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A Suboptimal Algorithm for Attitude Determination

from Multiple Star Cameras

Malcolm D. Shuster
∗

Abstract

The e�ect of direction averaging in generating suboptimal algorithms for three-axis attitude

determination is examined for attitude determination systems consisting of: (1) two star cameras;

and (2) a star camera and a single-direction sensor. It is shown that for star cameras with �elds

of view smaller than 10 deg little accuracy is lost for the case of two star cameras or for the

case of a single star camera paired with a single-direction sensor of comparable accuracy. When

a star camera is paired with a sensor of much lessor accuracy, such as an infra-red horizon

scanner, a three-axis magnetometer or a coarse Sun sensor, the loss in attitude accuracy about

the star-camera boresight can be very signi�cant.

INTRODUCTION

A number of algorithms have been proposed for the computation of the three-axis

attitude which minimizes the cost function

L(A) =
1
2

N
∑

k=1

ak
∣

∣Ŵk − AV̂k

∣

∣

2
, (1)

where A is the direction-cosine matrix
1
, Ŵk, k = 1, . . . , k, are directions (lines of sight,

observation vectors) observed in the spacecraft body frame, V̂k, k = 1, . . . , k, are the

corresponding directions known in an inertial frame (the reference vectors) and ak,
k = 1, . . . , k, are a set of positive weights. A caret in this work will be used to denote

a unit vector. This cost function was �rst proposed by G. Wahba
2
in 1965 and has been
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the starting point of many algorithms, of which the most popular has been the QUEST

algorithm
3
.

Many solutions to the Wahba problem begin with Davenport's q-algorithm
4
. Davenport

showed that the Wahba cost function could be recast as

L(A) = constant − tr

(

BTA
)

, (2)

where

B ≡
N
∑

k=1

ak ŴkV̂T
k . (3)

and where tr( ··· ) denotes the trace operation, and recast further as the quadratic form

L(A) = constant − q̄TK q̄ , (4)

where the 4 × 4 matrix K is given by

K =
[

S − s I Z
ZT s

]

, (5)

and

S = B + BT , s = trB , (6ab)

Z = [B23 − B32, B31 − B13, B12 − B21]T . (6c)

Here q̄ denotes the quaternion of rotation
1
.

Minimization of L(A) leads to an eigenvalue equation for K, namely

Kq̄∗ = λmax q̄
∗ , (7)

where the asterisk denotes the optimal value and λmax is the largest eigenvalue of K.

The QUEST algorithm
3
uses a very e�cient method for both the determination of the

maximum eigenvalue λmax and the optimal quaternion. In addition, it o�ered a model

covariance matrix based on the simple measurement model

Ŵk = A V̂k + ∆Ŵk , (8)

with the measurement error ∆Wk having �rst and second moments

E{∆Ŵk} = 0 (9)

E{∆Wk ∆ŴT
k } = σ2

k [I − (A V̂k) (A V̂k)T ] , (10)

where E{ · } denotes the expectation, and I is the 3 × 3 identity matrix. This leads to

the result

Pθθ =

[

N
∑

k=1

1

σ2
k

(

I − Ŵtrue
k Ŵtrue T

k

)

]−1

, (11)
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and

Ŵtrue
k ≡ A V̂k , (12)

provided that the weights ak, k = 1, . . . , N , are chosen to be proportional to 1/σ2
k.

Note that in actual computations we must replace Ŵtrue
k by Ŵk, because the former

is not known in general. Since we will be interested in calculating quantities only to

lowest nonvanishing order in ∆Ŵ`,k this replacement will not lead to important errors

in general.

