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Abstract

The general problem of determining the attitude
from measurements of an angle and a direction is con-
sidered. It is shown that there is no continuous ambi-
guity for this problem; because effectively three data
are given. However, the attitude still has generally a
two-fold ambiguity which can be removed only by the
addition of further data.

Introduction

While numerous algorithms exist for the estima- v

tion of the attitude from the measurement of two or
more directions, the best known being the TRIAD
and QUEST algorithms,! no simple algorithm has ever
been published for the estimation of the attitude from
the measurement of a single vector and a single angle.
This particular case is of interest, because there being
only three independent equivalent scalar data, it might
seem at first glance that a unique solution should exist
in this case. For the case of the measurement of two
directions on the other hand, a solution is, in general,
not defined without additional criteria, because three
parameters must be determined from four data.

In the present work a simple construction is given
for determining the solution to this problem. It turns
out that the solution is not unique but has a two-fold
degeneracy. It is also noted that since a determinis-
tic estimate exists, this must also be the maximum-
likelihood estimate. This fact is exploited to develop a
covariance analysis of the algorithm using the QUEST
model? for the measurement errors. The algorithms for
solving this attitude problem and the covariance anal-
ysis were developed in order to provide rapid analysis
of attitude data from the a spacecraft equipped with a
three-axis magnetometer and a Sun angle sensor.

The Problem

We seek an attitude matrix A which satisfies

W,=AV,, §,-AV,=d, (1)
where W is a measured unit vector in the body frame
(the direction measurement); S is a known vector in
the body frame; V', and V', are known vectors in the
primary reference (typically inertial) frame; and d is a
measured cosine (the angle measurement). We assume
that |d} < 1; otherwise, a solution will not exist. For
a typical spacecraft, W might be the measured mag-
netic field vector and d might be the cosine of the Sun
angle as obtained from a spinning digital solar aspect
detector.

General Structure of the Solution

We begin by seeking all attitude matrices A which
satisfy W1 = AV',. These are given by

A= R(W,,0)4,, (2)

where A, is any attitude matrix satisfying W, =
A, V1, R(W1,8) is a the rotation matrix for a ro-
tation about the axis W, through and angle 8; and 6
is any angle satisfying 0 < 0 < 2r. R(W, 0) is given
by Euler’s formula

R(7, 0) = cos 0 Isxs + (1 — cos8) AnT

+sind [[#]], (3)
with
0 V3 —vV2
[vll=] -vs 0 . (4)
Vo -1 0

To prove the assertion of Equation (2), assume that
there exist two distinct attitude matrices, A and A,,



satisfying Wi=AV,and W, = 4, Vi, respectively.
Then

W, = A(4;'4,)V, (5)
= (AA7HY AV, (6)
(AAHW,. (M

Thus, W, must be the axis of rotation of the rotation
matrix AA; !, Since AA;! must be different from the
identity matrix, the axis of rotation is well-defined and
unique. Hence,

AAG! = R(W 4, 6) (8)

for some angle 6. Equation (2) now follows from Equa-

tions (6) and (8). Every attitude matrix given by Equa-

tion (2) satisfies W1 = AV . Therefore, there is a con-

tinuum of solutions, satisfying this equation.
Equation (2) is equivalent to

A=A,R(Vy, ), (9)
with identical A, and 8. This follows from?
Ao R(V1, 0)AT = R(A, V4, 0). (10)

A Single Solution for A,

We must now find a single 4, which satisfies W, =
A,V ;. Let us look for an A, of the form

Ao = R(ﬁo; 00) ) (11)
where
VixV
A= 1 XV (12)
|W1 X V1|

which is defined provided that W, # +V . Then triv-
ially

i, Vi =0, (13)
and
[[‘flo ]] Vl = —‘flo X f’l
Wi- W VOVs
|W1 X V1|
Thus,
R(#,, 0,) V,
= cosf, f’l
sin 8 N - n
—2— (W = (W, -V)V))
W1 x Vi (
= |cosf, — Msin 0,| v,
W1 x Vi
sin 0,,A - (15)
|W1 X V1|

Since W, and V; are linearly independent, a unique
solution exists for 8,, namely,

sinf, = |[Wy x V|, cosb, = (WI 'Vl); (16)
which yields
8, = ATAN2 (|W x V|, (W, - V), (17)

where ATAN2 is the familiar FORTRAN function,
which for the purpose of calculating 8, we will adjust so
that the values always lie in the interval —7 < 8, < =.
Note that once n, is fixed there can be only one
solution for 6,. We could equally well have chosen

Wle’l

= - (18)
|W1 x Vi
in which case we would have been led to
9, = ATAN2 (=|W1 x V4|, (W1-V1)).  (19)

