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Abstract

Simple and statistically correct algorithms are pre-
sented for computing the coalignments of attitude sen-
sors from inflight data consisting of both vectors and
complete three-axis attitudes. The effect of autocol-
limators are considered and specific algorithms are
given.

Introduction

This work extends algorithms developed in two ear-
lier works? 2 for the estimation of alignments from sen-
sors which measure either directions, entire vectors, or
attitudes. The present report presents these algorithms
as simply as possible without studies of alternate meth-
ods, special cases, or expected performance.

Consider a spacecraft with a suite of sensors. These
may measure either a single vector (possibly only a
unit vector), such is the case for Sun sensors, magne-
tometers, conical horizon scanners, and the older star
trackers such as the Ball Brothers CT-401, or they may
be able to determine a complete three-axis attitude.
This is usually done by measuring two or more di-
rections, such as in the newer star trackers provided
with charge-coupled devices (CCDs). How the atti-
tude is determined for the complete-attitude sensors
(for a CCD star tracker one could, for example, use
the QUEST algorithm® or the FOAM algorithm?), is
not important for this report. What we assume is that
we have two classes of sensors, sensors which measure
a complete attitude and sensors which measure only a
single vector.

Vector sensors, which measure a single vector, have
measurements which may be described by

0.’,1: = Ai,kVi,k + AU, (1)
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where fJ;yk is the measured unit vector in the sensor
coordinates of sensor ¢ at time t;, A; is the attitude
of that sensor with respect to the primary reference
frame (typically Geocentric Inertial (GCI)) and AU, ;
is the (Gaussian) measurement noise, which is assumed
to satisfy b

E{AUi'k} =0, (2)

and i X
Uiy -AU; 4 = 0. (3)

Here E{-} denotes the expectation. We denote the
covariance matrix of U; & by R . A convenient form

which is usually Justified for sensors with small fields
of view is given by the QUEST model3,

RYT = 0t [l - UsilL] (@
where a & is the variance characteristic of the sensor
assuming the QUEST error model.

Complete-attitude sensors furnish a complete three-
axis attitude. For these sensors the measurement
model may be taken to be

ik - (6AI k)Alk) (5)

where Al k is the measured attitude, which we write as
an estimate for a specific time, and (64, ;) is the atti-
tude error, which we have written as a small rotation.
If this rotation is characterized by a small rotation vec-
tor &, ;, then we can write

6A|',k — e[[eik]] (6)
s1n|£, kl
T+ (Tt el
1 - C°S|€i,k| . 2
+ ( Iei’klg > [[ei,k ]] (7)
= I+[[& )]+ 0(|€i,klz) ; (8)
and we assumme that

E{fi,k} = 0, 9)

E{ei,ke’{:k} = R€ (10)



Here [[v]] denotes the antisymmetric matrix

0 v3 —va
[vll=]| ~vs 0 wu (11)
V2 -t 0

If the actual sensor measurements consist of n; ; mea-
sured directions ﬁg,k,[, £=1,..., ni, whose covari-
ance matrix is represented by Eq.(4) and which are
used as input to the QUEST algorithm, then the re-
sulting attitude covariance matrix would be given by

nix -1
R?:iEST — [Z 0_21 (st3 - fji,k,[r’j:k't)] A

1=1 ikt

(12)
The algorithms which we will present below do not
assume that the QUEST algorithm has been used. We
assume that the data has already been made simulta-
neous using a dynamical model or gyro information.
Our purpose here is to create effective measurements

zp of the general form

zr=H 04+ v;, (13)

where v; is white noise, and 8 is the correction to
the coalignment (i.e., relative alignment) of sensor j to
sensor i, to be defined in more detail below. The di-
mension of z; may be 1, 2, or 3 depending on whether
neither, one or both sensors have sufficient data to de-
termine an attitude.

Alignments and Coalignments

The sensor relative-alignment matrix (coalignment)
Si—j is the orthogonal matrix which transforms col-
umn vectors in the coordinate frame of sensor j into
column vectors in the coordinate frame of sensor i.