The covariance matrix in equation (11) is de�ned in terms of error angles. If Atrue is

the true attitude, and A∗ is the estimated attitude, then the 3× 1 array of attitude error

angles

∆θ∗ ≡ [∆θ∗1 , ∆θ
∗
2 , ∆θ

∗
3]T (13)

are de�ned by

A∗ = C(∆θ∗)Atrue , (14)

where

C(θ) = I +
sin(|θ|)
|θ|

[[θ ]] +
1 − cos(|θ|)
|θ|2

[[θ ]]2 (15)

is the formula for a proper orthogonal matrix parameterized by the rotation vector
1
and

[[θ ]] ≡





0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0



 (16)

Note that for |∆θ| << 1 we have that

C(∆θ) = I + [[∆θ ]] + O(|∆θ|2) . (17)

The attitude covariance matrix is de�ned as

Pθθ ≡ E{∆θ
∗∆θ∗ T} . (18)

Markley has developed an equally e�cient algorithm FOAM
5
, which works directly in

terms of the direction-cosine matrix.

Another important result in the development of solutions to the Wahba problem was

to show that if the measurement model of equations (8) through (10) is accepted and the

measurement errors are assumed to be Gaussian as well, then the maximum-likelihood

estimation
6

of the attitude leads directly to the Wahba cost function
7
. This put the

Wahba problem on a �rm statistical footing. The QUEST algorithm has supported

numerous spacecraft missions, beginning with the Magsat mission in 1979. It has the

additional advantage of providing a useful �gure of merit as additional output, which

allows data rejection to be automated easily.

THE PSEUDO-MEASUREMENT

In an earlier work
8
, Brozenec and Bender presented a method for decreasing the

computational burden for QUEST when attitude was determined from multiple star-

direction data from a star camera and a second sensor mounted on the spacecraft.
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The authors argued that because star cameras generally have very small �elds of view

(generally on the order of ±5 deg/axis), the measurements will be closely clustered. As

a result, the star direction measurements will provide much less information on the

attitude of the spacecraft about the star-camera boresight compared with that about

the other two axes, a phenomenon generally known as geometric dilution of precision

(GDOP). Since, a second star camera or other accurate vector sensor was assumed to

be present, this second sensor would will provide a great deal of information about the

attitude of the spacecraft about the �rst star camera's boresight and vice versa if the

second sensor is also a star camera. Hence, the authors argued, it was reasonable to

simply average over the directions measured in the star camera at any one time, and

use the direction of this average as an e�ective measurement for the attitude. In this

way one discards any information about the attitude about the star camera boresight.

That information, as we have said, is assumed to be minuscule compared to equivalent

information provided by the other sensor.

Thus, specializing now to the case where one has two star cameras, one de�nes

̂W` ≡ unit

(

N
∑̀

k=1

Ŵ`,k

)

,
̂V` ≡ unit

(

N
∑̀

k=1

V̂`,k

)

, ` = 1, 2, (19)

where N` are the number of directions observed by star camera �`,� and unit( · ) is

the function which generates a unit vector in the same direction as its argument if

non-vanishing. The spacecraft attitude was determined by �nding the optimal attitude

from the Wahba cost function

L(A) =
1
2

2
∑

`=1

a`

∣

∣

∣

∣

̂W` − A
̂V`

∣

∣

∣

∣

2

, (20)

with

a` =
N`

N1 +N2
` = 1, 2 . (21)

Thus, no matter how many stars are observed in each camera, the QUEST algorithm, or

any other optimal algorithm using line-of-sight data, is applied only to the two e�ective

observations, rather than to (N1 +N2) individual star observations. The weighting of the

two terms is based on the assumption that the two star cameras have the same accuracy

and that the individual measurements of each star camera have a uniform circle of error.

The present work will examine the performance of the Brozenec-Bender approach

and present the results of a detailed covariance analysis. If the (N1 +N2) line-of-sight

measurements were entered directly as inputs into the Wahba cost function, then the

covariance of the resulting attitude would be simply

P
QUEST
θθ =

[

2
∑

`=1

N
∑̀

k=1

1

σ2
`,k

(

I − Ŵtrue
`,k Ŵtrue T

`,k

)

]−1

. (22)

The σ`, k, we have said, are assumed to be equal to a common value σ. The corresponding

attitude covariance matrix for the Brozenec-Bender algorithm is more complex and will

occupy the next section.
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COVARIANCE ANALYSIS OF THE BROZENEC-BENDER

PSEUDO-MEASUREMENT WITH TWO STAR CAMERAS

Because the Wahba problem yields the maximum-likelihood estimate of the attitude

given measurements obeying the QUEST model, its attitude covariance matrix can be

computed simply from the Hessian matrix of the Wahba cost function
7
.

