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AN EFFICIENT ALGORITHM FOR

SPACECRAFT ATTITUDE DETERMINATION

WITH OPTICAL SENSORS

Malcolm D. Shuster*

An earlier algorithm for multiple sensors is extended to provide three-

axis attitude from multiple line-of-sight observations with a single optical

sensor, typically a star camera. The algorithm, called SCAD, is simpler

computationally than either the QUEST or FOAM algorithms and, although

suboptimal, su�ers only imperceptible loss of accuracy for typical star cameras

with limited �elds of view. A complete analysis of variance is presented.

INTRODUCTION

A central problem in Spacecraft Attitude Determination has been that of determining the three-axis

attitude which minimizes the cost function

J (A) =
1
2

N
∑

k=1

ak
∣

∣Ŵk − AV̂k

∣

∣

2
, (1)

where A is the direction-cosine matrix1 , Ŵk, k = 1, . . . , N , are directions (lines of sight, observation

vectors) observed in the spacecraft body frame, V̂k, k = 1, . . . , N , are the corresponding directions

known in an inertial frame (the reference vectors) and ak, k = 1, . . . , N , are a set of positive weights.

A caret in this work will be used to denote a unit vector. This cost function was �rst proposed by G.

Wahba2 in 1965 and has been the starting point of many algorithms, of which the most popular has

been the QUEST algorithm3, although other attractive algorithms exist4−−8 .

Of particular importance is the fact that the Wahba cost function can be derived from maximum-

likelihood estimation9 provided one assumes the following measurement model 10 , which has been called

the QUEST model, because it was used in an early accuracy study of the QUEST algorithm 3 ,

Ŵk = A V̂k + ∆Ŵk , (2)

with the measurement error ∆Ŵk having �rst and second moments†

E{∆Ŵk} = 0 , (3)

E{∆Ŵk ∆ŴT
k } = σ2

k [I − (A V̂k) (A V̂k)T ] , (4)

This version has been retypeset by the author with slightly di�erent fonts and may di�er in line and page breaks from the

original. Minor typographical and punctuation errors have been corrected. Some factual errors have not been corrected.
∗Professor, Department of Aerospace Engineering, Mechanics and Engineering Science, University of Florida, Gainesville, FL
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†In fact, because of the unity constraint on the norm of Ŵk , the mean of ∆Ŵk will have a small non-vanishing part10 equal to

−σ2
k

Ŵk . This may be safely neglected in our discussion.
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where E{ · } denotes the expectation, I is the 3× 3 identity matrix, and one chooses the weights to be

ak =
σ2

tot

σ2
k

, (5)

with

1

σ2
tot

≡
N
∑

k=1

1

σ2
k

. (6)

The common constant in the numerators of Eq. (5) is arbitrary, of course, but the choice of Eq. (6)

makes
N
∑

k=1

ak = 1 . (7)

One de�nes the attitude covariance matrix Pθθ (Refs. 3, 10) as the covariance of the attitude error

vector, which is the rotation vector1 of the small rotation carrying the true attitude into the estimated

attitude. Assuming the QUEST model for the measurements, this leads to the following expression

for the attitude covariance matrix

P−1
θθ =

N
∑

k=1

1

σ2
k

(

I − Ŵtrue
k Ŵtrue T

k

)

, (8)

and

Ŵtrue
k ≡ A V̂k , (9)

In actual computations we must replace Ŵtrue
k by Ŵk, because the former is not known in general.

Since we will be interested in calculating quantities only to lowest nonvanishing order in ∆Ŵk this

replacement will not lead to important errors in general.

