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Abstract

We present a generalization of the Euler angles to axes beyond the twelve
conventional sets. The generalized Euler axes must satisfy the constraint that
the first and the third are orthogonal to the second; but the angle between the
first and third is arbitrary, rather than being restricted to the values 0 and π/2,
as in the conventional sets. This is the broadest generalization of the Euler
angles that provides a representation of an arbitrary rotation matrix. The
kinematics of the generalized Euler angles and their relation to the attitude
matrix are presented. As a side benefit, the equations for the generalized
Euler angles are universal in that they incorporate the equations for the
twelve conventional sets of Euler angles in a natural way.

Introduction

It is well known that a rotation can be represented by a single rotation about a single axis, where
the rotation axis is allowed to vary according to the rotation [1–7]. It is often more convenient to
represent a general rotation as the product of three successive rotations about axes whose
orientations are specified a priori. These parameterizations of rotations, well known as the Euler
angle parameterizations [1–7], can be written

R n̂1, n̂2, n̂3;ϕ ,ϑ ,ψ( ) ≡ R n̂3,ψ( )R n̂2,ϑ( )R n̂1,ϕ( ) , (1)

where the carets denote unit vectors, and R n̂,ϕ( )  represents a rotation by angle ϕ  about axis n̂.

For the conventional Euler angles, the rotation axes are selected from the set {1̂, 2̂, 3̂} where
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The conventional Euler rotations are generally designated by the three indices, for example

R213 ϕ ,ϑ ,ψ( ) ≡ R 2̂,1̂, 3̂;ϕ ,ϑ ,ψ( ) = R 3̂,ψ( )R 1̂,ϑ( )R 2̂,ϕ( ). (3)



If the Euler sequence is to represent a general rotation matrix, two successive rotations cannot be
about the same axis, which is to say that n̂1 ≠ n̂2  and n̂2 ≠ n̂3. This leaves twelve possible sets of
conventional Euler axes: six symmetric sets designated 121, 232, 313, 131, 212, and 323, and six
asymmetric sets designated 123, 231, 312, 132, 213, and 321.

We show in the present work that the Euler angles can be extended to a much larger set. The
generalized Euler axes can be any three unit vectors such that both the first and the third are
orthogonal to the second. The angle between the first and third axes is arbitrary, rather than being
restricted to the values 0 and π/2 as is the case for the conventional sets. We show that this is a
necessary and sufficient condition for the generalized Euler angles to provide a universal
representation of rotation matrices. We derive expressions for the generalized Euler angles in terms
of the rotation matrix and kinematic equations for these angles, and discuss the 'gimbal-lock'
singularity of this parameterization.

Necessary Conditions for the Generalized Euler Angles

For the generalized Euler angles to represent a general rotation, it is necessary and sufficient
that the rotation matrix of equation (1) be capable of mapping any unit vector û  into any other unit
vector v̂ . That is, there must exist angles ϕ , ϑ , and ψ  such that the equation

v̂ = R n̂1, n̂2, n̂3;ϕ ,ϑ ,ψ( )û (4)

has a solution for given n̂1, n̂2 , n̂3, û , and v̂ . In order to show the necessity of the conditions on
the rotation axes, we can take û  equal to n̂1 and only look at the component of this equation along
n̂3. That is, it is certainly necessary that

n̂3 • v̂ = n̂3
T R n̂3,ψ( )R n̂2,ϑ( )R n̂1,ϕ( )n̂1 = n̂3

T R n̂2,ϑ( )n̂1, (5)

where we have used equation (1) and recalled that the axis of rotation is invariant under a rotation.
Inserting the explicit form of the rotation matrix [5]

R n̂,ζ( ) = cosζ  I3×3 − sinζ n̂ ×[ ] + (1− cosζ )n̂n̂T , (6)
with
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gives the necessary condition
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β ≡ ⋅ ⋅( ˆ ˆ )( ˆ ˆ )n n n n2 3 2 1 (9)



and B be the positive square root of
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It is clear from the final expression that B ≤ 1. Now equation (8) can be written as

ˆ ˆ cos( )n v3 ⋅ = + −β ϑ λB , (11)
where

λ ≡ ⋅ × × ⋅ ×[ ]ATAN  2 3 1 2 2 3 2 1
ˆ ( ˆ ˆ ), ( ˆ ˆ ) ( ˆ ˆ )n n n n n n n . (12)

As ϑ  varies over its range, the right side of equation (12) takes only values between β – B and

β + B , so a solution will exist for ϑ  only if

β β− ≤ ⋅ ≤ +B Bˆ ˆn v3 . (13)

However, ˆ ˆn v3 ⋅  can assume any value between – 1 and + 1, so it is clear from equations (9) and

(10) that the coefficients β and B must have the values

B =1      and      β = 0 (14)
This means that

ˆ ˆ ˆ ˆn n n n1 2 2 30 0⋅ = ⋅ =      and      (15)

or equivalently that n̂2  be perpendicular to both n̂1 and n̂3. With this restriction, equation (12)
simplifies to

λ ≡ ⋅ × ⋅[ ]ATAN  2 3 1 2 3 1
ˆ ( ˆ ˆ ), ˆ ˆn n n n n (16)

and then
n̂3 = cosλ  n̂1 + sinλ (n̂1 × n̂2 ) = R n̂2,λ( )n̂1. (17)

Thus λ is the angle of the rotation about n̂2  that takes n̂1 into n̂3.

