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ABSTRACT

Two Kalman-filter formulations are presented for
the estimation of spacecraft sensor misalignments
from inflight data. In the first the sensor misalign-
ments are part of the filter state variable; in the sec-
ond the state vector contains only dynamical variables,
but the sensitivities of the filter innovations to the
misalignments are calculated within the Kalman filter.
This procedure permits the misalignments to be esti-
mated in batch mode as well as a much smaller dimen-
sion for the Kalman filter state vector. This results not
only in a significantly smaller computational burden
but also in a smaller sensitivity of the misalignment es-
timates to outliers in the data. Numerical simulations
of the filter performance are presented.

INTRODUCTION

Alignment estimation forms an important part of
many missions since the alignment estimation accu-
racy directly effects the accuracy with which the pay-
load attitude can be determined. A complete treat-
ment of the batch estimation of spacecraft sensor
alignments from flight data has been presented pre-
viously. [1,2]. The use of these batch techniques,
however, requires that the data be arranged in re-
peated frames of simultaneous measurements. The
attitude sensors, however, are typically sampled aSyn-
chronously.

The present work presents two filter approaches.
The first approach is that of the standard, or “naive”

Kalman filter, in which any parameter to be estimated
is made a component of the state vector. Since a
spacecraft may easily have ten sensors, this leads to a
state vector of dimension at least 36 when one consid-
ers considers also the minimum number of dynamical
variables. This high dimensionality, coupled with the
inherent nonlinearity of the dependence of the mea-
surements on the attitude can lead to poor conver-
gence of the filter in addition to a large computational
burden.

The solution to this dilemma was provided by
Gupta and Mehra [2], who noted that the innova-
tions sequence in the filter was white and therefore
provided the appropriate uncorrelated sequence of ef-
fective measurement sequence. This made it possible
to apply MLE techniques directly to the innovations
sequence. In fact, since the Kalman filter itself may be
treated as an MLE algorithm for the case of Gauss-
ian measurement and process noise [4], this meant
that the entire estimation process could be treated en-
tirely within the framework of MLE. Friedland [ 5] has
shown how the estimation of the deterministic param-
eters (i.e., parameters which are not random variables)
may be carried out efficiently in a second Kalman fil-
ter, using sensitivity matrices computed in the Kalman
filter for the stochastic dynamical variables (in this
work, the attitude and the gyro biases). Since align-
ments are purely static, however, these can be esti-
mated via batch least squares using Friedland’s sen-
sitivity matrices with still greater computational sav-
ings. This is the second method presented in this work,
which we call the hybrid method since it combines
the best qualities of the Kalman filter and batch least-
square estimation.



BASIC DEFINITIONS

Sensor Referenced Measurements

A spacecraft line-of-sight sensor such as a vector
Sun sensor Or star tracker measures a direction I:T,-l,,
in sensor coordinates, defined to be directed outward
from the sensor, which is describable statistically as

ry

U= C s Aﬁi,k (1)

where U7 is the true value of the direction and
AU, , is the measurement noise. Here i is the sen-
sor index, i = 1, ... ,n, and k is the temporal index,
k= 1,...,N. We assume that AU, , is Gaussian,
zero-mean, and white, with covariance matrix RO.»,,‘ .
Because the observations are constrained to be unit
vectors, R, , must be singular with U a null vec-
tor.

Body-Referenced Vectors and Alignments

If W,-’ ¢ denotes the measured direction in the
spacecraft body frame, then the alignment matrix, S, ,
is the proper orthogonal matrix defined by

Wi,k =5; ﬁi,k (2)

and, therefore,
Wi,k =5 ﬁ:,r:e +S; Aﬁi,k (3)
= Wf:}:’e + AW,-,,: (4)

Thus, the body-referenced observations have an error
covariance matrix given by

Rwi,k =5 Rﬁi,k S'T (5)

