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The Quaternion in Kalman Filtering

Malcolm D. Shuster∗

Simple results are presented for the sensitivity matrix of general

attitude measurements to the quaternion, which are both constrained

and unconstrained with respect to the quaternion unit norm. It is

shown that for unconstrained maximum likelihood estimation, optimally

restoring the quaternion norm is equivalent to estimating only the three

independent parameters.

INTRODUCTION

Generally, an attitude measurement consists of a collection of scalars, each of which can be

interpreted as an inner product, or as a function of these inner products. This occurs because

an attitude measurement is always dependent on a sensed direction and the inner products are

simply the components of this direction with respect to a coordinate system, usually �xed in the

spacecraft body if the direction is that of a vector external to the spacecraft.

Consider the following example. Let v be an arbitrary vector with representations vB and vI
with respect to the body and inertial coordinate systems, respectively. If A, the attitude matrix,

transforms representations from the inertial to the body system, then

vB = A vI . (1)

For a magnetometer, the measurement consists ideally of the three components of the magnetic

�eld in the magnetometer frame. Hence, if v is the magnetic �eld vector, we may write the

vector measurement as

z =








x · v

y · v

z · v





+ ε =







xTBAvI

yTBAvI

zTBAvI





+ ε , (2)

where 
x, 
y and 
z are the three coordinate axes of the magnetometer, and ε is the measurement

noise. For a focal-plane sensor, typi�ed by vector Sun sensors and star trackers, the measurement
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takes the form of two scalar measurements

z1 =
xTBAvI
zTBAvI

+ ε1 , and z2 =
yTBAvI
zTBAvI

+ ε2 , (3)

where now v is the unit vector of the sensed direction. Thus, in calculating a sensitivity matrix,

we are led to examine scalar measurements the form

z = uTA v+ ε , (4)

where u and v are two arbitrary 3 × 1 column vectors and A is the attitude matrix, a 3 × 3
orthogonal matrix. It might seem that Eqs. (3) are not compatible with this form. However, we

will see that more general measurement models, such as that of Eqs. (3) can be accommodated,

as far as the sensitivity matrix is concerned by a suitable de�nition of the column vector u, as

we demonstrate below.

Since the attitude matrix A depends on only three independent parameters, it follows that z
is sensitive to only three independent parameters. One could choose these three independent

parameters to be some set of the three Euler angles or the Rodrigues (or Gibbs) vector. 1,2

These, however, are not regular everywhere and are inconvenient for practical calculations

because of the complicated functions which must be di�erentiated. We therefore choose a

di�erent parameterization. If we have previous information about the attitude, so that we know

that A must be close to some a priori value A(−), then we can write

A = (δA)A(−) = exp{ [[∆ξ ]] }A(−) , (5)

where ∆ξ is the rotation vector of a very small rotation δA. Here, [[∆ξ ]] is the 3×3 antisymmetric

matrix

[[∆ξ ]] ≡







0 ∆ξ3 −∆ξ2
−∆ξ3 0 ∆ξ1

∆ξ2 −∆ξ1 0





 , (6)

and exp{ · } is the matrix exponential function. Euler's formula in terms of ∆ξ becomes

δA = exp{ [[∆ξ ]] } = cos |∆ξ| I3×3 +
1− cos |∆ξ|
|∆ξ|2

∆ξ∆ξT +
sin |∆ξ|
|∆ξ|

[[ ∆ξ ]] , (7)

which, because ∆ξ is very small, we may write approximately as

δA = I3×3 + [[∆ξ ]] , (8)

where the matrix I3×3 is the 3×3 identity matrix. Note that the computation of δA will be simpler

if it is de�ned not as a small rotation vector as in Eq. (5) but as twice the Rodrigues-Gibbs

vector.1,2 Equation (8) will still hold.

Substituting Eqs. (5) and (8) into Eq. (4) leads to

z = uTA(−) v+ uT [[ ∆ξ ]]A(−) v+ ε (9a)

= uTA(−) v+
(

u ×A(−)v
)T

∆ξ + ε (9b)

= zo +Hξ

(

A(−)
)

∆ξ + ε , (9c)
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and we have used the fact that

[[a ]]b = −a× b = b× a = −[[b ]]a . (10)

Thus, the sensitivity matrix Hξ(A(−)) is given by

Hξ

(

A(−)
)

=
(

u×A(−)v
)T
. (11)

