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GEOMETRICAL PROPERTIES OF THE EULER ANGLES

Malcoim D. Shuster* and John L. Junkins !

The Euler angles are shown to provide a simple means for under-
standing some of the fundamental results of Spherical Trigonome-
try. Spherical Trigonometry, in turn, is used to develop a compact
expression for the composition of two sets of Euler angles.

INTRODUCTION

The Euler angles and spherical trigonometry are generally treated as separate subjects.
However, treating the two together will lead to new insights and some new results. Of particu-
lar interest for us has been the development of an expression for the composition of two rota-
tions, each parameterized by the Euler angles. Generally, to accomplish this composition, the
two rotations described by Euler angles sequences must first be expressed as direction-cosine
matrices, the two direction-cosine matrices multiplied together, and then the rules for extract-
ing Euler angles applied. It turns out that a much simpler procedure exists but is not generally
known. In developing such a procedure, a better understanding of Spherical Trigonometry is
also obtained.

SPHERICAL TRIGONOMETRY

Let A, B, and C be three unit vectors, which we may represent as three points on the unit
circle! as shown in Fig. 1.
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Fig. 1 A Spherical Triangle

Here a, b, and c are the lengths of the arcs of great circles connecting the three points. If
O (not shown) is the center of the unit sphere, then these three arc lengths are equal to the
three angles BOC, CO A, and AO B, respectively. In addition to these three arc lengths, we
may define the three dihedral angles, which are the angles between the planes defined by the
center and two of the vertices. Thus, the dihedral angle A is the angles between the planes
AOB and AOC. If we think of the angle as the angle of rotation of one plane into the other,
then the axis of rotation is A. The complete description of the spherical triangle in terms of
arc lengths and dihedral angles is shown in Fig. 2.

Fig. 2 A Spherical Triangle

To represent the three vertices of the triangle analytically, iet us choose the z-axis to coincide
with A, and let B lie in the zz-plane. Then

A=13, (1a)
B = cos ¢% + sin ¢cX, (1b)
C =cos bz +sinbcos AX+sin bsin Ay, (1c)
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Thus,

cosa=B-C =cos bcos c+sin bsinccos 4. (22)

Likewise,
cos b = cos ¢ cos a + sin ¢ sin a cos B, (2b)
cos ¢ = cos a cos b+ sin a sin b cos C, (2¢y

obtained by choosing Z and x appropriately in each case.

It follows also that

(A xB)-€ =5sin A sin bsin c,. (3;
From the cyclic invariance of the scalar triple product,
(AxB).C=(BxC)-A=(CxA) B, 4
whence
sin A sin b sin ¢ = sin B sin ¢ sin a = sin C sin a sin b. (5

Dividing all three members by sin a sin b sin c leads to

sin A sin B sin C

sin a sin b sin ¢

(€:

Equations (2) are the spherical law of of cosines for sides and Eq. (6) is the spherical law of sines.
There are additional useful and important results which we will obtain in conjunction with the
Euler angles.

THE EULER ANGLES

Any rotation matrix may be parameterized in terms of a symmetric sequence of Euler
angles?, which we write in the form

Reme(py 0 $) = R(8y, ¥) B(Dy,, 9) B(Dy, ) (7}

where 11, and @,,, are two distinct unit column vectors which are chosen from the set

1 0 0
ﬁl = 0 3 fl2 = 1 ) and ﬁs = 0 . (8)
0 ' 0 1

Thus,
1 0 0 cd 0 -—s0
R(0,,0)= |0 ¢0 s6|, R(§,,60)=]0 1 0 s (9ab)
0 —s8 cb s8 0 b
cd s 0
R(8,;,80)= | ~s6 ¢ 0], (9¢)
0 0 1
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Fig. 3 Displacement of the z-axis under a rotatin about the z-axis

where c8 = cos 8 and sf = sin 6. The three angles, ¢, 9, ¥, are usually restricted to the intervals
0<p<2r, 0<9<7n, and 0L ¥ <2r. (10)

We call the sequence of Euler angles appearing in the parameterization of the rotation matrix
in Eq. (1) symmetric in order to distinguish it from an asymmetric sequence of Euler angles in
which no two axis column-vectors arc identical. We particularize our discussion for the 3-1-3
sequence of Euler angles. However, the results will be true for any symmetric sequence.