Misalignments

In general, the alignment matrix S; is not known
exactly. Instead, what is known is S7 , the alignment
matrix determined by the prelaunch alignment cali-
bration. Thus, we are led to define the misalignment
matrix, M; , according to

Si = M; H (6)

M; is necessarily orthogonal. Therefore, we define the
misalignment vectors, 8, , according to

M'_ = e[[oi ]]

where e{"} denotes matrix exponentiation, and [[6]]
denotes the usual antisymmetric matrix,

0 6, -9,
el = [—93 0 6 } (8)

Equation (7) is just Euler’s formula for the rotation
matrix recast as a function of the rotation vector. The
angles 9, , 6,, 6, are the misalignment angles or simply
the misalignments. Since the misalignment matrix is
generally a very small rotation, the misalignments will
be small and we can write

M; =1+[(6;]]+0(6;) (9)

As a rule, we will keep only first-order terms. The
measurement equation now becomes finally

U;, =S;TMIWRe + AT, , (10)

Dependence of the Measurements on the Attitude

If Vi, ¢ denotes the reference vector, i. €., the rep-
resentation of the measured vector in the primary ref-
erence system (for example, geocentric inertial), then
the attitude matrix A, is defined according to

Wf,riw = A vi,k (11)

whence, . ) )
Wi = AV + AW, (12)

We assume that V; , is free of error. From this it fol-
lows that the actual sensor measurements are related
to the reference vectors by

U, =STAV, , +AT;, (13)
We note immediately from Eq. (13) that the values of

the measurement vectors are unchanged by the simul-
taneous transformations

S,'—’TS'- ,
A, —-TA, |,

i=1,...,n
k=1,...,N

(14a)
(14b)

where T is an arbitrary proper orthogonal matrix.
Thus, it is impossible from inflight sensor measure-
ments to distinguish a common misalignment of the
sensors from a change in the attitude. It is, there-
fore, impossible to estimate the sensor alignments and
the attitude unambiguously from the spacecraft sen-
sor measurements alone, and some additional mea-
surement, €. g., the prelaunch alignment calibration, is
needed in order to obtain separate estimates of these
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quantities. In terms of the misalignments, Eq. (13) be-
comes

U, =S{TMT ALY, + AT, (15)

This is the point of departure of the alignment estima-
tion algorithms which we will now consider.

ESTIMATION OF ALIGNMENTS
AS KALMAN-FILTER STATE VARIABLES

Since the Kalman filter can be formulated as a max-
imum likelihood estimator [ 4], the Kalman filter es-
timate of the alignments is also a maximum likelihood
estimate, the one which takes account of the space-
craft dynamical degrees of freedom.

Assume that the spacecraft is equipped with n vec-
tor sensors for which we wish to estimate alignments
using the Kalman filter. The complete state vector,
X(t), in the context of combined attitude and align-
ment estimation is

X(8) = [7(t), 7(t), T (t), .., T®)]"  (16)

where §(t) is the attitude quaternion, §;(t), ¢ =
1, ..., n,are the alignment quaternia, which have the
same relation to the respective alignment matrices as
the attitude quaternion has to the attitude matrix, and
e(t) is the gyro bias vector. The inclusion of additional
degrees of freedom in the state vector is straightfor-
ward but needlessly complicates the present discus-
sion.

The state equations for the attitude and the gyro
biases are usually modeled [6, 7] as

d _ 1 )
7 1) = 58(g(t) - £(t) - n,(1)) 4(t) (172

2 e(t) = m(t) (17b)

where g(t) is the gyro reading, and 7, (t) and n,(t) are
white Gaussian processes with power spectral density
matrices Q, (¢) and Q,(t), respectively. Q(w) is the 4 x
4 matrix

0 UJ3 —w2 wl
— | —ws 0 7 A
2(w) = wy  —wy 0 Wy (18)

—w, —w, —wy; 0

The gyro-referenced attitude §,.(t) in the interval
(te_q, t;) satisfies

) = 3280 ~ i )a®  (19)

and the complete state vector based on the gyro-
referenced attitude and the prelaunch alignments is,
in obvious notation,