(

P
QUEST
θθ

)−1
= E

{

∂2

∂θ∂θT
L
(

C(θ)Atrue

)

}∣

∣

∣

∣

θ=0
, (23)

provided we choose

a`,k =
σ2

tot

σ2
`,k

, with

1

σ2
tot

=
2
∑

`=1

N
∑̀

k=1

1

σ2
`,k

, (24ab)

and the single summation over k in equation (1) is replaced with a double summation

over ` and k. The evaluation of equation (23) leads directly to the result given in

equation (22).

The same is not true with Brozenec-Bender averaging, because the Wahba cost function

does not arise from the maximum-likelihood estimate of the attitude given the Brozenec-

Bender e�ective measurements. Thus, the attitude errors must be computed directly

in terms of the measurement errors in the Brozenec-Bender e�ective measurement and

the covariance computed from this. This computation is the subject of this section.

(Reference
3

computed the covariance matrix in this way not only for the TRIAD

algorithm but also for the QUEST algorithm as well, because it was not realized at the

time that the Wahba cost function followed directly from the measurement error model

used to calculate the attitude covariance matrix.)

We thus de�ne unnormalized vectors in a manner similar to that of equation (19),

namely

W` ≡
N
∑̀

k=1

Ŵ`,k , V` ≡
N
∑̀

k=1

V̂`,k , ` = 1, 2. (25)

Clearly,

W` = AV` + ∆W` , ` = 1, 2 , (26)

with

∆W` =
N
∑̀

k=1

∆Ŵ`,k , ` = 1, 2 . (27)

Thus, given the QUEST model for the individual line-of-sight measurements, we have

that ∆W` has mean zero and covariance matrix

RW`
=

N
∑̀

k=1

σ2
`,k

(

I − Ŵtrue
`,k Ŵtrue,T

`,k

)

, ` = 1, 2 , (28)

From

̂W` = W`/|W`| , ` = 1, 2 , (29)
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it follows that to lowest order in ∆W` , ` = 1, 2,

∆
̂W` =

1

|W`|

(

I −̂W`
̂W

T

`

)

∆W` , ` = 1, 2 . (30)

Thus, the Brozenec-Bender e�ective measurement satis�es

̂W` = A
̂V` + ∆

̂W` , ` = 1, 2 , (31)

with

E{∆̂W` } = 0 , ` = 1, 2 , (32a)

E{∆̂W`∆
̂W

T

` } = R
̂W`

, ` = 1, 2 , (32b)

and

R
̂W`

=
1

|W`|2

(

I −̂W`
̂W

T

`

)

RW`

(

I −̂W`
̂W

T

`

)

, ` = 1, 2 , (33)

COVARIANCE ANALYSIS OF THE BROZENEC-BENDER ATTITUDE-

DETERMINATION ALGORITHM FOR TWO STAR CAMERAS

Now that we have a complete model for the Brozenec-Bender measurement, we

may compute the spacecraft attitude. The mechanization of the QUEST algorithm is

straightforward and has been described in detail elsewhere
3

and need not concern us

here. What does concern us is the attitude error. To compute the attitude error,

we are interested only in computing C(∆θ∗) = A∗A−1
true, after which we will extract ∆θ∗

using equation (17). We can compute C(∆θ∗) most easily be replacing

̂V` with

̂W
true

` in

equation (20), leading to

L (C(∆θ)) =
1
2

2
∑

`=1

a`

∣

∣

∣

∣

̂W` − C(∆θ)̂W
true

`

∣

∣

∣

∣

2

, (34)

Substituting equation (17) and minimizing over ∆θ leads straightforwardly to

∆θ∗ =

[

2
∑

`=1

a`

(

I −̂W`
̂W

T

`

)

]−1 2
∑

`=1

a` [[̂W` ]]∆̂W` , (35)

Whence the attitude covariance matrix for the Brozenec-Bender algorithm is given by

PBB
θθ =

[

2
∑

`=1

a`

(

I −̂W`
̂W

T

`

)

]−1

2
∑

`=1

a2
` [[̂W` ]]R

̂W`

[[̂W` ]]T
[

2
∑

`=1

a`

(

I −̂W`
̂W

T

`

)

]−1

, (36)
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which should be compared with the result for the QUEST algorithm in equation (21).

