The Journai of the Astronautical Sciences, Voi. 41, No. 4, October-December 1993, pp. 545-556

Quaternion Computation from
a Geometric Point of View

Maicolm D. Shuster' and Gregory A. Natanson*-

Abstract

Global algorithms that solve for the quaternion generally have a four-fold multiplicity in
order to avoid singularities. A gecometrically-motivated construction is presented that auto-
matically generates the four-fold multiplicity of algorithms once a single (possibly singular)
algorithm is known. As examples of the application of this procedure, least-squares atti-
tude determination and the computation of the quaternion from the direction-cosine ma-
trix are examined. In the latter application, the method proposed here leads to Shepperd’s
algorithm for extracting the quaternion from the rotation matrix.

Introduction

The computation of the quaternion (more correctly, Euler-Rodrigues symmetric
parameters) [1],

m
m

n= , (1)
m

M4

in attitude problems is complicated by the fact that the four components of the
quaternion are not all independent but satisfy the constraint

=T= 2 2

TH=af+ni+ni+ni=1, )
Therefore, in computations of the quaternion one must either utilize ail four
components, while taking the quaternion normalization constraint into account

explicitly, or one must reduce the problem to one of lower dimension. The former
approach is not possible in general because the operations which we perform on
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the quaternion are usually not norm-preserving. Therefore, we must almost al-
ways at some point replace the quaternion by a three-dimensional representation,
usually the Rodrigues (or Gibbs) vector [1]. However, as has been shown by
Stuelpnagel [2], any attitude representation of three dimensions is necessarily sin-
gular at some point. Thus, even though the quaternion is nonsinguiar, the algo-
rithms which we use to calculate it are often singular.

A well-known example of this “singularity” phenomenon in the nonsingular
quaternion is the computation of the quaternion from the direction-cosine
matrix [3-9], for which one must solve the equation

nt-mi—-mi+mi 2mm + nums) 2(mms — mem2)
A=1 2mm —mm) —ai+tni-ni+ni  2mm + nem)
2(mm + Mem2) 2(mm2 — nam1) -ni—ni+ni+ni

(3

Here, it turns out that the component of the quaternion that is calculated first is
treated very differently from the remaining three (see Application 2 below). Since
one can solve for any of the four components first, there are four different algo-
rithms for computing the quaternion as a function of the direction-cosine matrix,
ali of them formally equivalent (within an undetermined but physicaily unimpor-
tant overall sign). Numericaily, however, these four algorithms are not identical,
and, depending on the specific vaiue of the direction-cosine matrix, one or more
of these four aigorithms may entail an unacceptable loss of significance. These
algorithms are studied in greater detail later in this work.

The four-fold multiplicity cf algorithms aiso arises commonly in the develop-
ment of an intermediate solu::on in terms of a three-dimensional representation,
which we now develop in some detail. Most attitude problems begin with the study
of some function of the attitude matrix 4, which may be either scalar, F(A), or
vectorial, F(4). Generaily, one looks for a vaiue of the attitude matrix, 4* that
either minimizes a scalar function,

F(A*) = F(A) VA, 4)
or is a “root” of a vectorial function
F(A*) = 0. 5)

If the attitude matrix is parameterized in terms of some three-dimensional repre-
sentation p, and the value, p*, that corresponds to A* does not lie on the boundary
of definition of p, then equation (4) leads to

Z—E(A(p» -0 a p=p, ©)

which is very much in the form of equation (5). Most attitude problems at some
stage of their development have the form of equation (5).

Equations (4) or (5) can be transformed into equations for the quaternion by
means of the substitution given by equation (3), which leads to equivaient equa-
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tions for the quaternion
f@*) = F(A®@*) = f(m) V7, (7a)
or
f(@*) = f(nf,n7,m3,n3) = 0. (7v)
Consider now the intermediate solution of equation (7b) in terms of the Rodri-
gues vector, defined as
1 T
pENn =—|m{, (8)
N4
m
which leads to

g(p") = <——-'—— £ Ch - =0. (9
VI+ P VIt VIt P VI+ o]
Once the desired solution, p*, has been determined, the associated quaternion so-
lution, n*, can be reconstructed according to

—. _ 1 P’
" \/ﬁT,,T[ 1 ] - 10
This program works well, however, only when 7 is significantly different from
zero. Otherwise, even if 7, is nonvanishing, |p*| must be very large when 7. is
close to zero, indicating that the equations for p* must be nearly singular. The
solution for p* and, therefore, * must suffer from a substantial loss of numerical
significance. The remedy in this case is to divide out a different component, say
11, and define a vector, & = [a, a3, a.]", according to

a; = m/m, ay=n3/m and ai= n/m, (11)

which leads to

oo = (T Ve v v T

After determining o*, the desired quaternion is now reconstructed according to

P 1
" \/W[a‘] )

Similar operations are executed in the cases that n; or n; is divided out, lead-
ing to equations for the related quantities, 8* and ¥*, respectively. These are one
example of the four algorithms which arise for computing 7*. Because of the
quaternion norm condition, equation (2), one component must be at least 1/2 in
magnitude. Therefore, one of these four algorithms must yield a quaternion
which is numerically acceptabie.