Sufficiency of the Generalized Euler Angle Parameterization

The rotation matrix can be written as the product

R n̂1, n̂2, n̂3;ϕ ,ϑ ,ψ( ) ≡ R n̂3,ψ( )R n̂2,ϑ( )R n̂1,ϕ( ) = R R n̂2,λ( )n̂1,ψ( )R n̂2,ϑ( )R n̂1,ϕ( )
                  = R n̂2,λ( )R n̂1,ψ( )RT n̂2,λ( )R n̂2,ϑ( )R n̂1,ϕ( )
                  = R n̂2,λ( )R n̂1,ψ( )R n̂2,ϑ − λ( )R n̂1,ϕ( ) = R n̂2,λ( )R n̂1, n̂2, n̂1;ϕ ,ϑ − λ ,ψ( ).

(18)



If this is to represent an arbitrary proper orthogonal matrix A, we must be able to find angles ϕ , ϑ ,
and ψ  such that

A = R n̂1, n̂2, n̂3;ϕ ,ϑ ,ψ( ) = R n̂2,λ( )R n̂1, n̂2, n̂1;ϕ ,ϑ − λ ,ψ( ), (19)

or, equivalently, to find angles ϕ , ′ϑ ≡ ϑ − λ , and ψ  such that

R n̂1, n̂2, n̂1;ϕ , ′ϑ ,ψ( ) = RT n̂2,λ( )A . (20)

The matrix on the right side of this equation ranges over the group of proper orthogonal matrices as
A ranges over this group. Thus our generalized Euler sequence can represent an arbitrary rotation if
the matrix on the left side of equation (20) can represent an arbitrary rotation. To establish this fact,
it is sufficient to show that this matrix can take the vectors in some orthonormal basis into an
arbitrary orthonormal triad. We will take this basis to be n̂1,  n̂2,  n̂1 × n̂2{ } . Thus we must be able
to find angles ϕ , ′ϑ , and ψ  such that

R n̂1, n̂2, n̂1;ϕ , ′ϑ ,ψ( )n̂1 = v̂1, (21)

where v̂1 is an arbitrary unit vector, and

R n̂1, n̂2, n̂1;ϕ , ′ϑ ,ψ( )n̂2 = v̂2 , (22)

where v̂2 is a unit vector in the plane perpendicular to v̂1, but is otherwise arbitrary. Then the
proper orthogonality of R n̂1, n̂2, n̂1;ϕ , ′ϑ ,ψ( ) ensures that it will map n̂1 × n̂2  into v̂1 × v̂2 .

Equation (21) can be written, using equations (1) and (6), as

v̂1 = R n̂1,ψ( ) cos ′ϑ  n̂1 − sin ′ϑ (n̂2 × n̂1)[ ]
    = cos ′ϑ  n̂1 + sin ′ϑ sinψ n̂2 + sin ′ϑ cosψ(n̂1 × n̂2 ).

(23)

Since n̂1,  n̂2,  n̂1 × n̂2{ }  is a basis, it is clear that ′ϑ  and ψ  can be chosen so that v̂1 is an
arbitrary vector. Equation (22) gives

v̂2 = R n̂1,ψ( )R n̂2, ′ϑ( ) cosϕ n̂2 − sinϕ (n̂1 × n̂2 )[ ] = cosϕ û1 + sinϕ û2, (24)
where

û1 ≡ R n̂1,ψ( )R n̂2, ′ϑ( )n̂2 = R n̂1,ψ( )n̂2 = cosψ n̂2 − sinψ(n̂1 × n̂2 ) , (25)
and

û2 ≡ −R n̂1,ψ( )R n̂2, ′ϑ( )n̂1 × n̂2 = −R n̂1,ψ( ) cos ′ϑ (n̂1 × n̂2 ) − sin ′ϑ  n̂1[ ]
    = sin ′ϑ  n̂1 − cos ′ϑ sinψ n̂2 − cos ′ϑ cosψ(n̂1 × n̂2 ).

(26)

It is clear from equations (23), (25), and (26) that û1 and û2  form an orthogonal basis for the plane
perpendicular to v̂1. Thus equation (24) shows that ϕ  can be chosen such that v̂2 is any vector in
this plane.