Searches for an optimal A which best satis�es a set of measurement equations of the form given

by Eq. (4) are best carried out by successively estimating ∆ξ and updating A using Eq. (5) to

obtain A(−) for the next iteration. Generally, some non-optimal method supplies the initial

value of A(−).
If the measurement is an arbitrary scalar function of the representation of the measured vector

in body coordinates, then we may write successively

z = f(Av) + ε (12a)

= f
(

A(−)v+ [[∆ξ ]]A(−)v
)

+ ε (12b)

= f
(

A(−)v− [[A(−)v ]] ∆ξ
)

+ ε (12c)

= f
(

A(−)v
)

−
[(

A(−)v
)

×∇f
(

A(−)v
)]T

∆ξ + ε (12d)

= f
(

A(−)v
)

+Hξ∆ξ + ε (12e)

which amounts to replacing u by ∇f(A(−)v) in the earlier equations. This allows us to

accommodate focal-plane measurements as given by Eqs. (3) within our model.

For the special case that z is a 3× 1 matrix of the three components of Av in the body frame,

then

z = Av+ ε (13a)

= A(−)v− [[A(−)v ]] ∆ξ + ε , (13b)

a form which has been used to advantage in other studies. 3−5

Likewise, Eq. (5) can be expressed in terms of the quaternion as

q̄ = δq̄ ⊗ q̄(−) =





sin(|∆ξ|/2)
|∆ξ|/2

∆ξ

2

cos(|∆ξ|/2)



⊗ q̄(−) (14a)

≈
[

∆ξ/2

1

]

⊗ q̄(−) , (14b)

which is the parameterization for the Kalman �lter update advocated by Le�erts et al. 6

Not all workers follow this approach. Bar-Itzhack,7 for example, prefers to write the correction

of the direction-cosine matrix in the form

A = A(−) + ∆A . (15)
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and the quaternion correction in the form8

q̄ = q̄(−) + ∆q̄ . (16)

The purpose of this paper is to develop sensitivity matrices corresponding to both Eq. (14) and

Eq. (16) and to discuss their implementation in estimation problems.

Estimation strategies using the additive corrections su�er from several drawbacks. Firstly, some

of the elements of the quaternion and the direction-cosine matrix are constrained. Hence, some

combinations of these elements must have exact values and, therefore, the associated covariance

matrix of the full quaternion or direction-cosine matrix is singular. This is a serious drawback,

since most practical applications require that these matrices be invertible. The practice7,8 has

been e�ectively to replace the zero eigenvalue of the covariance matrix by an in�nite value and

trusting that the constrained combinations, because they are not observable, will not mix into the

estimate of the physically meaningful combinations of elements. Several numerical experiments

have been carried out of these ad hoc approaches9,10 , which seem to yield reasonable results.

A careful and convincing theoretical analysis, however, remains to be performed.

Though this work does not advocate procedures for estimating the quaternion without taking

account of the unit-norm constraint, it does present forms for the sensitivity matrix which are

much more transparent and more compact than those presented in Ref. 8. At the same time,

by exploiting the result of Eqs. (11) and (13) it is possible to arrive at alternate forms for

the sensitivity matrix which are norm-preserving within the linear approximation and numerical

round-o�.

The problem of all of these unconstrained correction algorithms is that they have no math-

ematical justi�cation for neglecting the constraint. We must therefore ask the question: under

what circumstances can we understand these unconstrained corrections rigorously and in a rigor-

ous fashion impose the constraint on them? The answer is to recognize that the unconstrained

correction is a su�cient statistic for the estimate of the properly normalized quaternion and then

to use this su�cient statistic as an e�ective measurement for the properly constrained quaternion.

It turns out that this rigorous approach yields the same result as a correction which acts only

on the three independent parameters of the attitude correction. Thus, a result of this work is

that the ad hoc schemes which do not address the unit norm of the attitude quaternion at every

step, should simply be discarded.

In the present work, we �rst develop simple expressions for the sensitivity of scalar and vector

measurements to the quaternion which ignore the norm constraint. We compare these with

earlier expressions which take account of the quaternion norm constraint to �rst order. We then

show the connection of the multiplicative and additive schemes for quaternion correction and

demonstrate that these are distinguished more by the treatment of the norm constraint than by

the multiplicative or additive nature of the correction. Finally, we show how the norm constraint

may be restored to the quaternion in a rigorous fashion if it has been ignored in the construction

of the quaternion correction.
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QUATERNION MEASUREMENT SENSITIVITY MATRIX