Thus,
Ve, =5 Ve, (14)

where &; denotes the coordinate frame of sensor ¢, and
V¢, denotes the 3 x 1 matrix of the components of the
abstract vector V' with respect to the basis &. The
coalignment correction (comisalignment) matrix is the
orthogonal matrix which corrects an a prior: value of

the coalignment matrix S7_; according to

Simj =M S_;. (15)

The absolute alignments!' are defined in terms of
some fiducial body frame. Thus

1,2

Vi =SV, (16)
and the (absolute) misalignment M; is defined by

Si = Mi S,’o, (17)

where S{ is an a priort value of the absolute alignment.
We may define the fiducial body frame in terms of the
attitude of one of the sensors, say sensor 1. Then

VB = Sf Vgl y (18)
and the alignment of sensor 1 is assumed not to change
from its prelaunch value

Otherwise, one may define the fiducial body frame in-
dependent of any constellation of sensors. In that case,
the post-launch absolute alignments can be determined
with only poor accuracy, as shown in Ref. 2.
Clearly, the absolute alignments and coalignments
are related by
Siej = STS;, (20)

and therefore coalignments with respect to sensor 1 are
given by
S1—i=58°TS;, i=2, ..., n,

(21)

or

Si = 57814, (22)

Since M; and M;._; are expected to be very small ro-
tations, we may write

i=2,...,n.

Miy=e@=lxri(6,_;],  (23)

and

M; =00~ 14 [[6:]). (24)

6; and 6;—; are the (absolute) misalignment vectors
and comisalignment vectors, respectively.

In the earlier work! 2 the representation of the abso-
lute alignments in the body frame led to measurements
which depended only on the difference of the misalign-
ment vectors, 8; — 6;. This same property is preserved
by the coalignments. From Eqs.(15), (17), and (20) it
follows that

Mi_; = S¢TMI M; 87, (25)

whence

6;;=57(6;-6). (26)

Measurement Models for Sensor Coalignment

In the situation of most practical interest, sensor 1
is a complete attitude sensor, especially a CCD star
tracker, but may on occasion measure only a single
vector. We shall consider only frames of data in which
some data from sensor 1 1s always present, and we shall
consider as effective measurements the those involving



sensor 1 and one other sensor. There are, therefore,
four cases: (1) sensor 1 and sensor 2 both measure
a complete attitude; (2) sensor 1 measures a complete
attitude sensor but sensor 2 measures only a single vec-
tor; (3) sensor (1) measures a single vector while sensor
2 measures a complete attitude; (4) both sensors 1 and
2 measure only a single vector.

In this work we will assume not only that sensor 1
is a complete-attitude sensor but also that it measures
a complete attitude in every frame. Thus, we need
consider only the first two cases. We shall also assume
that only sensor 1 and one other sensor have data avail-
able at any one time, the case freqently when the other
sensors are scientific instruments.

Attitude- Attitude Measurement Model

Let us suppose that sensor 7, i > 1, measures a com-

plete attitude A; ;. Then,
Stei= A1k Al (27)

where A1 is the attitude of sensor 1 at time t;, and

Ai is the attitude of sensor i at time ;. Recalling
Eq.(5) this becomes
S1ei = (6A16) AT £ ATk (64i) (28)
or
TRATE = (6A1Lk) S1ci (6Ai)T (29)
= (6A1x)M1iS?_; (64 x)T . (30)
We define now
Z,"k = Sl<—z . (31)
Then
Zir=(6A1 ) My SY_; (645)7 80T, (32)
with
S, =53Tse. (33)
Recalling Eq.(6), Eq.(32) becomes
Zip = £ N0 PN (- POy I (FCHT 9 | (34)
n ellO—i+€ =578 (35)

If we define now Rtov( - ) to be the function which com-
putes the rotation vector corresponding to a particular
direction-cosine matrix and

