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A NEW ALGORITHM FOR ATTITUDE-INDEPENDENT

MAGNETOMETER CALIBRATION

Roberto Alonso ∗ and Malcolm D. Shuster †

A new algorithm is developed for inight magnetometer bias determi-

nation without knowledge of the attitude. This algorithm combines

the fast convergence of an heuristic algorithm currently in use with

the correct treatment of the statistics and without discarding data.

The algorithm performance is examined using simulated data and

compared with previous algorithms.

Introduction

At orbit injection, the only attitude sensor which may be operating is often the vector

magnetometer. Frequently, the spacecraft is spinning rapidly, and, if the spacecraft is not

in an equatorial orbit or at too high an altitude, it is possible on the basis of this sensor

alone to determine the spin rate and the spin-axis attitude of the spacecraft. At the same

time, the accuracy of the magnetometer data may be compromised by large systematic

magnetic disturbances on the spacecraft, often the result of space charging during launch

or from electrical currents within the spacecraft. Thus, some means is usually needed to

quickly determine this bias. Since the three-axis attitude of the spacecraft usually cannot be

determined at this stage, the desired algorithm must not require a knowledge of the attitude

as input.

A number of algorithms have been proposed for estimating the magnetometer bias. The

simplest is to solve for the bias vector by minimizing the weighted sum of the squares of

residuals which are the di�erences in the squares of the magnitudes of the measured and

modeled magnetic �elds [ 1 ] . This approach has the disadvantage that the cost function is

quartic in the magnetometer bias, and therefore admits multiple minima. If these solutions

are close to one another, then convergence of the algorithm may be poor. Typically, one

initiates the least-squares procedure by assuming that the initial magnetometer bias vector
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vanishes, which may lead to slow convergence if the magnetometer bias is large compared

to the ambient magnetic �eld.

Gambhir [ 1, 2 ] advocated centering the data to remove the quartic dependence. This

leads to a cost function which is quadratic in the bias and, therefore, has a unique solution.

The algorithm embodying this centering is called RESIDG (supposedly, �G� for Gambhir)

and has been employed with good results for nearly two decades. The centering, however,

necessarily discards part of the data, and the e�ect of this loss of data on the accuracy has

never been studied. In addition, RESIDG does not make any attempt to treat the statistics

correctly, so that a it is not possible to assess the accuracy of the estimation adequately.

A second approach has been put forth by Thompson [ 3, 4 ] , who preferred to construct a

�xed-point algorithm, which he chose to call, with obvious reference, RESIDT. Fixed-point

algorithms have the advantage of converging quickly when one is far from the solution, but

can become intolerably slow as one approaches the solution. Thompson's algorithm was

successfully employed in support of the AMPTE spacecraft.

Davenport [ 5 ] has proposed another approach to solving the quartic cost function by

�nding an approximate solution for the magnetometer bias and using this as an initial value

for the iterative solution of the least-squares problem. The approximate solution produced

by this algorithm, unfortunately, makes approximations which destroy its consistency. Hence,

the approximate solution cannot approach the true solution as the number of data becomes

in�nite. However, the inconsistency seems to be no worse than about ten per cent for biases

as large as one third of the ambient �eld. Higher accuracy can then be obtained by an

iterative procedure, using the approximate estimate as a starting value. This algorithm has

been applied to the magnetometers of the Hubble Space Telescope.

The present work proposes a superior solution which: is almost as fast as the centered

algorithm of Refs. 1 and 2, without discarding data or ignoring the correlations introduced

by centering; does not su�er from the convergence problems of a �xed-point algorithm such

as in Ref. 3 and 4; is much more direct than the algorithm of Ref. 5; and is consistent as

well at every stage. It does this in several important ways by (1) treating the statistics more

completely and correctly, (2) correcting for the centering operation, and (3) estimating scale

factors as well as biases. The authors do not call this algorithm either RESIDA or RESIDS.