In a previous work11 a method was presented which simpli�ed the attitude estimation process using

data from an Earth albedo sensor. In that work, an approximate measurement for the direction of

the Earth albedo centroid was determined by taking an average of the centroid of the directions of

individual elements of the Earth albedo sensor weighted by the measured intensity, which was compared

with a simulated model centroid. The e�ective vector measurement was combined with a measurement

of the Sun direction and used as input to the TRIAD algorithm 3. It could equally well have been used

as input to the QUEST algorithm, but the minuscule improvement in accuracy was not justi�ed by

the additional computational burden. Brozenec and Bender 12 used a similar averaging of multiple star

directions in a star camera to generate a reduced set of measurements for the QUEST algorithm. In

the present work we present a method for retaining full three-axis attitude information from multiple

data from a single optical sensor, typically a star camera. In addition, rather than relying on heuristic

arguments, we will develop the algorithm in a rigorous manner. We call the algorithm SCAD (Star

Camera Attitude Determination).

CONSTRUCTION OF A SUBOPTIMAL COST FUNCTION

Let us reexamine the Wahba cost function, which we write in the form of the data-dependent part of

the negative-log-likelihood function9, 10 , assuming that the measurement model of Eqs. (2) through (4)

is valid, namely,

J (A) =
1
2

N
∑

k=1

1

σ2
k

∣

∣Ŵk − AV̂k

∣

∣

2
. (10)
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Let us now introduce vectors W and V into the cost function as

J (A) =
1
2

N
∑

k=1

1

σ2
k

∣

∣

∣

[

W − AV
]

+
[

(Ŵk −W) − A(V̂k − V)
]∣

∣

∣

2
, (11)

and expand the cost function as

J (A) =
1
2

1

σ2
tot

|W − AV|2

+ (W − AV)T
N
∑

k=1

1

σ2
k

(

(Ŵk −W) − A(V̂k − V)
)

+
1
2

N
∑

k=1

1

σ2
k

∣

∣

∣(Ŵk −W) − A(V̂k − V)
∣

∣

∣

2
. (12)

If now W and V are chosen to have the values

W =
N
∑

k=1

ak Ŵk , and V =
N
∑

k=1

ak V̂k , (13)

with ak, k = 1, . . . , N , given by Eq. (5), then the second line of Eq. (12) will vanish identically, and

the third line will be a minimum (for given A) leaving

L(A) =
1
2

1

σ2
tot

|W − AV|2 +
1
2

N
∑

k=1

1

σ2
k

∣

∣

∣(Ŵk −W) − A(V̂k − V)
∣

∣

∣

2
(14)

For a focal-plane sensor with a �eld of view of ±0.1 rad per axis (roughly ±6 deg per axis), we

anticipate that the e�ective contribution of the second summation in Eq. (14) will be roughly (0.1)2

or one per cent of the �rst. Thus, the estimation of the spacecraft attitude will be �dominated� by

the �rst term. The second term, which could be discarded if a another vector sensor were present 11,12,

is not unimportant, however, if data from this sensor alone must be used to construct the three-axis

attitude.∗ Minimizing only the �rst term is not su�cient to determine the spacecraft attitude. If Ao

minimizes the �rst term, then so does R(̂W, ψ)Ao, where R(̂W, ψ) denotes the direction-cosine matrix

for a rotation through an arbitrary angle ψ about the direction
̂W,

̂W =
W

|W|
. (15)

It is the second term of Eq. (14) which provides the information on ψ .

Since the overall weight of the �rst summation in Eq. (14) will be so much greater than that of the

second term, we can determine an approximate value for the optimal attitude by writing

A = R(̂W, ψ)Ao , (16)

and seeking �rst the value A∗o which minimizes

L′(Ao) ≡
1
2

1

σ2
tot

∣

∣

∣W − AoV
∣

∣

∣

2
, (17)

∗In fact, in the illustrative example of Ref. 12, the second sensor is an Earth horizon scanner, whose data is su�ciently poor

that attitude accuracy about the star-camera boresight is worsened by an order of magnitude by the averaging procedure. The

algorithm of Ref. 12 will not lead to a loss of attitude estimation accuracy, however, if applied to the case of two noncollinear

star trackers, or if the second sensor is a precise Sun sensor.
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and then the value ψ∗ which minimizes

L′′(ψ) ≡
1
2

N
∑

k=1

1

σ2
k

∣

∣

∣

∣

(Ŵk −W) − R(̂W, ψ)A∗o (V̂k − V)

∣

∣

∣

∣

2

. (18)

Given these A∗o and ψ∗, we anticipate that

A∗ ≡ R(̂W, ψ∗)A∗o , (19)

will be a good approximation for the optimal direction-cosine matrix which minimizes the cost function

of Eq. (10) .