MODEL COVARIANCE ANALYSIS

It follows from the Cram�er-Rao Theorem
6
that

P
QUEST
θθ ≤ PBB

θθ . (37)

The important question is how large is the di�erence between the two attitude covariance

matrices. To answer this question, we examine the two covariances in a simple model,

in which the star cameras are assumed to have a circular �eld of view of angular radius

ρ and the stars are distributed uniformly over the �eld of view of each sensor. We will

assume that one star camera has its boresight along the spacecraft x-axis and the other

about the spacecraft y-axis. In the frame of each of the star cameras, the boresight will

be taken to be the z-axis. We assume, as in Equation (21) that the two star cameras

are characterized by the same variance σ2
, which is the same for all observations in the

�elds of view of the two star cameras.

In the limit that N1 and N2 are large we may replace the summation over the

observations by an integral, thus if f (Ŵ) is any function of the observations we may

write

N
∑̀

k=1

f (Ŵ`,k) →
N`

Ω

∫ 2π

0

∫ ρ

0
f
(

Ŵ(ϑ, ϕ)
)

sin ϑ dϑ dϕ , ` = 1, 2 , (38)

with Ω the solid angle subtended by the star camera �eld of view,

Ω = 2π(1 − cos ρ) , (39)

and

Ŵ(ϑ, ϕ) =





sin ϑ cosϕ

sin ϑ sinϕ

cos ϑ



 . (40)

With these substitutions, and assuming the distribution of observed vectors to be uniform

in the star camera �eld of view, the inverse covariance matrix for each star camera using

the QUEST algorithm for computing the attitude is

(

P
QUEST
θθ

)−1

`
=
N`

σ2
diag(a, a, b) , ` = 1, 2 , (41)

where

diag(a, b, c) ≡





a 0 0

0 b 0

0 0 c



 (42)

and

a = (4 + cos ρ + cos2 ρ)/6 , (43a)

b = (2 − cos ρ − cos2 ρ)/3 . (43b)
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Note that as ρ → 0 we have that a → 1 and b → 0. Noting that the sensor boresights are

along the x- and y-axes, we have for the QUEST algorithm

(

P
QUEST
θθ

)−1
= R(x̂, π/2)

(

P
QUEST
θθ

)−1

1
RT (x̂, π/2)

+ R(ŷ, π/2)
(

P
QUEST
θθ

)−1

2
RT (ŷ, π/2) (44a)

=
N1

σ2
diag(b, a, a) +

N2

σ2
diag(a, b, a) (44b)

For the Brozenec-Bender algorithm, we obtain straightforwardly in the individual

star-camera frames (boresight = ẑ)

W = N`

(

1 + cos ρ
2

)

ẑ , and

̂W = ẑ , (45)

and

RW`
= N` σ

2
diag(a, a, b) , (46a)

R
̂W`

=
σ2

N`

(

2
1 + cos ρ

)2

diag(a, a, 0) , (46b)

From this it follows that in the spacecraft body frame

2
∑

`=1

a2
` [[̂W` ]]R

̂W`

[[̂W` ]]T

=
σ2

(N1 +N2)2

(

2
1 + cos ρ

)2
(

N1 diag(0, a, a) +N2 diag(a, 0, a)
)

(47)

Likewise,

[

2
∑

`=1

a`

(

I −̂W`
̂W

T

`

)

]

=
1

N1 +N2

(

N1 diag(0, 1, 1) +N2 diag(1, 0, 1)
)

(48)

whence the inverse attitude covariance for the Brozenec-Bender algorithm is easily

shown to be

(

PBB
θθ

)−1
=

1
σ2

(

2
1 + cos ρ

)2 1
a
diag(N2, N1, N1 +N2) (49)

which should be compared with equation (44b) above.