The Model

All treatments begin with the model

Bk = AkHk + b + εk , k = 1, . . . , N , (1)

where Bk is the measurement of the magnetic �eld (more exactly, magnetic induction) by the

magnetometer at time tk; Hk is the corresponding value of the geomagnetic �eld with respect

to an Earth-�xed coordinate system; Ak is the attitude of the magnetometer with respect

to the Earth-�xed coordinates; b is the magnetometer bias; and εk is the measurement

noise. The measurement noise, which includes both sensor errors and geomagnetic �eld

model uncertainties, is generally assumed to be white and Gaussian. This is probably a

poor approximation, since the errors in the geomagnetic �eld model are certainly highly

correlated, and, in fact, generally dominate the instrument errors. However, for the sake of

argument we shall assume here that the errors are white and Gaussian.
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To eliminate the dependence on the attitude, we transpose terms in equation (1) and

compute the square, so that at each time

|Hk|
2 = |AkHk|

2 = |Bk − b − εk|
2 (2ab)

= |Bk|
2 − 2 Bk · b + |b|2 − 2(Bk − b) · εk + |εk|

2 . (2c)

If we now de�ne e�ective measurements and measurement noise according to

zk ≡ |Bk|
2 − |Hk|

2 , (3a)

vk ≡ 2(Bk − b) · εk − |εk|
2 , (3b)

then we can write

zk = 2 Bk · b − |b|
2 + vk , k = 1, . . . , N . (4)

This is the starting point for the derivation of all of the algorithms. (Note that in

equations (3b) and (4), Bk is the value about which the measurement is linearized and

therefore must be interpreted as the sample value of the measured magnetic �eld and not

a random variable.)

Even with the assumption that the original measurement noise is white and Gaussian,

the e�ective measurement noise is not white and Gaussian. Assuming that εk is white and

Gaussian, so that

εk ∼ N (0, Σk) , (5)

and

E{ εk ε
T
` } = 0 for k 6= ` , (6)

then

µk ≡ E{ vk } = −tr (Σk) , (7a)

σ2
k ≡ E{ v

2
k } − µ

2
k = 4 (Bk − b)TΣk(Bk − b) + 2

3
∑

i=1

(Σk)2
ii , (7b)

so that vk must contain both Gaussian and χ2 components, as is evident from equation (3b).

Here tr ( · ) denotes the trace operation. In addition,

E{ vk v` } = µkµ` , (8)

so that the vk are uncorrelated but not white. If we assume, however, that the noise εk is

small compared to the geomagnetic �eld, then to a large degree vk is Gaussian and we can

write approximately

vk ∼ N (µk, σ
2
k) , (9)

keeping only the �rst term in equation (7b).

Maximum Likelihood Estimate of the Bias and Scoring

Given the statistical model above, the negative-log-likelihood function [ 6 ] for the mag-

netometer bias is given by

J (b) =
1
2

N
∑

k=1

[

1

σ2
k

(zk − 2 Bk · b + |b|2 − µk)2 + log σ2
k + log 2π

]

, (10)
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which is quartic in b. The maximum-likelihood estimate maximizes the likelihood of the

estimate, which is the probability density of the measurements (evaluated at their sampled

values) given as a function of the magnetometer bias. Hence, it minimizes the negative

logarithm of the likelihood (equation (10)), which thus provides a cost function.

Since the domain of b has no boundaries, the maximum-likelihood estimate for b, which

we denote by b∗, which minimizes the negative-log-likelihood function, must satisfy

∂J

∂b

∣

∣

∣

∣

b∗
= 0 . (11)

Note that only the �rst of the three terms under the summation depends on the magnetometer

bias. Unless one wishes to estimate parameters of the measurement noise, there is no reason

to retain the remaining two terms. This quartic dependence can be avoided if complete

three-axis attitude information is available, since the bias term then enters linearly into the

measurement model (q.v. equation (1)) as in the work of Lerner and Shuster [ 7 ] .