To develop a measurement sensitivity matrix in terms of the quaternion, we write

z = uTA(q̄)v+ ε , (17)

with now

A(q̄) = (q24 − |q|2) I3×3 + 2qqT + 2q4 [[q ]] , (18)

and

q̄ =

[

q

q4

]

. (19)

Then

Hq

(

q̄(−)
)

≡ ∂z

∂q̄

∣

∣

∣

∣

q̄(−)
= uT

∂A(q̄)

∂q̄

∣

∣

∣

∣

q̄(−)
v . (20)

Explicit di�erentiation leads to

Hq(q̄)∆q̄ = 2
[

(u · v)(q4∆q4 − qT∆q+ qT (uvT + vuT )∆q

+ (u × v) · q∆q4 + q4 (u × v)T∆q
]

, (21)

where for convenience, we have discarded the designation (−) of q̄(−) for the moment. If we

write now

Hq(q̄) =
[

hT(q̄) | h4(q̄)
]

≡ h̄T(q̄) , (22)

then

h̄(q̄) = 2

[−(u · v)q+ (uvT + vu)q+ q4(u × v)

(u · v)q4 + (u × v) · q

]

= −2M(u, v) q̄ . (23)

The matrix M is symmetric and traceless and can be factored as

M(u, v) =

[

[[u ]] u

−uT 0

] [−[[ v ]] v

−vT 0

]

. (24)

If we de�ne now

ū =

[

u

0

]

and v̄ =

[

v

0

]

, (25)

then we can write

M(u, v) = { ū }L { v̄ }R . (26)

where { · }L and { · }R are the matrix representations of quaternion multiplication2

p̄⊗ q̄ = { p̄ }L q̄ = { q̄ }R p̄ . (27)

Combining Eqs. (22) through (27) leads �nally to

Hq

(

q̄(−)
)

= −2 [ ū ⊗ q̄(−)⊗ v̄ ]T . (28)
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This result may be obtained equally easily by noting that

{ q̄ }L { ˜̄q }TR =

[

A(q̄) 0

0 1

]

, (29)

and di�erentiating

z = ūT { q̄ }L { ˜̄q }TR v̄+ ε (30)

For the case of a complete vector measurement, we have

z = A(q̄)v+ ε . (31)

we may regard this as a 3× 1 matrix of measurements of the form given by Eq. (4). Thus,

Hq

(

q̄(−)
)

= −2









(

1̄⊗ q̄(−)⊗ v̄
)T

(

2̄⊗ q̄(−)⊗ v̄
)T

(

3̄⊗ q̄(−)⊗ v̄
)T









(32a)

= −2
[

1̄⊗ q̄(−)⊗ v̄ | 2̄⊗ q̄(−)⊗ v̄ | 3̄⊗ q̄(−)⊗ v̄
]T

, (32b)

where

1 ≡





1
0
0



 , 2 ≡





0
1
0



 , and 3 ≡





0
0
1



 . (33)

It then follows that

HT
(

q̄(−)
)

= −2 { q̄(−)× v̄ }R
[

1̄ | 2̄ | 3̄
]

(34a)

= −2 { q̄(−)× v̄ }R
[

I3×3

0T

]

(34b)

= −2Ξ
(

q̄(−)⊗ v̄
)

. (34c)

The matrix Ξ(q̄), given by

Ξ(q̄) =

[

q4I3×3 − [[q ]]

−qT

]

, (35)

is familiar from the kinematic equation for the quaternion,2,6

d

dt
q̄ =

1

2
Ξ(q̄)ω , (36)

where ω is the body-referenced angular velocity. Thus,

Hq

(

q̄(−)
)

= −2ΞT
(

q̄(−)⊗ v̄
)

. (37)

The results of Eqs. (28) and (37) may be compared with the less compact (but equally correct)

expressions in Ref. 8. For a more general measurement model, it su�ces to replace u by

∇f(A(−)v) as before.
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A SENSITIVITY MATRIX WITH NORM CONSTRAINT

Equation (36) provides the �rst step of the proper path for obtaining a sensitivity matrix which

embodies the norm constraint. The change in the quaternion is related to the change in the

error vector ∆ξ in a manner similar to the quaternion kinematic equation according to

∆q̄ =
1

2
Ξ(q̄)∆ξ . (38a)

Solving for ∆ξ,

∆ξ = 2ΞT(q̄)∆q̄ . (38b)

Combining this with Eq. (9b) yields

z = uTA(−) v+ 2
(

u ×A(−)v
)T

ΞT
(

q̄(−)
)

∆q̄ + ε . (39)