522 = RtOV(Z,',k) ) (36)

then
zs,zk) = 91._.' + &1 kT <17<—i£i,k (37)
= H'-(’2) 014—1 + vfzk) ) (38)

where now
HY = 1, (39)
”fzk) = &k Si—ifi,k' (40)
It follows tilat
vf?k) ~N <0,Rz(2’2) y (41)
with
Rz(i‘zz = R£ + Sl,_,R£ seT. (42)

This is the desired form for the effective coalignment
measurement. We have denoted the measurement by
( ) to distintinguish it from z; j, the allgnment mea-
surement constructed from one vector in each sensor,
hereafter denoted by z(l) We will follow this practice
throughout this work of distinguishing different mea-
surement models by a numerical superscript.
If the individual sensor attitudes are given as quater-
nions, then the above relations become equivalently
Zp =@ ® (@) ® ()L, (43)
where 57{_; i1s the a priori coalignment quaternion
given by
(Fh-i =G 08, (44)

with 57 the a prior: alignment quaternion of sensor 3.
We may write in analogy to Eq.(36)

5;i = Rtoq(S;) and S; = qtoR (5;) (45)

The effective measurement is now given equivalently
by
(2) = qtov (Z ;) .

Attitude-Vector Measurement Model

(46)

Suppose now that sensor 7 measures only a single vec-
tor. Then we can write successively

Uir = AixVir+AU;, (47)

= Sici1A e Vip+ Al}i k (48)

= Sl,_, Al k V, kT AU, k (49)

= Sl,_, lﬂ—i Alkvik+AU'k (50)

Let us define now
Wi,=Si_Uis. (51)
Then
. o .
W =ML A Vie+S5_,AU; ;. (52)

This quantity is similar to the one defined in Ref. 1
except that the final frame here is the frame of sensor
1 and not the fiducial body frame.



Recalling Eq.(5), we have that

~ 0

Wi = MI_(6A)T AL Vis
+85_; AU, (53)
~ M AL Vik
—[[& 1145, Vik + 57 AU (54)

= M AT, Vig
+HIAS Vii]1€ + So_; AU, (55)

= MI_ W+ Awi,k , (56)

and we have defined
Wf,; = Al Vik, (57)
AW, = [[Wiill€ +50 ;AU (58)

It is now a simple matter to show that

A o

Wiix Wi = ~(Wi{l6:- "W,
+ AW, (59)
= ~[[W 261
—(W 1AW, (60)
and
(W DaW, = (W 2¢

+[ WL NS AU . (61)

The quantity W:: X W:k has the disadvantage of
being three-dimensional but having only two degrees
of freedom. Hence, its covariance matrix will be sin-
gular and noninvertible. It will be to our advantage,
therefore, to project from it a two-dimensional quan-
tity which will have a non-singular covariance matrix.

To accomplish this let W be any unit vector and let
a&(W) and (W) be any two other unit vectors such
that {W, a(W), b(W)} is a right-hand orthonormal
triad. Since the component of W:; X W:k along VAV:’;
vanishes identically, it is clear that the desired projec-
tion operator is the 2 x 3 matrix

aT(W( L)
B Wiy |

X

PW. L) = [ (62)

and we define the effective coalignment measurement
as

R =PWIDWiex Wiy (69)
We note immediately that
~ - - ~ AT ~
PW) (W] =PW)WW —I]=-P(W), (64)

from which it follows that

B = PWL) 61
A 0% ~ 0% ~_0
-P(W ) (W J]JAW,,)  (65)
= H{ 6+ (66)
It follows after much manipulation that
v 3k) ~N (0, Rz(az) , (67)
with
szaz = Q(Wl Ic) 1<—lRU 14—1 QT(W )
+’P(W )RE P (W,k) (68)
and
QW) = -PWDIW] (69
T -~ o
-b (W, ;)
= R ~_ 0% . 70
l aT(Wi,k) } (79)
Note that we could also have written
A2 = (Wi Wik, )

The Alignment Estimator

Given a set of measurements for a sensor, which may
consist of single vectors or complete attitudes, we con-
struct the negative-log-likelihood function as

1 &
J(61-i) = 52(1.',1: Hix8:-:)" Rz,
k=1

X (z,-,k — Hi8:1-) . (72)
The effective measurement is z' k or z( ) depending
on whether the sensor furnishes on a Slngle vector ob-
servation in the frame k or sufficient observations to
construct the entire attitude, respectively. The opti-
mal estimate of 6,,_; minimizes this quantity. This
has the value

ni
— E T -1
8‘]l<—i = Py H;“k Rzi_k Zik,
k=1

(73)

where

-1
Py = ZH Rzl sz} : (74)

is the estimate error covariance matrix.