The most direct solution is obtained by scoring, which in this case is the Newton�Raphson

approximation. We consider the sequence1

bNR
0 = 0 , bNR

i+1 = bNR
i −

[

∂2J

∂b∂bT

(

bNR
i

)

]−1
∂J

∂b
(

bNR
i

)

. (12)

This series is obtained by expanding J (b) to quadratic order in (b−bNR
i ), setting the gradient

of the truncated series to zero, and solving for bi+1. If for some value of i we are su�ciently

close to the maximum-likelihood estimate, then it will be true that

lim
i→∞

bNR
i → b∗ . (13)

We have made the convention here that the partial derivative of a scalar function with

respect to a column vector is again a column vector. The gradient vector ∂J/∂b is the 3× 1
matrix

∂J

∂b
= −

N
∑

k=1

1

σ2
k

(zk − 2 Bk · b + |b|2 − µk) 2 (Bk − b) , (14)

and the Hessian matrix ∂2J/∂b∂bT is given by the 3 × 3 matrix

∂2J

∂b∂bT
=

N
∑

k=1

1

σ2
k

[

4 (Bk − b)(Bk − b)T + 2 (zk − 2 Bk · b + |b|2 − µk) I3×3

]

. (15)

Generally, the second term in the brackets will be much smaller than the �rst and can be

discarded.

A second approach to scoring is the Gauss�Newton approximation [ 8 ]. In this case, we

replace the Hessian matrix by its expectation, the Fisher information matrix F . Since

E{ (zk − 2 Bk · b + |b|2 − µk) } = 0 , (16)

1Throughout this work we shall use k as the time index and i as the iteration index.
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this amounts to discarding the second term. According to the law of large numbers, as the

number of independent identically distributed (i.i.d.) samples of a random variable becomes

in�nite (the asymptotic limit), the average of these samples approaches the expectation value

of the random variable. Our measurements are not identically distributed because of the

dependence on Bk. However, if the distribution of the values of AkHk is regularly repeated,

then we may regard the measurements as being i.i.d. for each value of AkHk. Except for

the replacement of the Hessian matrix in equations (12) by the Fisher information matrix,

the iteration proceeds as before.

For both the Newton�Raphson and the Gauss�Newton method, the estimate error co-

variance matrix is given in the limit of in�nitely large data samples by

Pbb → F−1
bb =

[

N
∑

k=1

1

σ2
k

4 (Bk − b)(Bk − b)T
]−1

. (17)

If the measurement noise is Gaussian, then the asymptotic limit is true, in fact, for �nite data

samples. In most cases, the Fisher information matrix is simpler to evaluate than the Hessian

matrix of the negative-log-likelihood function, and often can be evaluated independently of

the data.

The earliest estimates of the magnetometer bias were accomplished by the method

culminating in equations (12) though usually the weights were not chosen according to a

statistical criterion.

The Centered Estimate

In order to avoid the minimization of a quartic cost function, let us de�ne the following

weighted averages

z ≡ σ2
N
∑

k=1

1

σ2
k

zk , B ≡ σ2
N
∑

k=1

1

σ2
k

Bk , v ≡ σ2
N
∑

k=1

1

σ2
k

vk , µ ≡ σ2
N
∑

k=1

1

σ2
k

µk , (18)

where

1

σ2
≡

N
∑

k=1

1

σ2
k

. (19)

This is similar to the centering approximation of Gambhir [ 1, 2 ], who, however, did not

determine the weights from any statistical quantities. It follows that

z = 2 B · b − |b|2 + v . (20)

If we de�ne now

z̃k ≡ zk − z , ˜Bk ≡ Bk − B , ṽk ≡ vk − v , µ̃k ≡ µk − µ , (21)

then subtracting equation (20) from equation (4) leads to

z̃k = 2 ˜Bk · b + ṽk , k = 1, . . . , N . (22)
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This operation is called centering.

The centered measurement is no longer quadratic in the magnetometer bias vector.