Hence, the sensitivity matrix for a scalar measurement must be6

Hconstrained
q

(

q̄(−)
)

= 2
(

u ×A(−)v
)T

ΞT
(

q̄(−)
)

(40a)

= 2
[

Ξ
(

q̄(−)
)(

u ×A(−)v
)]T

. (40b)

As an alternative approach to including the constraint, straightforward di�erentiation of

z′ = (q̄Tq̄)−1uTA(q̄)v+ ε , (41)

however, where the quaternion norm is maintained explicitly, leads to

Hconstrained
q

(

q̄(−)
)

= 2[ ū ⊗ q̄(−)⊗ v̄ ]T [ I4×4 − q̄(−)q̄(−)T ] , (42)

and it has been assumed that q̄T(−)q̄(−) = 1. The equivalence of Eqs. (40) and (42) is not

obvious.

Such a sensitivity matrix maintains the unit-norm constraint to �rst order in ∆q̄ because of the

structure of Ξ(q̄). Note that use of this sensitivity matrix does not guarantee the preservation

of quaternion normalization due to the inadequacy of the linearization which motivates the

sensitivity matrix and the e�ect of numerical round-o� error. It does, however, reduce the

growth of the norm errors.

A similar result can be used to obtain a sensitivity matrix in terms of the Euler angles. If the

body-referenced angular velocity is related to the Euler angle rates by2

ω =M(ϕ, ϑ, ψ)





ϕ̇
ϑ̇
_ψ



 ≡M(φ)
d

dt
φ , (43)

then by trivial inspection, the sensitivity matrix to changes in the Euler angles for a scalar

measurement is

Hφ

(

φ(−)
)

=
(

u×A(−)v
)T
M
(

φ(−)
)

. (44)
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Simple expressions2,11 exist for the matrix M(φ). The expression of Eq. (44) may be compared

to an equivalent formula in Ref. 12.

The sensitivity to the multiplicative correction of Eq. (14) is, in fact, within a factor of 2 the

same as that for ∆ξ developed earlier. We need only note that

δq =
1

2
∆ξ , (45)

where again δq is the vectorial part of δq̄.

ADDITIVE AND MULTIPLICATIVE CORRECTIONS

Much e�ort has been expended on contrasting the additive and the multiplicative correction

of a quaternion.9,10 This distinction is arti�cial and misleading, as we shall now show.

Let us write the relation between the updated and predicted quaternions as

q̄(+) = q̄(−) + ∆q̄(+) , (46)

the so-called additive approach. The components are all resolved with respect to inertial axes.

Let us examine the same equation expressed with respect to the predicted spacecraft body frame,

i.e., we express all rotations as rotations from the predicted spacecraft body frame. Denoting

the quaternions of rotation with respect to this frame by q̄′ where

q̄′ = q̄ ⊗ q̄−1(−) , (47)

it follows that

q̄′(+) = 1̄ + ∆q̄′(+) , (48)

where 1̄ ≡ [ 0 0 0 1 ]T is the identity quaternion. If we write now

δq̄(+) ≡ q̄′(+) , (49)

then it follows that

q̄(+) = δq̄(+)⊗ q̄(−) , (50)

which is the so-called multiplicative correction, which we have computed �additively.� Thus,

the distinction between the additive and the multiplicative formulations of the Kalman �lter is

not one of the fundamental mechanization of the �lter but simply of the frame in which it is

desired to compute the update. These two formulations are both present in Ref. 6, and have

been studied numerically by Ferraresi.13

Where the important distinctions do lie is in how ∆q̄ or ∆q̄′ is calculated, that is, whether

it has three or four independent parameters, and, consequently, whether δq̄(+) has unit norm.

Thus, one should speak more correctly of a �three-dimensional� and a �four-dimensional� update.

The misleading nomenclature �additive� and �multiplicative� correction seems to be ingrained,

however. Note that if the �additive� correction is done in a manner consistent with the true

degrees of freedom, then it follows that6

∆q̄ = Ξ
(

q̄(−)
)

δq , (51)
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where δq is the vectorial part of δq̄.

From the earlier discussion it is clear that a correct approach is obtained by expressing this

quantity in terms of some representation of the attitude of minimal degree. In this case it is

clearly advantageous to work from the spacecraft body frame so that this minimal-dimensional

representation will be far from a singularity, and it will be most revealing to compare the results

of Ref. 6 and Refs. 9 and 10 in that frame. The results of Refs. 9 and 10, however, are not

directly comparable to Ref. 6 because the former rest on the attitude Kalman �lter of Bar-Itzhack

and Oshman.8 However, many points of commonality will be apparent.