The two solutions are equivalent.
The quaternion corresponding to A, is has a very
simple form. To calculate the quaternion we note first

that
cos(00/2)= 1+C0800= 1+W1-V1’ (20)
V 2 V 2
and
cos(6,/2) >0  for [6,] < . (21)
Likewise,
sin(6,) = 2 sin(6,/2) cos(6,/2), (22)
so that
. sin(6,)
sm(O,,/?) m
= W, xh Vllh . (23)
V2l + W, )
Hence,
sin(0,/2) i, = Lt al Vi — (29)
\/é (1+W, V)
and the corresponding quaternion is given by
L 1+ W, .V,
T 2
Wl X Vl
X 1+ Wl . Vl ’ (25)
1

which can now be computed without the need to com-
pute 8,. The Rodrigues vector p, (also called the Gibbs
vector) is given obviously by3

Wle’l
P, =

1+W1'V1 ( )



and the matrix A, is given equivalently by

Ay = (W1 Vi)Izng
(W1 X V))(Wl X Vl)T
1+W,.V,
+H[Wi1x Vi]. (27)
Complete Solution for A
Given 6, we must now compute 8. Define
Wi=A,V,. (28)
Then 6 is a solution of
Sy -R(W,, 6)W3=d. (29)
Substituting Euler’s formula leads to
32 . [Wa - sinG(WI X VV;:,)
+(1 - cos ) (W, x (W x v‘va)]
= d, (30)
which can be rearranged to yield
(82 (W1 x (W) x W3))| cos
+[3; (W1 x Ws)| sino
= (S -W,)(W, W3)—d. (31)

There are clearly two solutions for 8, in general. To see
this define

|S2 x W1|[W, x W3]
ATAN?2 ([s2 (W, x wa)] ,

B
g

(32)

[32 (Wix (WixWa)]) . (39)
Then Equation (31) can be rewritten as
Beos(f — B) = (82 - W) (W, -W3)—d. (34)

From Equation (34) we see that a necessary condition
that a solution exist is that

(82 W1) (W, - W3)—d|
< 182 x Wy |[Wy x Wy, (35)
If this condition is satisfied, then # has the solutions
1 [ (S2- W) (W, -Ws)—d
ISz X W1| |W1 X W3|

6 =p+cos” , (36)

and the inverse cosine is indeed two-valued. Given A,
and 6 we can now construct the attitude matrix solu-
tions according to Equations (2) and (27).

Covariance Analysis

The attitude matrices constructed by the above algo-
rithm solve Equations (1) exactly. Therefore, if attitude
solutions exist, they each certainly minimize the cost
function

P SR
J(A):-U—%|W1-—AV1|2 6—3'|52AV2_d|2’(37)

where ¢; and o4 are standard deviations character-
izing the weights. If a deterministic attitude solution
constructed according to the above methodology does
not exist (say, because Equation (35) is not satisfied
due to the effect of measurement noise) then one can
at least find an attitude solution (generally two) which
minimizes the cost function of Equation (37). The dis-
cussion of this section will still be valid in the latter
case.

We recognize the first term as the negative-log-

likelihood corresponding to the error model?®
Wl = Alrue ‘)1 + Awl s (38)

where AW, is the equivalent measurement noise,
which is assumed to be Gaussian and to satisfy

E{AW,} =0, (39)
and
E{AW,AW])
= 02 (Isxs— W Wiy, (40)

where E{ -} denotes the expectation. Likewise, the sec-
ond term of Equation (37) is the negative-log-likelihood
corresponding to the error model

d=5,-AV,+ Ad, (41)

where Ad is a zero-mean Gaussian random noise with
variance 3. Thus, the attitude matrices computed by
the above algorithm are also (non-unique) maximum-
likelihood estimates of the attitude. We may, there-
fore, compute the attitude covariance matrix as the in-
verse of the Fisher information matrix by interpreting
Equation (37) as a negative-log-likelihood function.?4
The calculation of the Fisher information is tedious
but straightforward. The result for the attitude covari-
ance matrix, which we define as the covariance matrix
of the infinitesimal rotation vector, €, connecting the
true attitude to the estimated attitude, is

Pe = [;1? (Iaxa_wlv”vf)

1 . . . R -1
Jr?(w2 x §3) (W3 x sz)T] , (42)
d
where Wg is defined as

W;=AV,. (43)



Note that generally

Wy S, (44)
even in the absence of measurement noise. For this rea-
son we have used the notation §5 rather than W,
Note also that P will not exist unless

Wl . (Wz X 32) # 0, (45)

or, equivalently, unless
Sz (Wl X (A Vz)) = (A Vz)(gz X Wl) # 0 (46)

Even though the attitude matrix may be defined in
this case the geometry represents an extremum situ-
ation in which the sensitivity of the attitude to the
measurements vanishes along one direction in parame-
ter space.

Remarks

Note that the fact that we have equivalently three
independent measurements (two for the direction and
one for the cosine) does not guarantee a unique solu-
tion, only that the solutions be elements of a discrete
set. Uniqueness would be obtained only if the equations
for the three independent attitude parameters were lin-
ear, which is almost never the case.

We are not restricted to choosing

o= 21X V1 (47)
[Wl X Vll
In fact, any vector 1, satisfying
i, Wy=m0,-V,, (48)
will do. We have selected one of the simpler cases. An
alternate choice is examined below,

In facg, the construction of fi, fails if W, = £V ;. If
W, = V,, we may choose A, = I3x3. If, on the other
hand, W, = —V,, the we may choose #, to be any
vector perpendicular to W, and 0, =n.