This completes the demonstration that the generalized Euler angles, subject to the constraint of
equation (15), can represent an arbitrary rotation. Since the conventional angles are a subset of the
generalized Euler angles, it incidentally provides an explicit proof that the conventional Euler angles
are similarly general.

Relation to the Conventional Euler Angles

Each of the conventional Euler angle sets is a subset of the class of generalized Euler angles,
characterized by a specific choice of axes and a corresponding value of the angle λ. It is easily seen
from equation (12) or (17) that the symmetric sets of axes (121, 232, 313, 131, 212, and 323) have
λ = 0, the even permutation asymmetric sets (123, 231, and 312) have λ = π 2 , and the odd
permutation asymmetric sets (132, 213, and 321) have λ = −π 2. With these substitutions, all the
equations derived in this paper are applicable to the conventional Euler angles. Thus the results of
this paper include universal formulas applicable to all Euler angles, conventional or generalized.

Extraction of the Generalized Euler Angles

The rotation matrix is simply defined in terms of the generalized Euler angles by equation (1).
We now turn to the converse problem, the extraction of the generalized Euler angles from a rotation
matrix. Equation (11), with the constraint of equation (14), gives

ˆ ˆ cos( )n v3 ⋅ = −ϑ λ . (27)

We recall from equations (4) and (5) that v̂ = An̂1, where A is the rotation matrix that is being
parameterized, so this equation can be solved for ϑ , yielding

ϑ = λ ± ACOS n̂3
T An̂1( ), (28)

where ACOS denotes the principal value of the inverse cosine function, which returns a value
between 0 and π. The twofold sign ambiguity in equation (28) is present in the conventional Euler
angle representations as well, but it is usually avoided by restricting ϑ  to the range 0 ≤ ϑ ≤ π for
the symmetric sets of axes or −π 2 ≤ ϑ ≤ π 2  for the asymmetric sets. A similar resolution of the
ambiguity for the generalized Euler angle case would be to take the sign of the second term in
equation (28) to be positive for λ ≤ 0 and negative for λ > 0. This would ensure that the values of
ϑ  for any particular choice of axes would always be in some interval of length π of the range
−π< ϑ ≤ π. We will not assume that this convention has been adopted, however.

Equation (28) is analogous to the procedure for finding the second Euler angle in one of the
conventional sets in terms of one of the elements of the rotation matrix. The other angles are
expressed in terms of the other two elements of the same row or of the same column. This
motivates us to consider the four quantities

n̂2
T An̂1 = cosψ n̂2 − sinψ(n̂2 × n̂3)[ ]T cosϑ  n̂1 + sinϑ (n̂1 × n̂2 )[ ] = sinψ sin(ϑ − λ ), (29)



(n̂2 × n̂3)T An̂1 = cosψ(n̂2 × n̂3) + sinψ n̂2[ ]T cosϑ  n̂1 + sinϑ (n̂1 × n̂2 )[ ]
                        = −cosψ sin(ϑ − λ ),

(30)

n̂3
T An̂2 = cosϑ  n̂3 + sinϑ (n̂2 × n̂3)[ ]T cosϕ n̂2 − sinϕ (n̂1 × n̂2 )[ ] = sinϕ sin(ϑ − λ ), (31)

and

n̂3
T A(n̂1 × n̂2 ) = cosϑ  n̂3 + sinϑ (n̂2 × n̂3)[ ]T cosϕ (n̂1 × n̂2 ) + sinϕ n̂2[ ]

                      = −cosϕ sin(ϑ − λ ).
(32)

Define σ as the sign
σ ≡ sign sin(ϑ – λ )[ ] . (33)

This sign is not a variable, but is fixed for any set of generalized Euler axes. It is, in fact, the same
as the sign of the second term on the right side of equation (28). With this definition, we can find
the other two generalized Euler angles by

ϕ = ATAN2 σ n̂3
T An̂2,  – σ n̂3

T A(n̂1 × n̂2 )[ ] (34)

and

ψ = ATAN2 σ n̂2
T An̂1,  – σ (n̂2 × n̂3)T An̂1[ ] . (35)

The equations for the conventional Euler angles are, of course, special cases of these equations.