SPHERICAL-TRIGONOMETRIC DEPICTION OF THE EULER ANGLES

Consider the action on the z-axis of a rotation described by 3-1-3 sequence of Euler angles
(¢, Y, ¥). Imagine that the rotations correspond to a sequence of physical rotations such that

R(1y, 1), for0<t<l1,
R(t) = { R(d,, 9(t - 1)) R(0, ), for1<t<2, (11)
R(1g, ¥(t - 2))R(G,, 9) R(l;¢), for2<t<3.

Under the first rotation, the z-axis is displaced in the y-direction by an arc length ¢ as
shown in Fig. 3. Note that we describe the displacement of the physical z-axis and not the
representation.

The second rotation being about the z-axis does not displace the z-axis. However, it ro-
tates the y-direction by an angle 9, so that the {urther movement of the z axis is along another
direction. The third rotation, about the new z-axis, displaces the z-axis again. The combined
action of all three rotations on the z-axis is depicted in Fig. 4. Thus, the two outer angles cor-
respond to arc lengths, and the medial angle to a dihedral angle. Many of the elements of the
direction-cosine matrix have the appearance of the spherical law of cosines. An examination
of the rotations required to connect the two axes whose direction cosine is being computed
will lead to a diagram much like Fig. 4.

Suppose now we consider a sequence of six rotations satisfying
R(4,, » — B) R(43, c¢) R(4,, # — A) R(43, b) R(4,, * — C)R(G3,a) = 1. (12)

Because the complete sequence of rotations must be equivalent to the identity rotation (we
will call such a sequence closed), it follows that the locus of any point on unit sphere, when the
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Fig. 4 Locus of the z-axis in response to a 3-1-3 Euler sequence

sequence of six rotations is written in a manner similar to Eq. (11), must be a closed curve. For
the z-axis, the locus will be a spherical triangle as shown in Fig. 2. Examine now the effect of
this sequence on the z-axis. The result must again be a spherical triangle, since only the three
rotations about the z-axis cause a displacement of z. However, now the arc lengths and the
dihedral angles are reversed leading to the spherical triangle shown in Fig. 5. (The locus of
the y-axis under this sequence of six rotations is an irregular right spherical hexagon.)

The spherical triangle of Fig. S is called the polar complement of the spherical triangle of
Fig. 2. The existance of the spherical triangle of Fig. 5, given the spherical triangle of Fig. 2 is
known as the Polar Complement Theorem.

n-B

Fig. 5 Locus of the z-axis in response to a closed 1-3-1-3-1-3 Euler sequence
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If we apply the law of cosines for sides to the complementary triangle we obtain

cos A = —cos B cos C +sin B sin C cos a, (13a)
cos B = —cos C cos A+ sin C sin A cos b, (13b)
cos C = —cos A cos B +sin A sin B cos c, (13¢c)

which is the spherical law of cosines for angles of the original spherical triangle of Fig. 2.

Thus, the Euler angles provide the vehicle for a very simple derivation of the Polar Com-
plement Theorem and the Law of Cosines for Angles.

COMPOSITION OF THE EULER ANGLES

Suppose we are given two successive rotations, the first described by a 3-1-3 sequence
of Euler angles (¢,, ¥,, ¥,), and the second described by a 3-1-3 sequence of Euler angles
(¥2, U2, ¥,). What is the 3—1-3 sequence of Euler angles (¢, 9, 9) of the combined rotation
as given by

Ra13(, U, ¥) = Ray3(02s 92y ¥2) Rara(eprs 91, ¥4)? (14)

Expanding each of the rotations and rearranging terms leads to
R(@,, ~9,) R(8;, ¥ — ¥} R(y, 9) B(i3, ¢ — ¢y) B(Dy, —9,) B(D3, -t — ,) = 1. (15)

Thus, the nine Euler angles satisfy the two spherical triangles of Fig. 6. Of these two figures,
the first gives the locus of the z-axis and the second the locus of the z-axis. We see immediately
from the diagrams that singularities in the expressions must occur when any of the arc lengths
or dihedral angles are 0 (or, equivalently, 27) or x. Thus, while the computation of the Euler
angles from the direction-cosine matrices is singular only for extreme values of the medial
angle, 9, the analytical behavior of the composition rule for Euler angles is clearly much more
diseased.