SIMPLIFICATION OF THE COST FUNCTIONS

We can simplify the two cost functions, L′(Ao) and L′′(ψ), without loss of accuracy. Examine �rst

L′(Ao). De�ning

ε ≡
|W| − |V|

|W|
, (20)

we write

|V| = (1 − ε) |W| , (21)

and we can recast L′(Ao) accordingly in the form

L′(Ao) =
1
2
|W|2

σ2
tot

∣

∣

∣

∣

̂W − (1 − ε)Ao
̂V
∣

∣

∣

∣

2

. (22)

The optimizing value of Ao will cause Ao
̂V to be parallel to

̂W independently of the value of ε, Thus,

we will achieve the identical value of A∗o if we discard ε in Eq. (22).

Likewise, substituting Eq. (21) into Eq. (18) leads to

L′′(ψ) =
1
2

N
∑

k=1

1

σ2
k

∣

∣

∣

∣

(

Ŵk − R(̂W, ψ)A∗oV̂k

)

−
(

W − R(̂W, ψ)A∗oV
)∣

∣

∣

∣

2

(23a)

=
1
2

N
∑

k=1

1

σ2
k

∣

∣

∣

∣

(

Ŵk − R(̂W, ψ)A∗oV̂k

)

− εW
∣

∣

∣

∣

2

. (23b)

Separating the terms in the argument of the vector norm which are parallel and perpendicular to
̂W

leads further to

L′′(ψ) =
1
2

N
∑

k=1

1

σ2
k

{

∣

∣

∣

∣

(

I −̂ŴW
T)(

Ŵk − R(̂W, ψ)A∗oV̂k

)∣

∣

∣

∣

2
}

+

∣

∣

∣

∣

̂W
T
(

Ŵk − A
∗
oV̂k

)

− ε|W|
∣

∣

∣

∣

2
}

(24a)

=
1
2

N
∑

k=1

1

σ2
k

{

∣

∣

∣

∣

Ŵk − R(̂W, ψ)A∗oV̂k

∣

∣

∣

∣

2

−
∣

∣

∣

∣

̂W
T
(

Ŵk − A
∗
oV̂k

)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

̂W
T
(

Ŵk − A
∗
oV̂k

)

− ε|W|
∣

∣

∣

∣

2
}

(24b)
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The last two terms of Eq. (24b) are independent of ψ and may be discarded, therefore, from the cost

function. Thus, we may write �nally,

L′(Ao) =
1
2

∣

∣

∣

∣

̂W − Ao
̂V
∣

∣

∣

∣

2

, (25a)

L′′(ψ) =
1
2

N
∑

k=1

1

σ2
k

∣

∣

∣

∣

Ŵk − R(̂W, ψ)A∗oV̂k

∣

∣

∣

∣

2

, (25b)

Note that the simpli�cation of Eqs. (17) and (18) to obtain Eqs. (25) did not rely on any approximation

for the value of ε/ Note also that we have discarded an interesting factor in Eq. (25a).

We determine the suboptimal attitude by minimizing the two cost functions of Eq. (25), L′(Ao) and

L′′(ψ), in sequence.

CONSTRUCTION OF THE SUBOPTIMAL ATTITUDE

The cost function of Eq. (25a) can be made to vanish exactly for a continuum of solutions A∗o .

Except for the special cases
̂W =

̂V, for which an A∗o may be found trivially, a suitable A∗o is given by13

A∗o = (Ŵ1 · V̂1) I +
(Ŵ1 × V̂1) (Ŵ1 × V̂1)T

1 + Ŵ1 · V̂1

+ [[ Ŵ1 × V̂1 ]] (26a)

= I + [[ Ŵ1 × V̂1 ]] +
1

1 + Ŵ1 · V̂1

[[ Ŵ1 × V̂1]]2 . (26b)

corresponding to the quaternion 1

q̄∗o =

√

1 + Ŵ1 · V̂1

2







(

Ŵ1 × V̂1

1 + Ŵ1 · V̂1

)

1






, (27)

and Rodrigues vector1

ρρρ∗o =
Ŵ1 × V̂1

1 + Ŵ1 · V̂1

. (28)

The particular A∗o that we chose is of no consequence, provided that it satisfy

A∗o
̂V =

̂W . (29)

It remains only to �nd the angle ψ∗ which minimizes the cost function of Eq. (25b).