However, the centered measurement noise is no longer uncorrelated. Thus, one can no

longer write the negative-log-likelihood function in the form of equation (10). Nonetheless,

in practice one has ignored this and determined the bias from a cost function of the form 2

J approx(b) =
1
2

N−1
∑

k=1

1

σ2
k

(z̃k − 2 ˜Bk · b − µ̃k)2 , (23)

and achieved reasonable results in spite of the lack of consistency, arguing that one was only

discarding a single measurement out of many. We shall see below that one can discard much

more than 1/N of the accuracy by this operation, but we shall see also that equation (23)

is closer to being correct than one might have imagined. Note that the sum is from 1 to

N − 1, since the centered measurements are not independent.

N
∑

k=1

z̃k = 0 . (24)

Minimizing J approx(b) over b leads to

b∗ approx = P
approx

bb

N−1
∑

k=1

1

σ2
k

(z̃k − µ̃k) 2˜Bk , (25)

with the estimate error covariance matrix given approximately by

P
approx

bb ≈
(

F
approx

bb

)−1
=

[

N−1
∑

k=1

1

σ2
k

4 ˜Bk
˜BT
k

]−1

(26)

Note that µ̃k will vanish if the original measurement noise εk, k = 1, . . . , N , is identically

distributed. The centered estimator converges in a single iteration because the cost function

is exactly quadratic.

Fixed-Point Method

To avoid the loss of data from centering, Thompson, Neal and Shuster [ 3, 4 ] proposed a

�xed-point algorithm. De�ne the quantities

G ≡
N
∑

k=1

1

σ2
k

[

4 BkBT
k + 2 (zk − µk) I3×3

]

, (27a)

a ≡
N
∑

k=1

1

σ2
k

(zk − µk) 2Bk , (27b)

f(b) ≡
N
∑

k=1

1

σ2
k

[

4 (Bk · b)b + 2 |b|2(Bk − b)
]

. (27c)

2In actual fact, these calculations have almost always assumed a constant weighting and neglected the contri-

bution of µk .
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Then the gradient of the negative-log-likelihood function becomes

∂J (b)
∂b

= G b − a − f(b) = 0 . (28)

which can be solved implicitly to yield

b∗ = G−1 [ a + f(b∗)
]

. (29)

This equation must be solved iteratively,

bFP
0 = 0 , bFP

i+1 = G−1 [ a + f(bFP
i )
]

, (30)

and we expect that once bFP
i is su�ciently close to the solution that

lim
i→∞

bFP
i = b∗ . (31)

Davenport's Approximation

Davenport and his collaborators [ 5 ] have o�ered an approximate form for the bias vector

estimator. He begins by writing an approximate cost function as

JD(b) =
1
2

N
∑

k=1

1

σ2
k

(zk − 2 Bk · b + λ2 − µk)2 , (32)

where λ is a constant. This cost function would agree with that of equation (10) when

λ = |b|. Davenport, however, allows λ to be a free parameter.

The cost function of equation (32) is only quadratic in b. Di�erentiating this cost function

with respect to b and setting the gradient equal to zero leads to a solution of the form

b∗D = fD(λ) , (33)

that is, the estimate of the bias is a function of the parameter λ. The �consistent� value of

this parameter is obtained by solving

|fD(λ)|2 = λ2 . (34)

Because Davenport's algorithm e�ectively changes the dependence of the non-random part

of the measurement on the bias even in the absence of noise, it cannot be consistent. Thus,

as more data is accumulated the accuracy will not improve. However, it can be used as the

starting point for a Newton-Raphson or Gauss-Newton iteration of the quartic cost function.