Sensors with Autocollimators

Sometimes the alignment or coalignment of a sen-
sor is instrumented through an autocollimaior or aii:-
tude transfer system, whose output gives the alignment
of the sensor relative to some reference frame fixed in
the spacecraft. This autocollimator may be misaligned
as well. Thus, in modelling the alignment of sensors
equipped with autocollimators one must consider two
interfaces. The interface between the sensor and the
autocollimator and the interface between the autocol-
limator and the spacecraft body frame.

Ideally in the absence of misalignment, the represen-
tation of a vector in the body frame given its represen-
tation in sensor coordinates is given by

(Wi,k) =SiCie Ui, (75)

body

where Cj ; is the direction-cosine matrix of the trans-
formation supplied by the autocollimator. This is gen-
erally a vendor-supplied function of two or three scalar
outputs. When there are only two scalar outputs,
the missing output generally parameters the rotation
about the axis of the autocollimator, which is usually
poorly known in the best of cases. If we consider the

case where sensor i is provided with an autocollimator,
then Eq.(75) becomes

(Wi,k) =SiCi ;Ui (76)
body

There are now two misalignment transformations,
which are both proper orthogonal transformations. In
general, C; ; will be a small rotation.

A; i, the attitude of sensor 7, is now given by
Aig = ETCZ,, S.TSI Ay g, (77

and the coalignment of sensor ¢ relative to sensor 1 is

851i=8TSCi T . (78)
We now define misalignments by
S,' = S,o N,‘ and T = O; Tio, (79)

where N; and O; are both proper orthogonal matrices
corresponding to very small rotations. Note the order
of the matrices in the definition of N;. We could equally
well have defined M; according to

S;i=M;S?. (80)

However, N; will prove more convenient, and M; can
always be recovered using

M; =S¢ N;S¢T. (81)

The estimation of the two alignment matrices asso-
ciated with sensors that are equipped with autocolli-
mators will not be possible unless C; ; shows sufficient
variation. There are two important cases to consider:
(1) the autocollimator instruments all three axes of
Ci x; and (2) the autocollimator instruments only two
axes. In the second case, there weill be one axis along
which the two misalignments a‘ssocia.ted with N; and
O; cannot be determined uniquely. We will treat the
first case, initially, since it will provide the background
for treating the second case.

Treatment of Autocollimators with Three
Instrumented Axes

Attitude-Attitude Measurement Model
We have now in analogy to Eq.(30) that

TR ATE (6A1k)S;T Si ik Ti (A )T (82)
(6A1 ) STT SN Ci i

x0; TP (6A: x)T .

(83)

It might seem that we have abandoned coalignments
in favor of alignments in our definition of N; and O;.
However, it would clearly be difficult to define two
coalignments from these two quantities, since there
is only one coalignment but two corrections. From
Eq.(83) we see that N; can be interpreted equally well
either as a correction to the alignment S; or the coalign-
ment ST S;.
We define now
Zip = SPTSIAL AT TPTCH (84)
which should be compared with Eq.(31) above. This
expression differs from that equation in that the con-
tributions of the two alignments are now separated and
the appearance of C; . We may now transform Z, , as
Zig = STSP(8A1k)S;T S N:iCi
xO; TY (6Ai )T TP TCT,
= {SPTS7(6AL0) ST 7Y
X N; {Ch,k()i(jgk}
x {Cip T7 (8 4:)T TP TCLL } (86)
= CllSeTSTE Ll
xelCin ¥ N o~lCk TP, (1] . (87)

(85)

where we have defined

¢i RtOV(N,‘),
¥; = Rtov(0;).