To determine ψ∗ we rewrite L′′(ψ), using techniques developed by Davenport 14 which have become

part of the development of the QUEST algorithm 3 , as

L′′(ψ) =
1

σ2
tot

−
N
∑

k=1

1

σ2
k

ŴT
kR(̂W, ψ)A∗oV̂k (30a)

=
1

σ2
tot

− tr

[

BTR(̂W, ψ)
]

, (30b)
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where tr( · ) denotes the trace operation, and

B =

(

N
∑

k=1

1

σ2
k

ŴkV̂T
k

)

A∗ To ≡ CA∗ To . (31)

Writing Euler's formula1 in the form

R(̂W, ψ) =̂ŴW
T

+ sinψ [[̂W ]] + cosψ
(

I −̂ŴW
T)

, (32)

where

[[ v ]] ≡





0 v3 −v2

−v3 0 v1

v2 −v1 0



 , (33)

we have

L′′(ψ) =
1

σ2
tot

− tr[B] − sinψ tr

[

BT [[̂W ]]
]

− cosψ tr

[

BT
(

I −̂ŴW
T)]

(34a)

≡
1

σ2
tot

− tr[B] − s sinψ − c cosψ , (34b)

with

Z ≡

[

B23 − B32
B31 − B13
B12 − B21

]

, s ≡
(

ZT̂W
)

, and c ≡
(

tr [B] −̂W
T

B
̂W
)

. (35)

Minumization of L′′(ψ) leads straightforwardly to

−s cosψ∗ + c sinψ∗ = 0 , (36)

or

ψ∗ = arctan2(s, c) . (37a)

Here arctan2(s, c) is the function which returns the arc tangent of s/c in the correct quadrant. In the

FORTRAN language this function is called ATAN2. The angle ψ∗ will be indeterminate if both s and

c vanish. This is possible, however, only if all of the Ŵk are identical.

The parallelism of the calculation of ψ∗ in the present algorithm with that of q̄∗ in the QUEST

algorithm is apparent. However, this methods are applied to a single angle variable and not to the

four components of the quaternion of rotation. The computational burden is therefore much smaller,

particularly since the need to compute the overlap eigenvalue has been eliminated.

COVARIANCE ANALYSIS OF THE ALGORITHM

A simple approximate expression for the covariance matrix of the SCAD algorithm can be obtained

if we neglect correlations between the two steps. In that case, we e�ectively treat the estimation of Ao
and ψ as separate maximum likelihood estimation problems and can obtain an approximate estimate

error covariance matrix from the Fisher information matrix associated with each of the estimation

steps. Clearly, the direction-cosine matrix of Eqs. (26) causes the cost function L′(A∗o ) to vanish

identically. Therefore, the coe�cient in Eq. (25a) has no direct connection to the covariance ma-

trix of the suboptimal attitude estimate, once we have embarked on our two-step optimization sequence.
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To compute the attitude covariance matrix, Pθθ, we must begin with the correct measurement model

characterizing
̂W.