Note that we have avoided using the relation,

1—cos@,

sin(6,/2) = 2

(49)
in developing an analytic expression for the quaternion.
This would have led to an unnecessary sign ambiguity
which would have been complicated to resolve.

In developing the expression for the attitude covari-
ance matrix we assumed a particular model for the
measurement errors of the direction. We could, in fact
have used an arbitrary measurement model for W,
namely,

E{AW,} , (50)

E{AW,AW]} = Py (51)

1
=]

where Py;, is an arbitrary covariance matrix for W,

which mustl, because of the unit-norm constraint, sat-
isfy

Py

so that Py, is singular (rank deficient). Equation (37)
1

W.=0, (52)
1

then generalizes to

J(4) = (WI—AVl)TP;‘fV (Wy—AV))

1 .. N
+— 1852 AV, —d|?, (53)
o4
where # denotes the pseudo-inverse. The attitude co-
variance matrix generalizes to

Pe = [[WiITRY, (W]

1 . . a . -1
+= (W3 x S5)(W2 x Sz)T] . (54)
d

If the measured direction is that of the geomagnetic
field, then in general the entire three-vector is known
and need not have unit norm. In that case the we
replace W, and V; by the unnormalized W, and
V1 and the covariance matrix is now full rank (Equa-
tion (52) no longer applies). Equations (53) and (54)
remain unaltered except for the replacement

Pt Py - (55)

W,
In many practical circumstances, however, the simple
model of Equation (37) has proven to be adequate.
Note that the covariance matrix characterizes the
probability of the estimate compared to other solu-
tions within its immediate neighborhood. The algo-
rithm, however, has two solutions, the correct one of
which cannot be identified except by bringing addi-
tional information to bear on the attitude problem.
Thus, even though the attitude variances may be small
the estimated solution, if it happens to be the false so-
lution, may be very far from the truth.

An Alternate Choice for the Initial Rotation

Instead of Equation (12) we could have chosen

W, +V
A= it L (56)
W, + Vi
Then it is easy to show that
A, = R(n, =) (87)
Wi+ V) (W + V)T
= Dot DFVIN VI g
1+4W,.V,
The quaternion in this case is simply
%,
o=%] (59)



The special case W1 = V' no longer requires special
attention for this choice of A!. The treatment of the
special case W, = —V, is as previously. The com-
putation of #’ (corresponding to the earlier ) and ¢’
(corresponding to the earlier §) proceeds as before.

A More Direct Solution for the Attitude
Matrix

Instead of first calculating the attitude matrix from
the data and then determining a vector W3 which sat-
isfies

W,o=AV,. (60)

in order to carry out the cova;riance analysis, we might
try instead to calculate this W, directly and, once this
vector has been determined, calculate A using the triad
algorithm.!
To compute W5 we write

~ ~ P Wl X S’z
Wo=aW;4+bS,+¢————7—, (61)
W1 x S2|

which is possible provided that W; # +85. It then

follows that

W, Wy = a+b(W;-8)=V-V,, (62

§5;- W, = a(W;-5)+b=4d, (63)

W, Wy = a?+2ab(W,-5,)
+b24c?=1. (64)

The solution for a and b is immediate and is given by

(V1-Viy)— (W, -8;)d

a = 2 - , (65)
|W1 X 52|2
b 4= (W1-52)(V1-V3) (66)
|[W1 x S;)?
The solution for ¢ is now given by
c=:h\/1—(a2+2ab(W1-S’z)+b2). (67)

This last calculation can be simplified by noting that

a® 4 2ab (W, - S3) + b
1 [ 2 o o fd -,
= —— |d°-2d(V, -V W,-S§
W1 x 5,2 (V- Va) (W 52)
+(V1-Vay?] (68)
The lack of a unique solution is now obvious from
Equation (67). Although the triad algorithm! can now
be used to calculate the attitude from the four vec-
tors V1, Vo, W, and W, the measured unit vectors
are no longer uncorrelated, and the attitude covariance
matrix is still that computed earlier (Equations (42)
or (54)).
While the present algorithm is clearly more efficient
than that developed in the main text, it also suffers

from some numerical problems. Because of round-off
error it is not guaranteed that W, is a unit vector.
Worse still, large measurement errors may cause the
argument of the square root in Equation (67) to be
negative.

Discussion

We note with some dismay that for three data there
is no single unambiguous solution to the attitude deter-
mination problem. On the other hand, for two vectors,
which are equivalent to four data, the solution is gen-
erally overdetermined, so that no solution will exist.
If we are given three angles, two of which are to the
same body-fixed vector, then there will clearly by four
possible attitude solutions, in general. We conjecture
that for three angles, each one to a different body-fixed
vector, there will be eight possible attitude solutions.
It would appear, therefore, that the non-optimal at-
titude determination problem is always ambiguous or
nonexistent, and only least-square solutions of the over-
determined problem yield unique results.
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