X*() = [f(®), €0, 87O, -, BTO)
(20)
where for uniformity we have written time arguments
for the alignment quaternia.
The incremental attitude quaternion is given by

83(t) = d(t) ® (Gres(t)) ™" (21)

In general, §g(t) will be the quaternion of an infinites-
imal rotation, which we may write as

£()/2
1

6q(t) = [ ] +0(l€@®) (22)

Defining the gyro-bias increment vector by
Ace(t)=€"(t) _5:-1|k-—1 (23)

leads to the incremental equations

2 60) = ~(8(1) ~ £(0)) x () — Ae(t) =1, (1)
(24a)

2 ae(®) = my(t) (24b)

Likewise, we assume that the spacecraft is rigid and
the misalignments satisfy

. d ,
ae,.(t)_o , i=1,...,n (24¢)

Thus, we define the incremental state vector as
T T T
x(t) = [€70), AcT(t), 67), ..., 65(0)]  (25)

The complete state vector has dimension 4(n + 1) +
3, while the incremental state vector has dimension
3(n + 1) + 3. The composition of the reference com-
plete state vector with the incremental state vector is
not simple addition. Note that in the above formula-
tion of the Kalman filter, the gyro measurements have
replaced the dynamical model and the gyro measure-
ment noise has become state process noise.

The discretised incremental state vector satisfies a
state equation of the form

Xep1 = P X + W, (26)
where w, is a discrete white noise process calculated
from n, (t) and 7,(t) and with covariance matrix Q,.

&, and w, must be such that

6ips1=6ip , i=1,...,n (27)



The state covariance is defined in terms of the incre-
mental state vector

Pk:E{xkx{}_E{xk}E{x{} (28)

and tﬂe Kalman filter is mechanized in terms of x,.
The prediction equations are

Xglk-1 = Py Xg—1)k~1 (29a)

P = i1 Pe_yji-a L, +Q;,y
(29b)

To simplify the notation, we do not write an asterisk to
denote the estimate or estimator when the subscript
makes this identification clear.

The prediction of the misalignments as given by
Eq. (29a) is necessarily

8i,k|k—1 = oi,k—llk—l (30)

The primes on the transition matrices in Eq. (29b)
are a result of the basic non-linearity of the combined
attitude-gyro-bias dynamics, which leads to different
transition matrices for the incremental state vectors
and the incremental state errors [ 7]. Note that £, is
related to the attitude matrix according to

A, = elléx ]l gref (31)

which is similar to the equivalent relation for the mis-
alignment vectors,

S, = ell®irll g (32)

Thus, we may write the measurement equation as

ik = = ST k AV ikt AU
=0 +Ci, &+ Cly 8,0 +A0;,
(33)
where
Ol = 5o T Wref (34)
Wil = A1V, (35)

are the sensor-referenced and body-referenced mea-
surements for the reference trajectory,

ref]] - [

are the measurement sensitivity matrices, and

Cl=-Cf =5T1 Ur 15T (36)
U, = U +Cipx, + AU, (37)

where the submatrices of C; , vanish except for those
which multiply to £ and 6;.

In general, the measurements are not the IAJ,-Y E
themselves but scalar functions of the U, ,, which we

denote by f; k(f),-’ g)- Thus, we define the equivalent
scalar measurements as

Ly = |k(Usk) f.k(U ) (38)
~ Hyxp + v, (39)

where, we have expanded Eq. (38) in a Taylor series

about U7 to obtain
.
H, = ( a?f,; orf ) Cx  (40)
afk ‘yref ! x
Vg = (‘9‘3-,1: (Ui,k)) U (41)

We use throughout the convention that the matrix of
partial derivatives of a scalar with respect to a column
vector is again a column vector; hence, the superscript
T in Eqgs. (40) and (41).