To compute an analytical form for the composition rule we note that the law of sines applied
to Fig. 6 yields

Sin((P—(Pl) = Sin(¢—¢2) = Sin(—¢2—¢1) (16)
sin(m +9,)  sin(w+9,) sin(m —9) ’
which may be solved to yield
. sin?d, .
sin (¢ = @) = ==L sin (¢, + 4), (17a)
. sind, .
sin (¥ — ¥,) = sin19l sin (¢, + ¥;). (17b)

Likewise, applying the law of cosines for sides to the appropriate vertex of Fig. 6a yields

cos () = cos ¥, cos(¥,) + sin 9, sin(J,) cos (7 + ¥; + ¢,), (18a)
cos (—v,) = cos ¥ cos(—~3,) + sin ¥ sin (—9,) cos (7 - ¥ + 9,), (18b)
cos (=1,) = cos ¥ cos(~v,) + sin ¥ sin (—9,) cos(7 ~ ¢ + ¢,), (18¢)
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Locus of the z-axis Locus of the z-axis

Fig. 6 Spherical Triangies for the Composition of 3—1-3 Euler Sequences

which may be solved to yield
_ cosv), — cos ¥} cos v,
coole =)=~ mdsmg,
cos ¥, — cos ¥ cos v
cos () — ;) = : 2

sin ¢ sin 9,
Combining these resulits leads finally to

¥ = arccos(cos J; cos ¥, — sin 9, sin J, cos (v, + 1)),

¥ = ¢, + arctan, (sin 9, sin 9, sin (@, + ¥,), cosd, — cos ¥ cos ¥,),

¥ = 9, + arctan, (sin 9, sind, sin (¢, + ¥, ), cosd; — cosd cos J,).

Similar resuits for a slightly restricted case were obtained previously by Lindberg®.

The above results can be obtained analytically from the examination of the equations

Rela(‘P = %1, d, Y- "/’2) = R131(191, Py + "/’1, '92),
Rya(=@ + @1, V1, 0y + %) = Byg (9, ¥ — ¥y, =7,),
Ra3(y + %1, 92, = + 1) = Rigy (=9, o — 1, 9).

(192)

(1%)

(20a)
(20b)

(20c)

(21b)
(21b)
(21c)

Calculating the (3, 3), (3, 1), (3, 2), (1, 3), and (2, 3) elements of these equations will, with
some manipulation, furnish the above results. The singularity conditions, however, so clear

from the spherical triangles, are difficult to extract from the equations.
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A similarly simple result does not hold, apparently, for the asymmetric sequences of Euler
angles (for example, the 3—-1-2 sequence). For this case, the simplest loci for the compositon
problem correspond to spherical quadrilaterals. Less efficient expressions than those devel-
oped here have been presented in an earlier work?.

CONCLUSION

The Euler angles provide us with a mechanical understanding of the Polar Complement
Theorem and a simple derivation of the spherical law of cosines for angles. Likewise, Spheri-
cal Trigonometry provides us with a simple and direct algorithm for combining two rotations
described in terms of symmetric sequences of Euler angles. These results, which do not seem
to be known generally, are satisfied by any symmetric set of Euler angles. Of more practical
importance is that the spherical trigonometrical relations provide a much readier picture of
the singularities involved in combining Euler angle sequences than would be obtained from a
cursory inspection of the equations. Fig. 6 and Egs. (20), the new resulits of this work, hold
for any of the six symmetric Euler angle sequences. We feel that the spherical trigonometric
approach provides the most efficient and elegant path to Equation (20).

ACKNOWLEDGEMENT

The authors are grateful to Professor John E. Cochran of Auburn University and Dr.
Thomas E. Strikwerda of the Johns Hopkins University Applied Physics Laboratory for in-
teresting and helpful discussions.

REFERENCES

1. JUNKINS, J. L., and TURNER, J. D., Optimal Spacecraft Rotational Maneuvers, Elsevier,
(1986).

2. WERTZ, J. R,, (ed.), Spacecraft Attitude Determination and Control, Kluwer Academic,
(1978).

3. LINDBERG, R. E,, Jr., Master’s Thesis, The University of Virginia, (1976).

4. SHUSTER, M. D,, and JUNKINS, J. L., “Some Interesting Properties of the Euler Angles,”
Proccedings, Third Pan-American Congress of Appied Mechanics, So Paulo, Brazil, January,
1993, pp. 523-526.

AAS 93-331 8