From the de�nition of W and V we may write

W = AoV + ∆W , (38)

where

∆W =
N
∑

k=1

ak ∆Ŵk . (39)

∆W will have vanishing expectation (to order σtot) and covariance matrix

RW = σ2
tot

N
∑

k=1

ak
(

I − ŴkŴT
k

)

. (40)

From Eq. (38) it follows that

̂W = Ao
̂V + ∆

̂W , (41)

with

∆
̂W =

1

|W|

(

I −̂ŴW
T)

∆W . (42)

Thus, ∆
̂W also has vanishing expectation and covariance matrix

R
̂W

=
(

I −̂ŴW
T)

RW

(

I −̂ŴW
T)

. (43)

The data-dependent part of the negative-log-likelihood 9 corresponding to the measurement of model

of Eq. (41) is, therefore,9,10

J (A) =
1
2

(

̂W − ÂV
)T

R#
̂W

(

̂W − ÂV
)

(44a)

=
1
2

(

̂W − (I − [[∆θ]]̂W
true)T

R#
̂W

(

̂W − (I − [[∆θ ]]̂W
true)T

(44b)

=
1
2

(

̂W −̂W
true

+ [[̂W
true

]]∆θ
)T

R#
̂W

1
2

(

̂W −̂W
true

+ [[̂W
true

]]∆θ
)

, (44c)

where

̂W
true

= A
̂V , (45)

and ∆θ is the attitude error vector. The Hessian matrix (i.e., the matrix of second-order partial

derivatives of the negative-log-likelihood function of Eq. (44) with respect to ∆θ) is then the contribution

of the e�ective measurement
̂W to P−1

θθ . Thus,

(P−1
θθ )′ = [[̂W

true

]]R#
̂W

[[̂W
true

]]T (46)

and the single prime denotes that this is the contribution to the attitude covariance arising from
̂W.
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To determine the information matrix associated with the degree of freedom expressed by ψ let us

write

Ûk ≡ R(̂W, ψtrue)A∗o V̂k , (47)

where ψtrue is the true value of ψ . (Since the errors associated with A∗o are expected to be very small

compared to the errors associated with ψ∗ because of the geometric dilution of precision associated

with the limited �eld of view of the star tracker, we expect Ûk to be very close to Ŵtrue
k . Thus, we now

seek the value of the in�nitesimal ∆ψ which minimizes

L′′(∆ψ) =
N
∑

k=1

1

σ2
k

|Ŵk − R(̂W, ∆ψ) Ûk|
2 (48a)

=
N
∑

k=1

1

σ2
k

|Ŵk − Ûk − [[∆ψ̂W ]] Ûk|
2 (48b)

=
N
∑

k=1

1

σ2
k

|Ŵk − Ûk + ∆ψ
̂W × Ûk|

2 (48c)

=
N
∑

k=1

1

σ2
k

[

|Ŵk − Ûk|
2 + 2(Ŵk − Ûk)T (Ŵk × Ûk) ∆ψ + |Ŵk × Ûk|

2|∆ψ |2
]

(48d)

The information for ∆ψ is just the second derivative of this quantity with respect to ∆ψ , and, since

this angle is about the direction
̂W, its contribution to the attitude information is just

(

Pθθ
−1)′′ =

N
∑

k=1

1

σ2
k

|̂W × Ûk|
2̂ŴW

T

.

Thus, the inverse of the covariance matrix of our new algorithm is

(

P SCAD
θθ

)−1
= [[̂W ]]R#

̂W
[[̂W ]]T +

(

N
∑

k=1

1

σ2
k

|̂W × Ŵk|
2

)

̂ŴW
T

. (49)

In anticipation of practical application we have made the replacements

̂W
true

→̂W , and Û∗k → Ŵk . (50)

The geometric dilution of precision is manifest in the factors |̂W × Ŵk|2.

The computation of the pseudo-inverse is easily accomplished. Let û and v̂ be any two unit vectors

such that {û, v̂, ̂W} form a right-handed orthonormal set. Since the singularity of R
̂W

is solely the

manifestation that
̂W is a null vector of the covariance matrix, it follows that

R
̂W

= FF T R
̂W
FF T , (51)

where

F ≡ [ û
... v̂ ] (52)
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is a (3) × 2 matrix labeled by its columns. Note that

F F T = I −̂ŴW
T

. (53)

The 2 × 2 matrix R′,

R′ = F TR
̂W
F , (54)

will be nonsingular if the attitude is observable. Hence in the only cases of interest

R#
̂W

= F
(

F T R
̂W
F
)−1

F T . (55)

The veri�cation that R′ is nonsingular would be a routine step in the computation of the attitude to

verify observability. A similar step occurs in implementation of the QUEST algorithm in which the

rank of the QUEST information matrix is tested15.