Such a program, though workable, is necessarily very complicated since four
separate systems of equations are developed. It must be emphasized, however,
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that the singularity of p is not an indication of poor behavior on the part of the
quaternion. which is generally trouble-free (in contradistinction to the Rodrigues
vector and the frequently troublesome Euler angles). Nor are the complexities as-
sociated solely with the explicit intermediate solution in terms of the Rodrigues
vectors. as shown, for example, by the four equations for the computation of the
quaternion from the direction-cosine matrix (see Application 2 below). In one
documented case, general eigenvalue methods applied to attitude determination
problems that have claimed to be free of this complexity [10]} can be shown,
nonetheless, to have simply transferred this complexity to a different segment of
the problem [11], in that case the initial condition. Thus. the need to develop
four sets of equations for the quaternion seems unavoidable.

The present work develops a simple efficient procedure for obtaining all four
sets of equations for generating the quaternion once one set is available which is
well behaved for one of the elements of % not close to zero. For the example
above, this method effectively obtains the equations for the three “nonstandard”
Rodrigues vectors. o*, B*, and y*, once a method has been developed for deter-
mining p* when 74 is very different from zero. It accomplishes this feat not by
truly deriving four sets of equations but by interposing in the calculation simple
transformations which allow the algorithm for p to be used for all four cases.

Sequential Rotation Theorem

Before developing a well-behaved method for solving for the quaternion, we ex-
amine a useful theorem on rotations. Consider rotations through 7 radians about
the coordinate axes, €,, €2, and €;

1 0 0 -1 0 0
R@,m=|0-1 0|, R@E.,m={ 01 of,
0 0-1 0 0 -1
-1 0 0
R@,m=| 0-1 0], (14)
0 01

and define three proper orthogonal matrices, 4A“, i = 1,2, 3, according to
A= AYR@,,m), A= AYR@®,m), and A4 = APR@E,, 7), (15)

so that A", i = 1,2,3, is the “surplus attitude matrix” following a prior rotation
through 7 about one of the three coordinate axes.’ The near-vanishing of 7 is
the result of the angle of rotation that characterizes 4 being close to . The fol-
lowing claim is now made:

Theorem (Sequential Rotations)

Given the three 49, i = 1,2,3, defined above and 4) = 4, the angle of
rotation of at least one of these four rotation matrices must be less than or
equal to 27/3.

’Generally. we use 4 to designate the attitude matrix and R to designate any rotation matrix.
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The proof is as follows: If R is an arbitrary rotation matrix, then 6, the angie of
rotation characterizing R, satisfies

1+2cos@=trR= R, + Rp; + Ry, (16)

so that the angle of rotation is a monotonically decreasing function of tr R. If
tr A = tr A = 0, then 8 < 27/3, and the theorem is proved. Suppose, on the
other hand, that tr A < 0. Consider then the equations for the §9,i = 1,2,3, de-
fined according to

1+2cosfV =trdV = A,, — An — A3, (17a)
1+2cos0P=trd? = -4, + An ~ An, (17b)
1+2cos8 =tr 4P = —-4,, — An + Aj;. (17c)

It is sufficient to show that at least one of the three remaining traces is non-
negative. Let A, A;, and 4. denote the three diagonal elements of A ordered
such that

A,’,‘ = Ajj = Au . (18)

if tr A is negative, it follows that at least one diagonal element of A must be nega-
tive. Thus, Ax < 0, and

Ai > Ay + A (19)
Therefore,
Ai—Aj— Au >0, (20)
which is equivalent to
tr A9 > 0. 21

This completes the proof.*
That 27/3 is the limiting value one can ensure for one of the four angles of
rotation can be seen by examining the proper orthogonal matrix

010
A=10 0 1], (22)
1 00
for which
tr AY =0, i=1,...,4. (23)

Note that the condition that at least one of the angles of rotation be no greater
than 277/3 is equivalent to the condition that at least one component of the quater-
nion be no less than 1/2. This follows from the fact that tr 4 = 0 implies.

