i

)

and

(

i + j − 1
i

)

=
j

i + j

(

i + j
i

)

3
The formulas of this section hold only for i > 0, j > 0.
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Substituting these expressions into Eq. (29) yields

(35a) aij =
(−1)i+j+1

R2
33

[(

i + j − 1
i

)

αiβj−1 (R12R33 − R13R32

)

+
(

i + j − 1
j

)

αi−1βj
(

R11R33 − R13R31

)

]

,

and likewise

(35b) bij =
(−1)i+j+1

R2
33

[(

i + j − 1
i

)

αiβj−1 (R22R33 − R23R32

)

+
(

i + j − 1
j

)

αi−1βj
(

R21R33 − R23R31

)

]

Recalling that R is a proper orthogonal matrix, we have

R12R33 − R13R32 = −R21 ,(36a)

R11R33 − R13R31 = R22 ,(36b)

R22R33 − R23R32 = R11 ,(36c)

R21R33 − R23R31 = −R12 .(36d)

Equations (35) become

aij =
(−1)i+j+1

R2
33

[

−
(

i + j − 1
i

)

αiβj−1 R21 +
(

i + j − 1
j

)

αi−1βj R22

]

(37a)

bij =
(−1)i+j+1

R2
33

[(

i + j − 1
i

)

αiβj−1 R11 −
(

i + j − 1
j

)

αi−1βj R12

]

(37b)

The computation of the focal-plane expansion coe�cients up to and including third-

order terms is straightforward and given by

x′ =
[

R13

R33

]

+

[

R22

R2
33

]

x +

[

−
R21

R2
33

]

y

+

[

−
R22R31

R3
33

]

x2 +

[

1

R3
33

(

−R22R32 + R21R31

)

]

xy +

[

R21R32

R3
33

]

y2

+

[

R22R
2
31

R4
33

]

x3 +

[

R31

R4
33

(

2R22R32 − R21R31

)

]

x2y

+

[

R32

R4
33

(

R22R32 − 2R21R31

)

]

xy2 +

[

−
R21R

2
32

R4
33

]

y3 + . . .

(38a)
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y′ =
[

R23

R33

]

+

[

−
R12

R2
33

]

x +

[

R11

R2
33

]

y

+

[

R12R31

R3
33

]

x2 +

[

1

R3
33

(

R12R32 − R11R31

)

]

xy +

[

−
R11R32

R3
33

]

y2

+

[

−R21R
2
31

R4
33

]

x3 +

[

R31

R4
33

(

−2R21R32 + R11R31

)

]

x2y

+

[

R32

R4
33

(

−R21R32 + 2R11R31

)

]

xy2 +

[

R11R
2
32

R4
33

]

y3 + . . .

(38b)

A RECURSION RELATION FOR THE COEFFICIENTS

The computation of these coe�cients can be made considerably less burdensome by

the use of a recursion relation. Let us recall Eq. (23)

(23) x′ =
1
R33

R11 x + R12 y + R13

1 + αx + βy
.

Noting that

(39)
1

1 + αx + βy
= 1 −

αx + βy
1 + αx + βy

,

and substituting this expression into Eq. (23) leads to

(40) x′ =
1
R33

(

R11x + R12y + R13

)

− (αx + βy) x′ ,

and substituting Eq. (28) into Eq. (40) leads to

x′ =
1
R33

(

R11x + R12y + R13

)

−
∞
∑

i=1

∞
∑

j=0

αai−1,jx
iyj −

∞
∑

i=0

∞
∑

j=1

βai,j−1x
iyj .(41)

Comparing this result with Eqs. (37) now yields

(42a) ai,j =
1
R33

(

R13δi0δj0 + R11δi1δj0 + R12δi0δj1
)

− (1 − δi0) α ai−1,j − (1 − δj0) β ai,j−1 ,

and similarly for bi,j

(42b) bi,j =
1
R33

(

R23δi0δj0 + R21δi1δj0 + R22δi0δj1
)

− (1 − δi0) α bi−1,j − (1 − δj0) β bi,j−1 .
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In Eqs. (42), δij is the Kronecker symbol, and it is to be understood that aij and bij
vanish whenever one of the indices is negative. It is easily veri�ed that this formula

generates immediately the coe�cients of Eqs. (37).

To compute the focal-plane expansion coe�cients recursively we therefore follow the

following steps:

• Calculate

a0,0, a1,0, a0,1, b0,0, b1,0, b0,1,

from the �rst three terms of Eqs. (38a) and (38b), respectively.

• Given { ai,j, bi,j | i + j < k }, compute the coe�cients for i + j = k according to

ak,0 = −α ak−1,0 , bk,0 = −α bk−1,0 ,(43a)

ai,k−i = −α ai−1,k−i − β ai,k−i−1 , i = 1, 2, . . . , k − 1 ,(43b)

bi,k−i = −α bi−1,k−i − β bi,k−i−1 , i = 1, 2, . . . , k − 1 ,(43c)

a0,k = −β a0,k−1 , b0,k = −β b0,k−1 ,(43d)

CONSTRUCTION OF R FROM THE FOCAL-PLANE COEFFICIENTS

The �rst three terms of each of Eqs. (38) provide us with the elements of the �rst

and second rows of the rotation matrix R, to within factors of the unknown R33 or its

square. R33 and the remaining two elements may be determined from

R33 = R11R22 − R12R21 .(44a)

R31 = R12R23 − R13R22 ,(44b)

R32 = R13R21 − R11R23 .(44c)

Thus, the rotation matrix is given in terms of the focal-plane coe�cients by

(45) R =





γ2b0,1 −γ2b1,0 γa0,0

−γ2a0,1 γ2a1,0 γb0,0

−γ3
(

a0,0a0,1 + b0,0b0,1

)

−γ3
(

a0,0a1,0 + b0,0b1,0

)

γ



 ,

where

(46) γ =
1

3
√

a1,0b0,1 − a0,1b1,0

.

Note that all of the equations containing the focal-plane coe�cients become singular

when R33 = 0. Hence, this case must always be excluded. Such a case is obviously not

of practical concern, since the convergence of the series is not guaranteed unless

(47)
∣

∣R33

∣

∣ > 1/
√

2 ,
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and the series will certainly diverge if

(48)
∣

∣R33

∣

∣ < 1/
√

3 .

At intermediate values the convergence will be determined by the speci�c values of R31
and R32. In practical applications, we will wish to apply the formulas derived here not

to an arbitrary rotation but to a misalignment, in which case R33 is always very close to

unity.

SUMMARY

We have developed a complete set of formulae for computing the two-dimensional

Taylor series for the transformation of a focal plane caused by a rotation and the inverse

transformation. Such formulae could be used, for example, to estimate the attitude

directly from the focal-plane measurements, though it is generally easier to work in

three dimensions

1
with unit vectors rather than contend with a multitude of terms in

a Taylor series. The estimation of distortion coe�cients in the (unavoidable) presence

of misalignment, therefore, requires special care. This has been examined in previous

work

2, 3
and is the subject of further investigations.
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