If we consider the special case N1 = N2 = N , we obtain the simple results

(

P
QUEST
θθ

)−1
=
N

σ2
diag(a + b, a + b, 2a) , (50a)

(

PBB
θθ

)−1
=
N

σ2

(

1 + cos ρ
2

)2 1
a
diag(1, 1, 2) , (50b)
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For ρ << 1 these reduce to

P
QUEST
θθ =

σ2

N
diag[1 − ρ2/4, 1 − ρ2/4, (1 + ρ2/4)/2] , (51a)

PBB
θθ =

σ2

N
(1 + 3ρ2/4) diag[1, 1, 1/2] . (51b)

Thus, the fractional loss in accuracy is on the order of ρ2
, but for typical star-camera

�elds of view, ρ is only 5. deg, leading to a loss of accuracy of only one percent. This

is certainly negligible. For ρ = π/2, corresponding to a star camera whose �eld of view

encompasses half the sky, we have

P
QUEST
θθ =

3
4
σ2

N
diag[1, 1, 1] , (52a)

PBB
θθ =

8
3
σ2

N
diag[1, 1, 1/2] , (52b)

so that the QUEST algorithm is better (in variance) by a factor of from 1.77 to 3.55

about any axis. This, however, is a very unusual case and clearly outside the expected

range of application of the Brozenec-Bender algorithm. For ρ = π, the full sky case, the

covariance of the Brozenec-Bender algorithm is in�nite, because the W` vanish in our

example. The e�cacy of the Brozenec-Bender algorithm when the �eld of view of the

star camera is small has been demonstrated for two star cameras.

BROZENEC-BENDER AVERAGING WITH ONE STAR CAMERA

AND ONE SINGLE-VECTOR SENSOR

Let us consider now the alternate case where the �rst sensor is a CCD star camera

with a circular �eld of view of radius ρ and single-direction standard deviation σ1 and

with generally N1 = N stars in the �eld of view. We will assume as a typical value ρ = 5

deg and σ1 = 10 arc seconds or approximately 50 microradians, and N = 10. Sensor 2 is

a single-direction sensor with standard deviation sigma2 and, clearly, N2 = 1. If Sensor

2 is a precise Sun sensor then we can expect σ2 to have values close to 10 arc seconds

or 50 microradians . Otherwise, if Sensor 2 is a coarse sensor, its accuracy will be taken

as 0.3 deg or approximately 5 milliradians. For de�niteness, we will assume that Sensor

1, the CCD star camera, has its boresight aligned with the spacecraft body x-axis, while

Sensor 2 measures a single vector along the spacecraft body y-axis.
The computation of the spacecraft covariance matrix follows procedures similar to

those of the previously considered case. For the application of the QUEST algorithm

to all of the data without averaging we have for the inverse covariance matrix

(

P
QUEST
θθ

)−1
=
N1

σ2
1

diag(b, a, a) +
1

σ2
2

diag(1, 0, 1) (53)

Clearly showing the two contributions to the inverse covariance matrix. Note that

the inverse-covariance (information) will be smallest about the boresight, hence, about

the x-axis for the star camera (Sensor 1) and about the y-axis for the single-direction
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sensor (Sensor 2). With Brozenec-Bender averaging, however, we obtain a slightly less

transparent expression.

We note �rst that relative weights of the two sensors, according to the earlier discussion

will be

a1 =
N/σ2

1

N/σ2
1 + 1/σ2

2

, a2 =
1/σ2

2

N/σ2
1 + 1/σ2

2

. (54)

The pseudo-measurement covariance matrix for the star camera is again following

Equations (28), (33) and (46)

R
̂W1

=
σ2

1

N`

(

2
1 + cos ρ

)2

diag(a, a, 0) , (55)

with a as in Equation (43a), which we write as

R
̂W1

= σ2
eff diag(0, 1, 1) (56)

with

σ2
eff ≡

σ2
1

N

(

2
1 + cos ρ

)2

= β

(

σ2
1

N

)

(57)

and trivially for the single-direction sensor

R
̂W2

= σ2
2 diag(1, 0, 1) . (58)