RESTORATION OF QUATERNION NORMALIZATION

Consider now the estimation of a constant quaternion from scalar measurements of the form

given by Eq. (4). We wish to compute the attitude estimate from these measurements, using an

approximate estimate of the attitude as a point of departure. Thus, we measure the quaternion

from the a priori estimate of the body frame, so that q̄(−) = 1̄. The treatment here follows a

schematic treatment done earlier for the restricted case of a two-dimensional world. 14

The measurement model leads to a residual of the form

νk ≡ zk − zo,k = Hk∆q̄ + εk , k = 1, . . . , N , (52)

with Hk given as above. Our discussions will be true also for batch estimation, and holds for both

scalar and vector measurements with the appropriate modi�cation of the column dimensions of

zk, νk and Hk. For simplicity of notation, we shall examine batch estimation. For linear Gaussian

measurements, the Kalman �lter is just a sequential mechanization of the batch estimator.

The maximum likelihood estimate of ∆q̄ (for the additive quaternion correction, which is not

constrained to preserve the norm) is given by

∆q̄ ∗add = Pqq p̄add =

[

∆qadd
∆qadd

]

, (53)

where the 4× 4 covariance matrix, Pqq, and the information quaternion, p̄, are given by

Pqq =

[

N
∑

k=1

HT
k R
−1
k Hk

]−1

, p̄ =
N
∑

k=1

HT
k R
−1
k νk . (54)

and Rk is the covariance matrix of the measurement noise. As stated above, we will assume

that all representations are de�ned with respect to the a priori body frame, so that, e�ectively,

q̄(−) = 1̄.

For the �multiplicative� correction (which is norm-preserving) the estimate for the same data

is (note that we estimate only the vectorial coordinates and determine the scalar component

from the norm condition)

∆q ∗mult = Pmult pmult , (55)
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with

Pmult =

[

N
∑

k=1

HT
1,k R

−1
k H1,k

]−1

=
(

P−1qq

)−1
11

, (56a)

pmult =
N
∑

k=1

HT
1,k R

−1
k νk , (56b)

and we have written

Hk =
[

H1,k |H2,k

]

, (57)

where H1,k is the partition which includes the �rst three columns of Hk, and H2,k is the partition

containing the remaining column. It follows that

pmult = padd , (58)

where padd denotes the vectorial components of p̄add. Hence, we can �nd a relation between

the �additive� and the �multiplicative� corrections to the quaternion by solving Eq. (53) for p̄add
in terms of ∆q̄ ∗add and using the value of padd from this expression in Eq. (56). This leads to

∆q ∗mult = ∆q ∗add +
(

P−1qq

)−1
11

(

P−1qq

)

12
∆q ∗4 add , (59)

where, consistent with the partition of Hk, we have partitioned the 4× 4 quaternion covariance

and information matrices as

Pqq =

[

(Pqq)11 (Pqq)12

(Pqq)21 (Pqq)22

]

and P−1qq =

[

(P−1qq )11 (P−1qq )12

(P−1qq )21 (P−1qq )22

]

. (60)

We will return to this equation soon.

The additive correction ∆q̄ ∗add allows us to construct an optimal quaternion q̄ ∗add,

q̄ ∗add = 1̄ + ∆q̄ ∗add . (72)

Because it does not necessarily have unit norm, q̄ ∗add does not without further e�ort have

an unambiguous connection to the attitude. However, we note that although q̄ ∗add is not a

�quaternion of rotation,� for an assumed linear Gaussian measurement model, it is nonetheless

a su�cient statistic15 for the attitude quaternion, certainly within the linear approximation of

Eq. (52). It is, in fact, an estimate of the quaternion of rotation, and we know also that were

the measurement noise covariance to vanish (perfect measurements), q̄ ∗add would have unit norm

and be the desired quaternion. Thus, denoting the desired quaternion of rotation by η̄, (η̄ always

has unit norm) we have that

q̄ ∗add = η̄ +∆η̄add , (62)

and

∆η̄add ∼ N (0̄, Pqq) , (63)

with Pqq given by Eq. (54). Hence, the negative log-likelihood function of q̄ ∗add given η̄ is

J(q̄ ∗add | η̄) =
1

2

[

(q̄ ∗add − η̄)TP−1qq (q̄ ∗add − η̄) + log detPqq + 4 log 2π
]

. (64)
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and the maximum likelihood estimate of η̄ is simply

η̄ ∗ = arg max
η̄ : η̄Tη̄=1

J(q̄ ∗add | η̄) , (65)

where, since we know that the true quaternion must lie on the manifold of unit four-vectors, we

must maximize the negative log-likelihood subject to the norm constraint.