A Statistically Correct Centered Algorithm

The original data, zk, k = 1, . . . , N , may be replaced by the centered data, z̃k,
k = 1, . . . , N − 1, and the center value z. The measurement equations are given by
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equations (20) and (22). The centered data have the advantage of depending only linearly

on the magnetometer bias. However, they have the disadvantage that the centered measure-

ment noise is correlated. Therefore, the cost function for the centered data alone cannot

be written as the sum of N − 1 squares. To write a statistically correct cost function for the

centered data (making the approximation that the measurement noise vk is Gaussian) we

de�ne

˜Z ≡ [ z̃1, z̃2, . . . , z̃N−1 ]T , ˜B ≡
[

˜B1,
˜B2, . . . ,

˜BN−1

]T
, (35ab)

˜M ≡ [ µ̃1, µ̃2, . . . , µ̃N−1 ]T , ˜V ≡ [ ṽ1, ṽ2, . . . , ṽN−1 ]T , (35cd)

and write formally
˜Z = 2 ˜B b + ˜V , (36)

with
˜V ∼ N

(

˜M, ˜R
)

. (37)

Here ˜R is the covariance matrix of ˜V . (Note that ˜B is an (N − 1) × 3 matrix.)

The negative-log-likelihood function for this stacked centered measurement is simply

˜J (b) =
1
2

[

(

˜Z − 2 ˜B b − ˜M
)T
˜R−1

(

˜Z − 2 ˜B b − ˜M
)

+ log det ˜R + (N − 1) log 2π
]

. (38)

Equation (23) made the assumption that ˜R was diagonal. We do not make this approximation

here. Minimizing this negative-log-likelihood function leads directly to

˜b∗ =
(

4 ˜BT
˜R−1

˜B
)−1

2 ˜BT
˜R−1(

˜Z − ˜M
)

, (39)

with estimate error covariance matrix

˜Pbb =
(

4 ˜BT
˜R−1

˜B
)−1

. (40)

For large quantities of data, the naive evaluation of equations (39) and (36) can be a

formidable task. Therefore, we seek the means of inverting the matrix in equation (38)

explicitly. Clearly,
˜Rk` = E{ (ṽk − µ̃k)(ṽ` − µ̃`) } = σ2

k δk` − σ
2 , (41)

which shows the correlation explicitly. However, this matrix has the simple inverse

(

˜R−1
)

k`
=

1

σ2
k

δk` +
σ2
N

σ2
kσ

2
`

, (42)

where σ2
N is the variance of vN . Substituting this expression into equation (38) leads to

˜J (b) =
1
2

N
∑

k=1

1

σ2
k

(z̃k − 2˜Bk · b − µ̃k)2 + terms independent of b . (43)
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The statistically correct cost function for the centered data looks exactly like the naive

expression of equation (23) except that the summation is now from 1 to N . The minimization

is simple and leads directly to

˜b∗ = ˜Pbb

N
∑

k=1

1

σ2
k

(z̃k − µ̃k) 2˜Bk , (44)

and the estimate error covariance of the centered estimate is given by

˜Pbb = ˜F−1
bb =

[

N
∑

k=1

1

σ2
k

4 ˜Bk
˜BT
k

]−1

. (45)

The centered estimate is seen now to be much more attractive than before. It is simple,

and by a very trivial alteration (replacing the sum from 1 to N − 1 by a sum from 1 to N)

it can be made to treat the statistics of the measurement noise correctly. It is very di�erent

in character from that the centered estimate of Gambhir [ 1,2 ]. It is thus to be preferred to

Thompson's algorithm [ 3, 4 ] , whose convergence can be problematic, and to Davenport's

approximation [ 5 ] , which is not consistent. The greatest drawback to the centered algorithm

lies in the exclusion of certain data, the e�ect of which we now investigate.

The Complete Solution

For N large, the naive centered algorithm presented earlier is hardly worse than the

rigorously centered algorithm derived above. From the standpoint of computation burden,

the more rigorous treatment of the statistics has merely added one more term (out of N) to

the summation. However, equation (45), because it has been derived rigorously, will a�ord

us the possibility of computing the correction from the discarded measurement z̃.

Instead of the measurement set z̃k, k = 1, . . . , N − 1, z, we may now consider the

measurements to be e�ectively ˜b∗ and z. Therefore, to determine the exact maximum

likelihood estimate b∗, we must develop the statistics of these two e�ective measurements

more completely.