(88)
(89)



Since all of the rotations appearing in Eq.(87) are very
small, we can write

2y o lOACHDASITSTE L —Cun TP 6Dl (g)

Defining now
(4) = Rtov(Z; 1), (91)
we obtain
zfjc) = ¢i+C{,k P +Sg?TSi)£1,k
—Cip T &g (92)
&
- w | ] o) (53)
where s
fk): [T Cix ], (94)
and
o~ & (0, 7). (95)
with
Ryg = SUTSIRg, SITSC
+Cix TP Rg, TPTCli . (96)

Attitude-Vector Measurement Model

To construct an effective measurement when sensor i
measures only a single vector we note that the rep-
resentation of the measurement in the body frame is
given by

(Wi,k) =S8 Ci, TiU;y, (97)

body

and

(Wi,k)b = S1A41kVig+ SiCip T; AU i . (98)
ody

In analogy to Eqgs.(51) and (57) we define
W, = CisT? U.- " (99)
Wi = ST A Vi (100)

Equations (97) and (98) can then be equated and
solved using Eq.(99) to obtain

2.0

W, = (CixOTCix) NT (577, (64

+ (Cix OF Cix) Cin T: AV;‘,k .

Si)t—i') V,',k
(101)

Keeping only first order terms in the noise component
and expanding very small rotations, Eq.(100) becomes

I-[[Cies]D) (T ¢>-]])

x (I-[[S5Z€, ) W
+Cix TP AU,

a0

Wi,k =

(102)

Defining

fsk) = P(W: k) ( k X W. k) = Q(W:’;)W:)k )

(103)
it follows that
2% = P(WL)(di+Cird)
+P(Wl k) (Slt—i 1,k
~[[W D Cix T? AU:‘.k)' (104)

= H}f’;)[ii] v, (105)

with
HS) = pwWol1 Cii ], (106)

o) = POW ST,

+QW)Cip TP AU . (107)

Thus,
»{%) ~N(0, Rz(s)) , (108)

with

szﬁj = ’P(Wtk)sh—zRf Slc—zPT(Wtk)

+Q(W,) Cix T? Ryy |

xT?T CF QT(W!}). (109)

The estimation of ¢; and ), proceeds as in Eqs.(72)
through (74) except now six parameters (= 3 + 3) are
estimated and Pyg is replaced by a 6 x 6 matrix

Psy  Pyy

Pys Pyu (110)

Treatment of Poor Observability

We see from Eqs.(92) and (104) that for sensors
equipped with autocollimators, the sensed quantity is
¢; — Ci x;. The two “misalignment” vectors can be
separated from a sequence of measurements only if C;
varies over the data set. However, for short segments
of data (say one orbit or less), this may not be the
case. Hence, on a single alignment calibration exercise,
it may not be possible to separate the two “misalign-
ment” vectors.

Over a much longer time span, a separation of these
two quantities may be possible. It is clearly not possi-
ble to conduct an alignment calibration exercise over a
period of several days or longer. Hence, a modification
of the procedure will be necessary.



Suppose that C;r has an essentially constant value
over a data span, ‘which we denote by C;(m), where
m is the index of the data set. Since ¢; and ; are
not separately observable, we will make the following
model reduction for data set m

Ti(m) =T, (111)
and estimate only S;(m). Recalling
Ui =TF ka STS1 AaVir+ AV, (112

we define effective measurements for the m-th data set

Xir(m) = Ci(m)Tf Ui, (113)
AX:p(m) = Cilm)TP AU, (114)

whence
Xip(m)=STS1 A1e Vip + AXip(m).  (115)

This is just the measurement equation for a sensor
without an autocollimator. We may therefore use
the earlier results provided we make the substitution
Uir — Xix.