We handle the constraint in the usual way, using Lagrange's method of multipliers, optimizing

the quantity

J(q̄ ∗add | η̄) +
1

2
λη̄T η̄

without constraint, and then choosing the value of the Lagrange multiplier, λ, for which the

constraint is satis�ed. Di�erentiating the above expression with respect to η̄ and setting the

derivative equal to zero leads to

η̄ ∗ =
(

I + λPqq
)−1

q̄ ∗add , (66)

and λ is a solution of

f(λ) ≡ η̄∗T(λ) η̄(λ) = q̄ ∗Tadd

(

I + λPqq
)−2

q̄ ∗add = 1 . (67)

We expect λPqq to be small. Therefore, it will usually be su�cient to calculate λ using one

iteration of the Newton�Raphson method with vanishing initial value. Thus,

λ ≈ 1− f(0)
f ′(0)

=
1

2

(

q̄ ∗Tadd Pqq q̄
∗
add

)−1 (
q̄ ∗Tadd q̄

∗
add − 1

)

. (68)

To lowest nonvanishing order

q̄ ∗add ≈ 1̄ , and q̄ ∗Tadd q̄
∗
add − 1 ≈ 2∆q4 add . (69)

Hence,

λ =
(

Pqq
)−1
22

∆q4 add . (70)

Substituting this in Eq. (66) leads to lowest order in ∆q̄ ∗add

η̄ ∗ =
(

I + λPqq
)−1

q̄ ∗add (71a)

≈
(

I − λPqq
)

q̄ ∗add (71b)

= q̄ ∗add −∆q ∗4 add
(

Pqq
)−1
22
Pqq q̄

∗
add . (71c)

The vectorial component of the desired optimal quaternion is simply (to this same order)

η ∗ = ∆qadd −
(

Pqq
)−1
22

(

Pqq
)

12
∆q ∗4 add . (72)

But

−
(

Pqq
)

12

(

Pqq
)−1
22

=
(

P−1qq

)−1
11

(

P−1qq

)

12
, (73)
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so that, in fact, comparing Eq. (83) with Eq. (70) we have

η ∗ = ∆q ∗mult . (74)

Since the other component must also agree to linear order in ∆q̄ ∗mult, it follows that

η̄ ∗ = δq̄mult . (75)

Thus, the additive correction to the quaternion, followed by the normalization correction dictated

unambiguously by the maximum likelihood criterion , is identical (at least up to linear terms in ∆q̄ ∗)
to the so-called multiplicative correction. It is hard to imagine that any other answer could have

been possible. Obviously, it is less burdensome to calculate the multiplicative correction directly.

Identical arguments hold for sequential correction of the quaternion in the Kalman �lter.

DISCUSSION

Simple, compact expressions have been obtained for the sensitivity of attitude measurements

to the quaternion, which both ignore and take account of the unit-norm constraint.

The implementation of estimation problems in terms of the four components of the quaternion

have been examined, and the additive and multiplication formulations of the quaternion correction

studied in detail. It has been shown that the distinction between these two processes does not

lie chiey in whether the correction of the a priori quaternion is carried out through matrix

addition or quaternion multiplication, but whether the unit-norm constraint is respected during

the correction process. Adherents of the additive formulation, generally, do not respect the

unit-norm constraint.

The additive correction, if done correctly, is identical to the multiplicative correction but

is much more burdensome. The �rst commandment of quaternion correction, therefore, is to

multiply. We emphasize that this result is not the product of some heuristic argument or arbitrary

ad hoc procedure to be �justi�ed� by experiment but the unavoidable conclusion to which one

is led unambiguously and rigorously by the estimation criterion.

Although Kalman �lter appears in the title, there has been no explicit mention of the Kalman

�lter in this work. The maximum-likelihood estimation techniques presented here are equivalent

to the Kalman �lter, however, provided we assume that the noise is Gaussian, 16 which is almost

always the case. The sensitivity matrices here are those which are used in the update steps

of the �lter to compute the residual, the residual covariance, and the Kalman �lter gain. The

negative-log-likelihood of Eq. (64) is not dependent on the speci�c form of the measurement

given by Eq. (4). The treatment here is therefore very general provided the measurement is

Gaussian.
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