Note that for the speci�ed star camera β ≈ 1. Equation (47) for the present case

becomes equivalently

2
∑

`=1

a2
` [[̂W` ]]R

̂W`

[[̂W` ]]T = a2
1 σ

2
eff diag(0, 1, 1) + a2

2 σ
2
2 diag(1, 0, 1) (59)

Evaluating Equation (36) in this case leads after some manipulation to

(

PBB
θθ

)−1
= diag

[

1

σ2
2

,
1

σ2
eff

,
1

a2
1 σ

2
eff + a

2
2 σ

2
2

]

(60)

It will be useful to de�ne

c =
Nσ2

2

σ2
1

. (61)

Then

a1 =
c

1 + c
, and a2 =

1
1 + c

(62)

Then

σ2
eff = βc σ2

2 . (63)

For σ2 = 0.3 deg we have then c ≈ 100, 000, while for σ2 = 3 arc seconds we have instead

c = 1.



A Suboptimal Algorithm for Attitude Determination from Multiple Star Trackers 393

Comparing the diagonal elements of the inverse covariance matrix we obtain

[

(

P
QUEST
θθ

)−1
]

22
[

(

PBB
θθ

)−1
]

22

= βa (64a)

[

(

P
QUEST
θθ

)−1
]

33
[

(

PBB
θθ

)−1
]

33

= βa
( c

1 + c

)2
+
( c

1 + c

)2
(

β + a
c

+
1
c2

)

(64b)

Note that for ρ = 5 deg we have a = 0.988, β = 1.0002 and βa = 1.000005 so that

the attitude accuracy about the y-axis is not e�ected by Brozenec-Bender averaging,

independent of the nature of Sensor 2. For c = 100, 000 (Sensor 2 is, say, an infra-red

horizon scanner) the right member of Equation (64b) di�ers from unity again by terms

of order 10−5
. For c = 1 (Sensor 2 is a precise Sun sensor), the right member of

Equation (64b) becomes (βa+β+a+1)/4, which is also close to unity. Thus, the attitude

determination accuracy about any axis perpendicular to the star-camera boresight is not

sensitive to the nature of Sensor 2 or to Brozenec-Bender averaging.

The situation changes for the component about the star-camera boresight. In that

case we �nd
[

(

P
QUEST
θθ

)−1
]

11
[

(

PBB
θθ

)−1
]

11

= 1 + bc (64c)

where b was de�ned in Equation (43b). For ρ = 5 deg we have b = 4 × 10−3
, so that

the ratio of the inverse covariances is 400 when c = 100, 000 and 1.004 when c = 1.
Brozenec-Bender averaging leads to little loss in attitude determination accuracy about

the boresight when the single-vector sensor is of the same accuracy roughly as the star

camera but a considerable degradation of the attitude accuracy when the single-vector

sensor is not very accurate.

DISCUSSION

The reasons for this great disparity in accuracy can be understood more simply than

the above derivation. The geometric dilution of precision (GDOP) factor of a sensor

with a narrow �eld of view is approximately 1/ sin(α), where α is the half-cone angle

of the sensor. For a typical star camera with a �eld of view 8 deg × 8 degrees,

α ≈ FOV/
√

(12) ≈ 4 deg, and the GDOP factor will be about 25. Thus, if the attitude

accuracy of the star camera is 3 arcsec per star and the star camera measures typically

9 stars, the attitude accuracy about the average star direction will be

GDOP × σ
√
N

= 25 arcsec (65)

This is considerably better than the accuracy of one of the three coarse sensors listed

above, which is typically only about 0.5 deg. Thus, in this case, the Brozenec-Bender
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algorithm results in a considerable worsening of the attitude accuracy about the average

star direction by two orders of magnitude. The Brozenec-Bender algorithm should not

be used in this case. However, if the second sensor is a precise Sun sensor of accuracy

5.0 arc sec, the Brozenec-Bender algorithm can be used with assurance.

CONCLUSION

The Brozenec-Bender algorithm, while not adequate when a star-camera is paired

with a coarse attitude sensor, nonetheless performs extremely well when the attitude

sensors consist of two star cameras or a star camera and a second sensor of comparable

accuracy.
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