After treating several data sets this way we are left
with a sequence of reduced alignment estimates S} (m),
m = 1,..., M, from which we wish to estimate N;
and O;, assuming that there is sufficient variation in
C;(m) for this to be possible. The individual alignment
estimates may be written as

Sz (m) = (65:(m)) Si(m) = el Xit™N g;(m), (116)
with S;(m) the true value. As usual, we assume that
x;(m) is zero-mean and Gaussian with covariance ma-
trix Ry (m)-

We may write therefore for the correspondence be-
tween the reduced model and the complete model

Si(m) 6,("1) 7 = S; 6,("1)71 , (117)
form=1,..., M, or
(85i(m)” S;(m)Tu(m) Ty = §; Ti(m) T, (118)

form =1, ..., M, which we may solve at each value
of m as
Si(m) = (65i(m))S; Ci(m) Ty T*T Ty (m)119)

(8Si(m)) 57 N; Ts(m) O; C; (m) (120)
Let us define now

2% (m) = Rtov (5?7 S7(m)) .

(121)

Then for each value of m

2P (m) = ¢+ Ci(m) ¥, + 5¢ 7 xi(m) (122)

= H®(m) [:z‘ v{®(m), (123)

f

with
H®(m) =
R

[ I 5,(m) ] y
ST Ry (m) Y -

(124)
(125)

zf")(m)
Realistic treatment of C;(m)

In general the values of C;  may show some small vari-
ation over a data set, which, however is not sufficient
to separate ¢,; and 1, convincingly. We must have
some method, therefore, of determining the best value
of C; i from the data. Since all autocollimator readings
are supposedly equally accurate, the simplest choice is
to define

n(m)

Z Ci x(m),

which in general is no longer proper orthogonal, and
define C;(m) as the value which maximizes

g(C) = tr [BT(m)C] (127)
where C' is proper orthogonal, and tr(-) is the trace
function. The matrix C, (m
the cost function

ny(m) 3

DY >3- (Cuatm

k=1 j=1t=1

Bi(m) = (126)

) so defined will minimize

J(C) )Jl_ Jl| (128)

where j and £ are the row and column indices of the in-
dividual matrix elements. Equation (127) is simply the
gain function of the QUEST algorithm?, which can now
be used to calculate —C-'_:(m). The QUEST algorithm
also gives us a measure of the covariance of C,(m),
which we can use as an additional term in the error
associated with S} (m).

To take account of this additional error, we should
modify Eq.(120) to read

S;(m) = (85:(m)) ¢ N; (6Ci(m))T T; (m) 0: C; (m),
(129)

with
6Ci(m) = el& ™ x5 [ 4 [[e:(m)]], (130)

and the covariance of e;(m) is denoted by Re (m).
Thus, we have

2 (m)

é; + C; (m) 1,
+57T x;(m) — €i(m), (131)

1 (m) [ 5 ] +%(m), (132



so that now

Hm) = [I Tim)], (133)
(% (m) T xi(m) —ei(m),  (134)

and
Rst)(m) = SIOT Rx'.(m) S+ Re,(m) - (135)

Normally, R (m) is a product of the QUEST? or
some other attitude estimatin algorithm algorithm.
However, if the autocollimator supplies only two in-
dependent angles characterizing C; ¢, then Rg () will
be singular. In this case the QUEST algorithm can-
not be expected to give the correct value for Rg (m),
especially since this quantity will be singular. It will
be sufficient for our purposes to calculate Re (m) as a
sampled covariance. To this end we define

eI = Rtov (G G; 7)), (136)

and compute the sampled covariance as

ni(m)

1 led led T
Z samp :a].:np e ( 137)

Re (m) ~ - (m)

Treatment of Autocollimators with Two
Instrumented Axes

If only two axes of the autocollimator are instru-
mented, we can write

Cir = ellai@iitaizdia]] (138)

»

Since a; 1 and a; 2 will be small, it follows that the
quantity @; 3 - (¢; — ), where

0;,3 = 0;,1 X 0:‘,2, (139)

is unobservable. We have no choice then, but to es-
timate the parameters of a reduced model in which ;
is replaced by ¥} with