[ = % V1 +tr A9 = % (24)
We shall see below (from equation (32)) that equation (24) is equivalent to
Inil = 1/2. (25)

‘Note that Shuster and Oh [12] state incorrectly that, by sequential rotations, the angle of rotation
in the computations can be made less than or equal to #/2. This error, fortunately, is not signifi-
cant for the development of the aigorithm derived there.



The Method of Sequential Rotations

The importance of the above result derives from the fact that an attitude prob-
lem in A can be transformed easily into an attitude problem in the 49, i = 1,2,3.
This transformation is generally much less burdensome than obtaining the four al-
gorithms as in the case of the solution of equation (7b). Thus, rather than develop
four different algorithms for the attitude matrix A, or attitude quaternion 7, one
transforms the original problem using one of the three rotation matrices given in
equation (14) and obtains four different functions F¥, i = 1,...,4, where

F9(A) = F(AR(;, ), i=1,2,3, and F¥A4) =F(4). (26)

The solution of the equations

FO(4) =0, i=1,....4, 27
or, equivaiently,

(OF) =0, i=1,...,4, (28)
leads to four corresponding AV, i = 1,...,4, or 3, i = 1,...,4, respectively,

each obtained by applying the identical algorithm to each of the transformed
problems.’ Since the function F(A) is usually a simple construct based on vectors,
and since the rotation through 7 about a coordinate axis only changes the signs
of two components of a vector, the transformation can usually be incorporated
with little effort into the function F(A). In fact, in estimation problems F(A) is
generally constructed from vector data and the transformed function can then be
obtained by applying the pre-rotation to the data. Thus, it is typically the data
which is transformed rather than the algorithm.

By the Sequential Rotation Theorem, the quaternion associated with at least
one of the *, i = 1,...,4, must have a scalar component which is far from
zero. It is then a simple manner, once 7** has been determined, to transform the
computed quaternion back to n*.

To reconstruct 7 from one of the 7), i = 1,2, 3, we note that for each of the
three rotations through = about the three coordinate axes, the related quaternion
is given by

1 0 0

—n 0 o 1 — 0

e, m) = ol ez, m) = ol and 7(e;, m) = 1’ (29)
0 0 0

respectively, and the surplus quaternions, which correspond to each of the surplus
attitude matrices, satisfy, in similar fashion to the surplus attitude matrices,

=7 @ 7@, 7, F=7FD@FHE:,w), and 7=7 @@, m),
(30)
'Since the computation of the direction-cosine matrix directly from equation (27), if this were

possible, would not icad to singularity problems, it is for the solution of equation (28) that the
Method of Sequential Rotations is intended.
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where ® denotes quaternion composition, which is given by
) o = NN +nn-n X n]
77 ® 1’ = ! / * 31
[ MM - NN @
Evaluating the quaternion products, the desired quaternion %, is reconstructed
from any of the surplus quaternions according to
0) @ (3

N4 3 - N2
~_ (= _ | 2P _| P 1
K B B e I Tl 32)
- |- (-af?

This method has been applied previously to optimal attitude estimation {12].

In the method outlined in the introduction, the transformation of the attitude
problem by prior rotation through 7 about the three coordinate axes, the solution
for 7 via p“, and, finally, the inverse transformation of the quaternion are
equivalent to computing the quaternion from either p, a, 8, or ¥. For example,
the rotation through 7 about the €, axis, leads equivalently to an algorithm
for a*.

Note that although the above discussion has formulated the attitude problem in
terms of the 49, i = 1,...,4, there is no requirement that the attitude matrix
ever be computed as an intermediate quantity. Nor need one necessarily always
formuiate the problem in terms of p®, i = 1,...,4, or solve for these quantities.

Applications

To illustrate the application of the Method of Sequential Rotations to attitude
problems we consider first least-squares attitude determination. The Method of
Sequential Rotations has been applied previously to the QUEST algorithm {12].
We illustrate its application here to the Y-algorithm of Davenport {13], in which
the problem of singularity was not considered, although it is certainly present. We
derive Davenport’s Y-algorithm as well in a manner much simpler than originally
presented.

As a second example we examine the problem of computing the quaternion
from the direction-cosine matrix. This ground has been tread many times be-
fore [3-9]. From a practical standpoint it would be surprising indeed if the pre-
sent technique had anything to add. It is interesting to note, however, that the
method of sequential rotations leads to Shepperd’s aigorithm [6], the most robust
and efficient of the aigorithms deveioped to date.