We may simplify the expression for the SCAD inverse covariance matrix further by noting that

[[̂W ]]F ≡ G = [−v̂
... û ] . (56)

Hence, we have �nally

(

P SCAD
θθ

)−1
= G

(

F T R
̂W
F
)−1

GT +

(

N
∑

k=1

1

σ2
k

|̂W × Ŵk|
2

)

̂ŴW
T

. (57)

Note that the second term in Eq. (57) may be written as

̂ŴW
T (

P
QUEST
θθ

)−1
̂ŴW

T

Note that the QUEST covariance matrix will be a good approximation for the SCAD covariance matrix

when the �eld of view of the sensor has a small diameter. The comparison of these expressions will

be carried out in the next section.

If ρ is the root-mean-square arc length of the individual star observations from
̂W, then we anticipate

that the �rst term in Eq. (57) will di�er from the corresponding term of Eq. (49) by fractional errors of

order ρ2. By this same token, we observe that the contribution of the second term in Eq. (49) or (57)

to the total inverse covariance matrix will be smaller than that of the �rst term by a factor of ρ2.

MODEL COVARIANCE ANALYSIS

It follows from the Cram�er-Rao Theorem9 that

PQUEST ≤ P SCAD . (58)

The important question is how large is the di�erence between the two attitude covariance matrices. To

answer this question, we examine the two covariance matrices (rather than the two inverse covariances

matrices) in a simple model, in which the star camera is assumed to have a circular �eld of view of

angular radius ρ, and the stars are assumed to be distributed uniformly over the �eld of view of the

sensor. We will assume for convenience that the star camera has its boresight along the spacecraft z-axis.
We assume in addition that the covariance matrix of every line-of-sight observation is characterized by

the same standard deviation σ2.
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In the limit that N is large we may replace the summation over the observations by an integral.

Thus, if f (Ŵ) is any function of an observed direction, we may write

N
∑

k=1

f (Ŵk) →
N

Ω

∫ 2π

0

∫ ρ

0
f
(

Ŵ(ϑ, ϕ)
)

sin ϑ dϑ dϕ , (59)

with Ω the solid angle subtended by the star camera �eld of view,

Ω = 2π(1 − cos ρ) , (60)

and

Ŵ(ϑ, ϕ) =





sin ϑ cosϕ

sin ϑ sinϕ

cos ϑ



 . (61)

With substitutions the inverse covariance matrix for each star camera using the QUEST algorithm for

computing the attitude is
(

P
QUEST
θθ

)−1
=
N

σ2
diag(a, a, b) , (62)

where

diag(a, b, c) ≡





a 0 0

0 b 0

0 0 c



 , (63)

and

a = (4 + cos ρ + cos2 ρ)/6 , (64a)

b = (2 − cos ρ − cos2 ρ)/3 . (64b)

Note that as ρ → 0 we have that a → 1 and b → 0.

For the SCAD algorithm, we note �rst that

W =
(

1 + cos ρ
2

)

ẑ , (65a)

RW =
σ2

N
diag(a, a, b) . (65b)

R
̂W

=
σ2

N

(

2
1 + cos ρ

)2

diag(a, a, 0) . (65c)

From these results we may compute the inverse covariance matrix for the SCAD algorithm given in

Eq. (49) to obtain

(

P SCAD
θθ

)−1
=
N

σ2

{

(

1 + cos ρ
2

)2

diag(1/a, 1/a, 0) + diag(0, 0, b)

}

. (66)

The two covariance matrices are both diagonal in the model case examined.

We note �rst that the standard deviation about the boresight is identical for this example for both

the QUEST and the SCAD algorithms,

σSCAD
b

σ
QUEST
b

= 1 , (67)
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TABLE 1

COMPARISON OF THE SCAD AND QUEST ALGORITHMS

Field of View σSCAD
t /σ

QUEST
t σSCAD

b /σ
QUEST
b

± 6 deg 1.000004 1.000000

± 12 deg 1.00007 1.000000

± 30 deg 1.003 1.000000

± 60 deg 1.06 1.000000

± 90 deg 1.33 1.000000

where the subscript b stands for �boresight.� Thus, not only do we recover the information on the

attitude about the boresight, we recover it completely.