Let us substitute equation (22) into equation (44). This leads to

˜b∗ = ˜Pbb

N
∑

k=1

1

σ2
k

(2 ˜Bk · b + ṽk − µ̃k) 2˜Bk , (46)

which we may rewrite as

˜b∗ = b + ˜Pbb

N
∑

k=1

1

σ2
k

2˜Bk (ṽk − µ̃k) (47a)

= b + ṽb . (47b)

The last term is just the (zero-mean) estimate error. Obviously,
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ṽb ∼ N
(

0, ˜Pbb
)

. (48)

It follows that we can write

˜J (b) =
1
2

(

b − ˜b∗
)T
˜P−1
bb

(

b − ˜b∗
)

+ terms independent of b , (49)

which can be veri�ed by expanding equation (43) and completing the square in b. The

estimate ˜b∗ is thus a su�cient statistic for b [ 6 ] . Equation (49) is very useful, because

it allows us to investigate the e�ect of corrections to the centered formula using only our

knowledge of ˜b∗ and ˜P . We do not have to refer again to the N centered measurements

z̃k, k = 1, . . . , N .

We must now combine ˜b∗ and z to obtain a complete representation of our data for the

computation of b. Recall equation (20),

z = 2 B · b − |b|2 + v , (20)

with

v ∼ N (µ, σ2) . (50)

Note that z, which, unfortunately, is a nonlinear function of b, is nonetheless an extremely

accurate measurement, more accurate than the other measurements by typically a factor of

1/
√
N , because σ is smaller typically than the other variances by this factor. Thus, simply

centering the data can entail a signi�cant loss of accuracy if B−b is not signi�cantly smaller

than typical values of Bk.

What is the correlation between ṽb and v? Calculating this explicitly, gives

E{ ṽb(v − µ) } = ˜P

N
∑

k=1

1

σ2
k

˜BkE{ (ṽk − µ̃k)(v − µ) } (51a)

= ˜P

N
∑

k=1

1

σ2
k

˜Bkσ
2 = 0 , (51bc)

and we have used equation (21). Thus, ṽb and v are uncorrelated. It follows, that the

negative-log-likelihood functions add and

J (b) = ˜J (b) + J (b) , (52)

with ˜J (b) given by equation (49) and

J (b) =
1
2

[

1

σ2
(z − 2 B · b + |b|2 − µ)2 + log σ2 + log 2π

]

(53)

The weight associated with the center term J (b) is equal to the sum of all the weights of
˜J (b). Thus, when B is not small, the loss of accuracy from discarding the center time can
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be substantial. We can determine the relative importance of these terms to the estimate

accuracy by computing the Fisher information matrix Fbb to obtain

Fbb = ˜P−1
bb +

4

σ2
(B − b)(B − b)T = P−1

bb . (54)

The estimate error covariance matrix will be the inverse of this quantity. If the distribution

of the magnetometer measurements is �isotropic,� that is, if B − b vanishes, then J (b) will

be insensitive to b. It is in this case that the centering approximation obviously leads to the

best results. If, however, one attempts to determine the magnetometer bias from a short

data span, say, from an inertially stabilized or Earth-pointing spacecraft, then B − b will be

equal to the similar expression for a typical value of the magnetic �eld, and the formerly

discarded center term which will provide half of the accuracy, especially for the component

along B − b.

Thus, our new algorithm is as follows:

• We compute the centered estimate ˜b∗ of the magnetometer bias and the covariance matrix
˜Pbb using the centered data and equations (44) and (45).

• Using the centered estimate ˜b∗ as an initial estimate, the correction due to the center

term is computed using the Gauss�Newton method

bi+1 = bi − F
−1
bb (bi) ggg(bi) , (55)

where the Fisher information matrix Fbb(b) is given by equation (54), and the gradient

vector is given by the sum of the gradients of equations (49) and (53)

ggg(b) = ˜P−1
bb (b − ˜b∗) −

1

σ2
(z − 2 B · b + |b|2 − µ) 2 (B − b) . (56)

• The iteration is continued until

ηi ≡ (bi − bi−1)TFbb(bi−1) (bi − bi−1) (57)

is less than some predetermined small quantity.