Application 1: Least-Squares Attitude Determination

A simple example of least-squares attitude estimation is the problem of deter-
mining the optimal attitude that minimizes the cost function {12-14]

13&8 . n
J(A) = 3 kzla,,lwk — AV}, (33)

where the a, are a set of positive weights that satisfy
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2ai=1. (34)
k=1
This cost function may be written equivalently as
JA) =1 - 3 aW, - AV (35)
k=t
=1 - tr(B'A4), (36)
where
B=3aWV]. (37

k=1

If equation (3) is now substituted into equation (36), the cost function assumes
the form

J@) = JA®) =1 = [97(S — shx)n + 2027 + s9i], (38)
where
Bn — Bxn
S=B+B", s=tuB and Z=|By — By |. (39)
B\, — By

In terms of the Rodrigues vector the cost function becomes finally

I(p) = J@(P) =1 = (1 + |pI)'[p"(S — sIna)p + 2Z7p + 5], (40)
which may be minimized over p, leading straightforwardly to the equation
[P*7(S = slis)p* + 2Z7p* + slp* — (1 + 19" [(S — slss)p* + Z] = 0.
(41)

Equation (41) is somewhat forbidding. A simplification of terms can be ob-
tained by taking the scalar product of equation (41) with p* which leads to

p*'(S — shya)p* = |p*l’s — (1 — 1p*|1HZ7p". (42)
Substituting this into equation (41) leads to the simpler equation {13]
[S=(Z7p* + 25)53]p* + 2 =0, (43)
which may be solved formally to yield
p* = ((Z'p" + 293y — S)'Z. (44)

The desired value of the Rodrigues vector can be evaluated by repeated substitu-
tion. For this algorithm to be efficient, however, a good starting value of Z'p*
must be available. To obtain such a starting value, note that substitution of equa-
tion (42) into equation (38) leads to

Jp)y=1-2"p* —s. (45)

Hence,
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Zp*=1-5-1(p")
~1-s, (46)

which provides the desire starting value.® Equation (44) was first derived by
Davenport [13] and called by him the Y-algorithm (because he used Y rather than
p to denote the Rodrigues vector).

Having developed the algorithm for p, it would be extremely burdensome (and
a significant source of human error) to reformulate the problem in terms of &, g
and ¥ in the manner described in the introduction. In particular, the parameteri-
zations of equation (39) in terms of scalars, vectors and 3 X 3 matrices con-
structed in a natural manner from B would be lost. However, it is readily apparent
that these equations can be obtained equivalently by solving for p*, i = 1,2,3,
obtained by transforming J(p), which is accomplished by transforming the V.
according to the method of sequential rotations

Vi) = R, mV., k=1,...,n, i=123. (47)

These transformations of the vectors are equivalent to computing new S, Z",
and s, i = 1,2,3, from

BY = BR(@&,m), i=12,3. (48)

The multiplication by R(&;, 7) simply changes the signs of two columns of B. The
Rodrigues vector for the transformed problems is solved in each case using
equation (44) but with the transformed matrix B“). The solution for the Euler-
Rodrigues symmetric parameters for each of the transformation is then given by
equation (32). Thus, the derivation of three new algorithms is replaced by a few
changes of sign.

Application 2: Quaternion Extraction

As a second example of this geometric approach. consider the problem of ex-
tracting the quaternion from the direction-cosine matrix [3-9)]. The most efficient
method is that published by Shepperd [6], in which the quaternion is computed
from one of the following sets of equations:

1 1
N==V1+ Ay + An + Ay, m=-—(An — An),
2 4n4

1 1
= —(A:“ - An), m= _—(AIZ - AZI) ’ (49)
4 4n.

1 1
TI|=?\/1 + Ay = An — A, m=-——(Ann + Az),
41"1

1 1
= — + A y = — — s
7 am (A 31) ul am (A — An) (50)

*Shuster and Oh [12] employed a somewhat more sophisticated method to determine the least-
squares attitude, which equivalently lead to this starting value for Z'p*. This method also pro-
vided a discriminator, which couid determine the necessity and the suitability of a prior rotation
before the quaternion was actually computed.
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1
772‘—“7\/1 = A+ An — A,

1
7= R(Azs + A3),

1
113=7\/T—A11"A22+A33,

1
M =——(An + Az),
4n,

Shuster and Natanson

1
m=a- (A + An),
2

1

m = Z;(A:n - An), (51)
1

m= 4—m'(A31 + An),
1

N = Z'T;;(AIZ An). (52)

One evaluates that set of equations for which the argument of the square root is
largest, or, equivalently, as shown by Shepperd (6}, according to whether tr A4, 4;,,

Az, or Ais, respectively, is largest.