The ratio of the standard deviation of the SCAD algorithm to that of the QUEST algorithm for

attitude errors about axes normal to
̂W is

σSCAD
t

σ
QUEST
t

=
a

|W|
=

2
1 + cos ρ

4 + cos ρ + cos2 ρ

6
, (68)

where t stands for �transverse.� Since we are interested in this algorithm primarily for a sensor of

limited �eld of view, we de�ne

δ ≡ 1 − cos ρ . (69)

Then
σSCAD
t

σ
QUEST
t

=
2

2 − δ
6 − 3δ + δ2

6
= 1 +

1
6

δ2

1 − δ/2
. (70)

Thus, for this simple example, the standard deviation of attitude errors for axes perpendicular to the

boresight is approximately

σSCAD
t

σ
QUEST
t

≈ 1 + ρ4/24 + O(ρ6/96) . (71)

For limited �elds of view, the relative loss in accuracy compared to the QUEST algorithm is imper-

ceptible. Table 1 gives the relative loss of accuracy for several �elds of view. Note that because of

the rotational symmetry of our example about the star-camera boresight, The cross covariance matrix

between ∆ψ and ∆θ will vanish. Thus, the errors introduced by our approximate treatment of the

attitude estimate covariance are completely suppressed.
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Appendix: Implementation of SCAD

The following are the steps for computing the optimal attitude using the SCAD algorithm:

• From the input data, Ŵk, k = 1, . . . , N , the corresponding reference vectors, V̂k, k = 1, . . . , N ,

and the sensor variances, σ2
k, k = 1, . . . , N , compute: (1) σ2

tot according to Eq. (6); (2) the weights

ak, k = 1, . . . , N , according to Eq. (5); (3) W and V according to Eq. (13); and (4) the matrix C
according to Eq. (31).

• From these quantities compute the unit vectors
̂W and

̂V according to Eq. (15) for
̂W and similarly

for
̂V.

• Compute R
̂W

according to Eqs. (40) and (43).

• Compute the matrices F and G according to Eqs. (54) and (56).
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• Compute R′ from Eq. (54) and verify that it is full rank. If R′ is not full tank, the attitude is not

observable from the data and the computation is terminated. If R′ is full rank, continue.

• Compute A∗o according to the following method:

� If
̂W · ̂V > 1− ε for some predetermined value of ε, set A∗o = I . (The value of ε will be a

function of the machine precision and the accuracy of the data.)

� If
̂W · ̂V < −1 + ε for some predetermined value of ε, set A∗o = R(n̂, π), where n̂ is the

representation of the sensor coordinate axis for which |n̂ ×̂W| is largest.

� Otherwise, use any of Eqs. (26a) through (28) to generate A∗o either directly or via the

quaternion or Rodrigues vector.

• Compute B according to Eq. (31), and Z, s, and c according to Eq. (35).

• Compute ψ∗ according to Eq. (37) and A∗ according to Eq. (19).

• Compute P SCAD
θθ according to Eq. (57). o

This completes the SCAD algorithm.

The above implementation was given with a mind to generating the direction-cosine matrix as �nal

output. If it is desired to generate instead either the quaternion or the Rodrigues vector as �nal

output, one requires the formulae:

cos(ψ∗/2) =

√

1 + c
2

, and sin(ψ∗/2) =
s

2 cos(ψ∗/2)
, (A1)

whence

q̄(̂W, ψ∗) =
[

sin(ψ∗/2)̂W
cos(ψ∗/2)

]

, and ρρρ(̂W, ψ∗) =
sin(ψ∗/2)
cos(ψ∗/2)

̂W , (A2)

and combining these directly with q̄∗0 and ρρρ∗o according to the prescriptions in Ref 1.