Kinematics

The kinematic equations for the generalized Euler angles are straightforward generalizations of
the corresponding expressions for the conventional Euler angles. The body-referenced angular
velocity vector is given by
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where S is the 3×3 matrix

  S ≡ ′n̂  M n̂2 M n̂3[ ] (37)

with
′n̂ ≡ R n̂2,ϑ( )n̂1 = R n̂2,ϑ − λ( )n̂3 = cos(ϑ − λ )n̂3 − sin(ϑ − λ )(n̂2 × n̂3). (38)

The second step in equation (38) makes use of equation (17). The inverse of equation (37) gives the
time derivatives of the Euler angles in terms of the angular velocity:
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The determinant of the matrix S is given by

det ˆ ˆ ˆ sin( )S = ′ ⋅ ×( ) = − −n n n2 3 ϑ λ , (40)
and its inverse is

  

S−1 = det S( )−1 n̂2 × n̂3 M n̂3 × ˆ ′n  M ˆ ′n × n̂2[ ]T

      = sin(ϑ − λ )[ ]−1 n̂3 × n̂2 M sin(ϑ − λ )n̂2 M sin(ϑ − λ )n̂3 − cos(ϑ − λ )(n̂3 × n̂2 )[ ]T .
(41)

The kinematic equations for the conventional Euler angles are special cases of these equations.

Singularity of the Parameterization

It is clear from equations (39) and (41) that the kinematic equations for ϕ  and ψ  are singular
when sin(ϑ – λ ) = 0. It is also clear that the kinematic equation for ϑ  is not singular at this or any
other point. The mathematical singularity reflects the fact that the axes n̂1 and n̂3 coincide when
sin(ϑ – λ ) = 0, so the rotations about these two axes are not independent. This situation is known
as gimbal lock, since it is related to the serious problem occurring in gimballed inertial reference
platforms for which the Euler angles are physical gimbal angles, and the required infinite rates
cannot be attained by physical actuators. It is worth mentioning, however, that the numerical errors
accumulated in integration of the kinematic equations through the gimbal-lock singularity can be
surprisingly small in practice [8].

It is interesting to note that the combination cos(ϑ − λ )ϕ̇ + ψ̇  is nonsingular in the limit that
sin(ϑ – λ ) = 0, so that this combination of these two angular rates continues to be significant. The
formulas for extracting ϕ  and ψ  from the attitude matrix, equations (34) and (35), are both
undefined in this limit, however. It is possible to extract information from other elements of the
rotation matrix to give a correct value to the linear combination of ϕ  and ψ  that remains well-
defined, and an explicit procedure to accomplish this has been worked out for the conventional
Euler angles [9]. The generalization of this procedure to the generalized Euler angles is
straightforward. With a moderate amount of effort, we can derive the following relationships
between the 'matrix elements' of A and the generalized Euler angles:

n̂2
T An̂2 = cosϕ cosψ − sinϕ sinψ cos(ϑ − λ ), (42)

n̂2
T A n̂1 × n̂2( ) = sinϕ cosψ + cosϕ sinψ cos(ϑ − λ ), (43)

n̂2 × n̂3( )T An̂2 = cosϕ sinψ + sinϕ cosψ cos(ϑ − λ ) , (44)

and

n̂2 × n̂3( )T A n̂1 × n̂2( ) = sinϕ sinψ − cosϕ cosψ cos(ϑ − λ ) . (45)



Now we can either find ϕ  from equation (34) and ψ  from

ψ = ATAN2 cosϕ (n̂2 × n̂3)T An̂2 + sinϕ (n̂2 × n̂3)T A(n̂1 × n̂2 ),  [
                                            cosϕ n̂2

T An̂2 + sinϕ n̂2
T A(n̂1 × n̂2 ) ] ,

(46)

or, alternatively, we can find ψ  from equation (35) and then ϕ  from

ϕ = ATAN2 cosψ n̂2
T A(n̂1 × n̂2 ) + sinψ(n̂2 × n̂3)T A(n̂1 × n̂2 ),  [

                                        cosψ n̂2
T An̂2 + sinψ (n̂2 × n̂3)T An̂2 ] .

(47)

Note that both equations (46) and (47) are well behaved for all values of ϑ . The use of one of these
alternatives guarantees that the well-defined linear combination of ϕ  and ψ  is determined
accurately even when the solution to equation (34) or (35) loses numerical significance. However,
these methods are more computationally expensive than using equations (34) and (35) together, and
it is best in practice to choose a set of Euler axes for which the gimbal-lock phenomenon will not be
encountered.

Discussion

We have shown that the Euler angles can be generalized to encompass sequences of rotations
about any three axes subject to the constraint that axes of successive rotations be perpendicular.
Thus the second rotation axis must be orthogonal to both the first and the third, but the angle
between the first and third axes is arbitrary. This angle, the 'new angle' promised in the title, can take
on any value rather than being restricted to the values 0 or ± π/2 as in the conventional Euler angle
sequences. Kinematic equations have been derived for the generalized Euler angles, as well as
equations for extracting these angles from the rotation matrix. The generalized Euler angles have the
same 'gimbal lock' singularity as the conventional angle sets. Means for circumventing this problem
developed for the conventional cases have been extended to the generalized Euler angles.

All the equations in this paper can be applied to the conventional Euler angle sets in a
straightforward fashion, so a side benefit of this work has been to supply universal formulas
applicable to all Euler angle parameterizations, conventional and generalized.
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