The measurement equation is now in a form famil-
iar to us. In principal, we can neglect the index i in la-
beling the measurements, as we have done in Egs. (38)
through (41) if we choose the temporal index so that
each scalar measurement corresponds to a different
value of k (the order of truly simultaneous measure-
ments is unimportant). Thus, ideally we should write
i, in place of 7 and be aware that ¢, will sometimes
assume the same value for successive values of k. In
predicting between equal times the transition matri-
ces will be identity matrices and no process noise will
be accumulated.

Thus, we may write the Kalman filter equations for
the update step as

B, = H, Py H{ +R, (42)
K, =Pk|k—1HIZ‘BI:l (43)
v, =2z —H, Xilk-1 (44)
Xpp = Xy + K g (45)

Pk]k =(- Kka)Pka—l (I- Kka)T
+ K, R, KT (46)

and R, is the variance of v;. The a posteriori estimate
of the misalignment vector and its covariance are given
by

O () =Ony , Pool) = (Pun) , (D)



KALMAN-FILTER-BASED BATCH ESTIMATION
OF SPACECRAFT SENSOR ALIGNMENTS

Even if the measurement and process noise are
small, the Kalman filter for the attitude and align-
ments may converge slowly because of the non-linear
dependence of the measurements on the attitude.
Also, the filter will be very sensitive to outliers at the
beginning of a data segment. Batch algorithms, which
process all of the data at once, are less sensitive to out-
liers and to the non-linear dependence of the negative-
log-likelihood function on the parameters being es-
timated. However, from Eq. (39) we se¢ that all of
the measurements are correlated with one another
through the correlations in x,. Thus, not only will the
parameter set in a batch estimation procedure be very
large because of the large number of attitudes to be
computed, but the measurement covariance matrix, if
all of the measurements were stacked into one large
measurement vector, would be very large and non-
diagonal, hence, very difficult to invert.

A method of removing this difficulty was developed
by Gupta and Mehra [ 4 ]. These authors noted thatal-
though the measurements, z,, are correlated, the in-
novations, v, computed by the Kalman filter are al-
ways a white sequence. Hence, instead of finding the
value of © which minimizes

J(zq, ---y 253 O)
it is sufficient to find the value which minimizes
J(vy, ..., vN; O)

Gupta and Mehra noted also that the Jacobian deter-
minant of the (very high- dimensional) transformation
matrix which transforms the column vector containing
all the z, into the column vector containing the cor-
responding v, will be unity. Hence, the two negative-
log-likelihood functions will yield the same Fisher in-
formation matrix. Thus, we are led to estimate ©
by minimizing the a posteriori negative-log-likelihood
function,

J(vy, .., Un;0) = —@Tpee( -)®e

+5 E {vi(©) B;'(@) (@)
k=1 .

+ log det B,(©) + log 27}
(48)

instead of the negative-log-likelihood function given
directly in terms of the z;, although the two are for-
mally equivalent.

In the present instance the total alignment vector,
O, is no longer a state variable but a constant param-
eter of the system. The state vector, therefore, is now
much reduced in dimension and simply

X, = [Z"] and x, = {:: } (49)
k k

Thus, the gradient of the a posteriori negative-log-
likelihood function in terms of the innovations process
and the residual covariance B, is [ 4]

2 sse),

N
+2{a”* ®) p-1(0) (@)
k=1

- 1B (0) 22 "’B*(@) B;1(©)1,(0)
ot [3;1(@) %m@—l]} (50)

and the corresponding Fisher information matrix is
given by

_ 3J
o= {5556,
= (P4(-)..
N
+Z{%“[ 1(@) aBk(e)
k=1

B;(©) —afjg(@) |

tE { [auc'g?) F(©) ag,é(e)] }}51)

(Note that Gupta and Mehra make an error in their
derivation of Eq. (51) leading them to include an ex-
traneous term.) The mechanization of the filter now
proceeds as before but without the components re-
lated to the misalignments, which are now simply con-
stant parameters in the measurements. Equation (32)
is now replaced by