¥

¥i10i1 + 5040 (140)
PH(03) %', (141)

where PT(Q) is given by Eq.(62).
and (132) now become

Equations (131)

2O(m) = &, +C;(m)PT0;3) ¥!
+577 x;(m) — ei(m), (142)

O (m) [ 5|+ o®m), aa3)

with now
HOm)=[1 TmPTas) ] (149)
Once having estimated v}, we can compute 1} from
v =Pl0i3) i, (145)
and the (singular) 6 x 6 estimate-error covariance ma-

trix can be determined from the (nonsingular) 5 x §
covariance matrix according to

Pyy  Pyy Pog  Poy
T
Pyg Pyy Pyg Pyy | £, (146)
with
I3sxz  Ozx2
F=1 0505 PT(0;3s) | - (147)

In the case where Q; 3 is not known a priori, it can
be determined by finding the singular axis of Rg,,

Re, 0:’,3 =0, (148)
In a similar manner, in the unlikely case that ¢; and

¥; are observable while ¢; and ; are unobservable,
we can replace Eq.(93) by

, &
BN 1 R T
where
HY=[1 C.PT(0i3) ] . (150)
Similarly, Eq.(105) becomes
&,
-] g e o
with
HP =PW)[1 CuPTlia) ],  (152)
and Eq.(123) is likewise tranformed by the substitu-
tions
& o
M]ﬁ[d,z] (153)
and
Cix — Cix PT(0 3). (154)



Observability Criteria for Autocollimator
Parameters

We require a criterion for when it will be desirable
to estimate the two alignment matrices associated with
sensors equipped with autocollimators and when one
should attempt to estimate them 1n one step or two.
To develop this criteria let us consider a simple one-
dimensional case described by the measurement equa-
tion

Zr=r+hiy+v, k=1 ..., N, (155)
where v;, is a zero-mean Gaussian random variable with
standard deviation ¢ and h; has a zero-mean Gaussian
distribution (as a function of k) with standard devia-
tion 7, 7 << 1. Note that the distribution of h;, al-
though Gaussian, need not be random. In Eq.(155), =
plays the role of ¢ + ¢, and y plays the role of ¢ — .
The estimate-error covariance matrix for z and y is
given straightforwardly by

o? |1

If the physical quantity of ultimate interest is of the
form

I/OTz } . (156)

up=z+hey, (157)

then the error covariance of u will be
2
ol = = (L+hi/r?), (158)

so that the contribution of the estimate errors for z
and y contribute equally to the estimate errors of u.
If, on the other hand, we neglect y in our model,
then we will make a modeling error of hyy, which is
on the order of 7oy, where a;‘; is the second moment of
y. Thus, the criterion for including y in the model is

2ol > 0?/N, (159)

or P
> —. 160
> TN (160)

If 7 is on the order of 10 arc minutes, and ¢ is on the
order of 5 arc seconds, then Eq.(160) becomes

1 0.5
oy > ——=rad ¥ — deg. 161
Y7 120N /7 (161)
Thus, if we expect that the a prior: uncertainly in the
orientation of the autocollimator axes is on the order
of 0.5 deg/+/N, then it will be necessary to model
both alignments associated with the autocollimator.

If, however, the a priori uncertainty is expected to
be much less than this, then there will be no need to
model both alignments. A good practical measure of
this uncertainly is simply to estimate ¢; assuming that
1; = 0. The magnitude of ¢, is then a good gauge of
oy.

yIt is possible that 7 may be small in the sense above
for a given data interval of interest but large when the
entire data set is considered. It is this case in which
we will wish to first estimate only phiv;(m) for each
data interval and then estimate ¢; and ; from the
cumulative sequence of estimates of ¢,(m).

Note also that if only two axes of Cj i are instru-
mented but that the angles associated with these two
axes can assume large values (so that their product (in
radians) is not negligible compared to the individual
angles, then there will be sufficient variability along all
three axes of C; that it will be possible to estimate
¥, rather than just ;.
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