Numerical Examples

The algorithms treated in this work have been examined for an inertially stabilized

spacecraft. The spacecraft orbit has been chosen to be circular with an altitude of 560 km

and an inclination of 38 deg. This is, in fact, the orbit of the SAC-B spacecraft (Satelite

de Aplicaciones Cient���cas), the �rst spacecraft to be developed by Argentina, which will

be inertially stabilized to observe the Sun. The geomagnetic �eld in our studies has been

simulated using the International Geomagnetic Reference Field (IGRF (1985)) [ 9 ], which

has been extrapolated to 1994. More recent �eld models are available, but IGRF (1985) is

adequate for our simulation needs.
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For purposes of simulation we have assumed an e�ective white Gaussian magnetometer

measurement error with a standard deviation per axis of 2.0 mG, corresponding to an

angular error of approximately 0.5 deg at the equator. We have assumed that no axis of

the magnetometer is predominantly parallel to the spacecraft spin axis or the geomagnetic

�eld. The data were sampled once every ten seconds.

We examine �rst Davenport's approximation. To highlight the inconsistency of this

method, we examine its behavior and that of the centered estimate for noise-free data. The

results for half an orbit of data for the spinning spacecraft are shown in Table 1. The

equivalent results for noisy data are presented in Table 2.

For small values of the magnetometer bias, Davenport's approximation yields acceptable

results. For values of the magnetometer bias comparable to or greater than the magnitude

of the ambient magnetic �eld, the errors in Davenport's approximation become unacceptably

large. These statements hold both for the noise-free and the noisy data.

We can gain a greater appreciation of the behavior of these two algorithms if we examine

the normalized errors, η̃ and ηD de�ned by

Table 1. Comparison of Davenport's Approximation and Centered Estimate for Noise-Free

Data

Model Bias (mG) Centered Estimate Davenport's Approximation

[ 10., 20., 30.] [ 10., 20., 30.] [ 10., 20., 30.]
[ 30., 60., 90.] [ 30., 60., 90.] [ 30., 50., 90.]
[ 60., 129., 180.] [ 60., 129., 180.] [ 60., 129., 180.]
[100., 200., 300.] [100., 200., 300.] [101., 208., 261.]
[200., 400., 600.] [200., 400., 600.] [180., 539., 161.]

η ≡
1
√

6

[

(btrue − b∗)T ˜P−1
bb (btrue − b) − 3

]

, (58)

which should have mean zero and standard deviation unity. A comparison of these quantities

is given in Table 3. The inconsistency of Davenport's algorithm is evident.

To see the advantages of this algorithm over naive quartic scoring consider the estimation

of a magnetometer bias whose true value is (10., 20., 30.) mG. The results of successive

iterations for naive quartic scoring and the new algorithm are shown in Table 4. For the new

algorithm, the �rst algorithm is the statistically correct centered algorithm and successive

iteration are obtained by applying the Gauss�Newton method to the complete cost function

as given by equation (53). The 1σ error brackets, computed from the Fisher information

matrix, are (±.13, ±.19, ±.12) mG. The results of the two methods are nearly identical in

this case and the convergence is equally rapid. Small di�erences in the results are due to

the slightly di�erent treatment of the roundo� errors.
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Table 2. Comparison of Davenport's Approximation and Centered Estimate for Noisy Data

Model Bias (mG) Centered Estimate Davenport

[ 10., 20., 30.] [ 9.88 ± 0.35, 20.47 ± 0.82, 27.77 ± 2, 44] [ 10.27, 19.88, 29.70]
[ 30., 60., 90.] [ 29.69 ± 0.30, 60.52 ± 0.69, 89.95 ± 2.03] [ 29.66, 60.60, 89.66]
[ 60., 129., 180.] [ 59.47 ± 0.25, 130.98 ± 0.65, 174.54 ± 1.58] [ 54.88, 129.28, 179.75]
[100., 200., 300.] [100.33 ± 0.22, 201.13 ± 0.56, 296.78 ± 1.60] [101.94, 214.30, 230.13]
[200., 400., 600.] [199.82 ± 0.37, 400.76 ± 6.34, 598.28 ± 3.44] [178, 92, 538.68, 160.33]