Shepperd’s algorithm. it turns out, follows directly from the method of sequen-
tial rotations. To see that his method is equivalent to the first set of equations,
equation (49), augmented by the method of sequential rotations, let us apply a
rotation about é, to A and examine the expression for the quaternion obtained
using A"’ as an intermediate argument. Thus, we compute the intermediate

quaternion, 1'”), corresponding to

An _AIZ _AIJ
AV =1Ay =~An -Axn (53)
Ay —Ap; —Asn
Recalling equation (32)
1
m =" =3 Vi +tr AY
1
=7 V1+ Ay — Ay — A, (54a)
m = =) = — (A - AY)
; 4n}"
1
= 4_m(A|2 + An), (54b)
1
n=n{ = 4—172.—,(4491’ - AY)
1
= 4_m(A13 + As), (54¢)
1
SNt} I SN (| PR 1}
N4 ni 41"(1)(4423 As7)
1
- 4—m(A23 - A3), (54d)

which is the same as equation (50). Equations (51) and (52) follow in a similar
manner from the computation of 7'” and 7, respectively.
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Discussion

The utility of the method of sequential rotations is that it eliminates the need
to construct four substantially different versions of an algorithm for computing
the quaternion in order to avoid the loss of significance resuiting from the near
vanishing of a quaternion component. Stated in other terms, it presents a simple
paradigm for constructing the four versions of a quaternion computation aigo-
rithm. Thus, once an algorithm is available which is trouble-free when 7, is very
different from zero, the method of sequential rotations automatically produces the
algorithm for the associated cases in which 7;, 12, or s is different than zero.
The arithmetical operations required by this method are generally much simpler
than deriving all four algorithms individually in a manner similar to that pre-
sented in the introduction. The prior multiplication of the attitude matrix by a
rotation matrix for a rotation through 7 about one of the coordinate axes can be
accomplished simply, in this case by changing the signs of two of the columns of
A or two columns or rows of some related matrix in the problem. The reconstruc-
tion of the quaternion likewise can be accomplished by only two sign changes and
a reordering of the components. The need to use such a construction is not al-
ways present. However, in cases where an estimate of the quaternion must be
computed without prior knowledge, and, hence, it cannot be known ab initio that
a single algorithm will yield a numerically acceptable result, this method is less
burdensome, certainly, than computing one or more sets of Euler angles or sepa-
rately deriving solutions for each of the four varieties of the Rodrigues vector.

An interesting by-product of this work is that the four related algorithms for
extracting the quaternion from a direction-cosine matrix can be understood geo-
metrically, essentially by referring the quaternion to one of four intermediate
reference frames, rather than just as a numerical trick to avoid the singularity of
the square-root function. Shepperd’s aigorithm is sufficiently simple that the four
algorithms can be derived explicitly and this is supposedly the path followed by
Shepperd [6]. Most attitude problems (for example, Application 1) cannot be so
easily treated.

Unfortunately, the method of sequential rotations does not provide the means
for determining which of the four algorithms is preferred. The figure of merit for
determining the best of the four algorithms must come from the single algorithm
to which the method of sequential rotations is applied. Very often the numerical
difficulty one seeks to avoid appears as a division by a number close to zero. One
therefore tests this quantity for each of the four algorithms or simply applies the
four pre-rotations (including the null rotation) until an acceptable value for the
divisor is found. This is the approach of the QUEST algorithm [12], to which
the method of sequential rotations was first applied.

Conclusions

It has been demonstrated that aithough the quaternion is a nonsingular repre-
sentation of the attitude, nonetheless practical solutions for the quaternion are
generally singular and the singularity is avoided generally by choosing one of four
possible algorithms for calculating the quaternion. These four algorithms are for-
mally identical (within an overall sign) but have differing numerical properties. At
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least one of these algorithms will always be well behaved numerically. A simpie
geometrically-based methodology has been developed for obtaining all four algo-
rithms for calculating the quaternion once one (possibly singular) algorithm is
known. As examples of the application of this methodology we have considered
least-squares estimation of the quaternion from vector data and the extraction of
the quaternion from the rotation matrix. In the latter application we show that
the proposed methodology leads directily to Shepperd’s aigorithm, the most effi-
cient and best behaved numericaily of the current algorithms for calculating the
quaternion from the rotation matrix.
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