S; = M, S? =l g2 (52)

which is the same as in the batch estimator presented
earlier. Equations (38) and (39) now become

Zy = i,k(ﬁi,k) - fi,k(ﬁ::,e{ (53)

~ H{x; +C, O +v, (54)



T
af ef .
H{= (BUE (O ) [Cﬁk : Oaxs]

ik

T
Cp= (a?fk (U ) [Oaxa Cio,k 03x3]

with C/, and ct  given still by Eq. (36), and the non-
zero entnes in C,, occur in the submatrix which multi-
plies 8;. The superscript I, distinguishes the measure-
ment sensntmty matrix in Eq. (54) from the related
quantity in Eq. (39) et seq. and denotes that it rep-
resents that component of the measurement which is
insensitive to the alignments.

To calculate the dependence of v, on © we note
that because the Kalman filter consists only of linear
operations on the state variables we may write

Xeje—1 = Xkpp—1 ~ Thjp-1 © (57a)

Xep = Xhpe = Ty © (57b)

where xkl x—y and xk| , are independent of ©. To de-
termine these allgnment-mdependent state estimates
and the alignment sensitivity matrices T}, _, and Ty,
we substitute these expressions into the Kalman filter
equations to obtain new filter equations of the form

x{-]k—l = <I’i—l"‘{:-1|k-1 (58)
PI:I|I:—1 =L, Pkl—llk—l (@) +Qi-,

(59)

B =HI{PI:I|1:—1(H£)T+R& (60)

Ki = Pl (HD" (D)™ (61)

V{ =2 - HL{ xlill:—l (62)

Xipe = Xipeoy + Ki v (63)

Pl = (I - K{H{) Py, (I - K{H{)'

+ Ki Ry (Ki)T

(64)

and the superscript I on &, and Q, distinguish these
quantities from related matrices of larger dimension in
the previous Kalman-filter implementation. The trun-
cation amounts to simply deleting zeros and ones cor-
responding to the alignment components. The align-
ment sensitivity matrices are given by the recursion re-

lations

o]o =0 (658.)
Tklk—l = ‘I’i-x Tk—llk—l (65b)
Tk[k =~ K/fH{)Tku—x - Klick

) (85¢)

The innovation is thus given by
Vp =2 — Hk{xklk—l -C, 0 (66)
-F.0 (67)

where

F.=H{Tyi_, + G (68)

Thus, the prior-free negative-log-likelihood function
for the misalignments is given by

Jprior-free( @)

N

=32 {¢i-Re) B ¢i-Ro)
k

+ log det B{ +1log 2x}  (69)

For clarity we write Eq. (69) in matrix form even
though the three factors are each scalars. From this
negative-log-likelihood function we may estimate the
prior- free relative alignments and the launch-shock
error levels as in Ref. 8. The a posteriori estimates of
the alignments taking into account both the a priori es-
timate and Eq. (69) is then given by the usual normal
equations

N
Psa(+) @ (+) = S FF(BD) ™' (70a)
k=1
N
Poa(+) = Paa(=) + > FE(BL)'F,
k=1 (70b)

which are equivalent to Egs. (49) and (50) if we note
that B, is independent of ®. The values of ®*(+) and
Pg(+) from Egs. (70) correspond exactly to © vy
and (Py)y)ee Which would have been obtained using
the larger Kalman filter presented in the previous sec-
tion.