Table 3. Comparison of Normalized Errors for Davenport's Approximation and the Centered

Estimate for Noisy Data

Model Bias (mG) η̃ ηD

[ 10., 20., 30. ] 0,82 -1.18

[ 30., 60., 90. ] 0.68 3.87

[ 60., 129., 180. ] 0.814 0.81

[ 100., 200., 300. ] 2.66 2.86 ×103

[ 200., 400., 600. ] -0.83 0.65 ×103

Consider now the case where the magnetometer bias vector is large compared with the

ambient �eld, say (100., 200., 300.) mG. In this case we obtain the value presented in Table

5. The 1σ error brackets here are found to be (±.12, ±.10, ±.12) mG.

In this case naive quartic scoring does not even converge to the correct answer, nor

does the method of Thompson, Neal and Shuster [ 3, 4 ] , which does not converge at

all. Naive quartic scoring converges, in fact, to a local minimum. The new algorithm,

on the other hand, works very well. Note that a single iteration of the center correction

is su�cient. The errors for the new algorithm are clearly consistent with the computed

con�dence intervals.

Discussion

The new algorithm for attitude-independent magnetometer bias determination produces

excellent results in all situations. Since it begins with a very good initial estimate for

the bias, it is more likely to converge to the correct minimum than does naive scoring

[ 1 ] or the �xed-point method of Thompson et al. [ 3,4 ], which begin at b = 0. Un-

like the centered algorithm of RESIDG fame [ 2 ], it does not discard data and does

the centering in a statistically correct way, apart from the approximation that the mea-

surement errors on the attitude-independent derived measurement are Gaussian and un-

correlated, which is almost certainly not the case. It is amusing to speculate that the

statistically correctly centered cost function of equation (43) would probably be rejected

as statistically incorrect by heuristic algorithm developers unschooled in Statistics, because
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it appears to use redundant data. Its initial centered estimate for the magnetometer bias

is clearly a better approximation than ignoring the quadratic behavior of |b|2 as in the

work of Davenport et al. [ 5 ]. The new algorithm is certainly more sophisticated statisti-

cally than its predecessors, and more e�cient computationally. Perhaps, most importantly,

Table 4. Comparison of Naive Quartic Scoring and the New Algorithm. The true value of

the magnetometer bias vector is (10., 20., 30.) mG.

Iteration Naive Quartic Scoring New Algorithm

1 [ 10.08, 19.27, 33.04 ] [ 9.82, 20.08, 29.05 ]
2 [ 9.84, 20.18, 29.91 ] [ 9.90, 19.83, 29.94 ]
3 [ 9.84, 20.19, 29.89 ] [ 9.90, 19.83, 29.93 ]
4 [ 9.84, 20.19, 29.89 ] [ 9.90, 19.83, 29.93 ]

the new algorithm makes manifest the physical quantities which determine the behavior of

the bias estimator.

Table 5. Comparison of Naive Quartic Scoring and the New Algorithm. The true value of

the magnetometer bias vector is (100., 200., 300.) mG.

Iteration Naive Quartic Scoring New Algorithm

1 [ 107.62, 259.77, 2.85 ] [ 99.82, 200.63, 298.02 ]
2 [ 51.51, 398.62, −368.88 ] [ 99.97, 200.11, 299.81 ]
3 [ 70.35, 358.17, −196.33 ] [ 99.97, 200.11, 299.81 ]
4 [ 72.13, 340.88, −145.65 ] . . .
5 [ 71.78, 338.71, −140.60 ] . . .
6 [ 71.70, 338.64, −140.62 ] . . .
7 [ 71.70, 338.64, −140.62 ] . . .
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