NUMERICAL RESULTS

To illustrate the efficacy of the hybrid method we
have computed the misalignments for spacecraft with
3, 5, 10, 15, and 20 sensors, oriented at random over
the spacecraft. The configuration for three sensors has
been taken from [1]. In each case 100 frames of data



were simulated, with each sensor active in each frame.
Tables 1-3 show the results for the two sequential algo-
rithms presented here together with the purely batch
algorithm of Reference [1] (marked SPB). In order
to make a comparison possible, we have simulated the
sensor data as being simultaneous. Otherwise, the
batch method could not be applied at all. The three
results are seen to be of equal accuracy. In the simu-
lations we have estimated not the individual misalign-
ments 8,, 8,, and 8,3, but rather the relative misalign-
ments[1]+, = 6,—6, and 3 = 6;—86,. These quan-
tities have been estimated without using the a priori
information, which is of low quality because of launch
shock. The large launch shock error levels would, in
fact, obscure the comparison of the different methods.
In the table, the first column gives the true value of the
misalignment in arc seconds, the second gives the esti-
mated misalignment, the third the standard deviation,
and the fourth column the normalized error. If the es-
timates of the different misalignments were uncorre-
lated, these would have a Gaussian distribution with
mean zero and variance unity. Although this is not
true, exactly, the result permits us to asses roughly the
consistency of the estimation process. Note that two
relative misalignments show much larger error levels
than the others. These are the relative misalignments
about the sensor boresights. Hence, the model vari-
ances are larger due to the well-known geometric di-
lution of precision.

A comparison of the computational burden (in
flops) for the three algorithms is given in Table 2. The
results have been normalized so that the computa-
tional burden is unity for the hybrid algorithm with
three sensors. The comparison for the two sequential
estimation techniques only is shown in Table 3. As ex-
pected, the elimination of the alignment parameters
from the Kalman filter update leads to a considerable
savings in the computational burden, which acceler-
ates as the number of sensors increases.

Space limitations prohibit our presenting the de-
tailed results for the configurations with larger num-
bers of sensors. The agreement of the two sequential
approaches is indistinguishable in general within the
computed estimation error and root-mean-square val-
ues of the differences in the normalized errors for the
two methods is typically much less than one. For the
case of three sensors, the differences between each of
the two sequential methods and the batch method are
smaller than that between the two sequential methods,
as is to be expected owing to the significantly greater
computational burden of each relative to the batch
method.

Table 1. Batch Alignment Estimation with the SPB
Algorithm

vae Ya oy, Avafoy,
-73. -70.947 1426 1.439
-40. 39372 6926 0.090
63. 54038  11.282 0.794
-14. -17.143 7192 -0.437
-43. 43.134 1425 -0.094
131 116938  10.966 -1.282

Table 2. Naive Kalman Filter Alignmeht Estimation

vae Ya Ty, Avz/oy,
-73. -71.011 1.424 1.39
-40. -37.903 6487 0323
63. 55238 10.845 -0.716
-14. -17.288 6766 -0.486
-43. -43.086 1423 -0.061
131. 119475  10.675 -1.080

Table 3. Alignment Estimation with the Hybrid Algo-
rithm

e 12 T Adg/oy,
~73. -71.970 1.426 1.417
-40. -39.627 6.964 0.054

63. 58.048 11.524 -0.430
-14. -17.783 7.195 -0.526
-43, -43.156 1.426 -0.110
131. 120.105 11.185 -0.974

SUMMARY

‘We have presented two sequential methods for es-
timating spacecraft sensor misalignments from flight
data. The first was a naive Kalman filter which in-
cluded the sensor alignments among the state vari-
ables, the second was a hybrid approach based on the
ideas of Gupta and Mehra [3] and Friedland [4],
which excluded the alignment parameters from the fil-
ter. The hybrid method has been shown to be more
efficient computationally. It is also expected to be less
sensitive to outliers, and is to be preferred in general.



Table 4. Relative Timings for the Case of Three Sen-

sors
Algorithm Relative Computation Time
SPB Batch Method 0.2
Naive Kalman Filter 2.0
Hybrid Algorithm 1.0

Table 5. Relative Timings of the Filter-Based Algo-
rithms

Number of Sensors Naive KF Hybrid Algorithm

3 20 1.0
S 7.8 29
10 577 17.9
15 191.6 56.5
20 451.1 130.2
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