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Introduction

ENERALLY, one has little cause to estimate an attitude
in spaces of dimension higher than three. This exercise,
however, will afford an insight into the workings of a well-
known attitude determination algorithm in three dimensions.
In addition, should the dimensionality of our worid ever in-
crease without notice, we will be ail the better prepared.
An n x n proper orthogonal matrix A satisfies

ATA = [nxn )
detA =1 (2)
Equation (1) is equivaient to n(n + 1)/2 constraints on the
matrix A. Hence, A can have onily n(n — 1)/2 free parameters.
as remarked by Bar-ltzhack! and Bar-Itzhack and Markley.:

Thus, A may be represented in terms of matrices of manifestly
smaller parameter dimension. For example,

A =exp{O} Q)
where © is an n x n antisymmetric matrix whose independent
elements are the n-dimensional generalization of the rotation

vector.! Likewise, one may write?

A=({U+GYI-G)! 4)
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where G is an n X n antisvmmetric matrix. whose independent
elements are the n-dimensional equivaient ot the Gibbs vec-
tor.>* The matrices @ and G are related by

G =tanh(6/2) &)
Writing
G = (lglh 0 = {[o]] = ((¢A]] (&)
where
0 Uy — U,
([uly=) -uy; O uy (7N
u, ~u, 0

the equations in n dimensions assume their familiar three-
dimensional forms,*

A =exp([[61]) t))
A=({+{g)(I-1e)" €))

and
g =tan/2)a (10)

(Note that we have chosen a different sign convention than
Bar-itzhack and Markiey.)

Attitude Determination Problem

Suppose that we are given N linearly independent vector
measurements W, k =1,...,N, which are the representations
of N n-dimensional vectors in the spacecraft reference frame.
These are related to ¥, k =1,...,N, the representations of
these same vectors in the primary reference frame according to

Wl’ =Ayk, k=l,....N (ll)
where A is assumed to be an n x n proper orthogonai matrix.
Equation (I 1) assumes that the measurements are perfect, i.e.,
noise free, which shouid be no more true in practice in n
dimensions than it is in three dimensions. (Fortunately, there
is not a well-established practice for dimensions higher than
three.) The assumption implied by Eq. (11), however, is simi-
lar to the one behind the triad method,’ so that Eq. (11) is not
without precedent.

The first question to be answered is, What is the mini-
mum value of N that permits a unique soiution? We remark
first that the N vectors amount to (Nn) total components. At
the same time, from Eq. (11), the N vectors are subject to
N(N + 1)/2 constraints of the form

Wi,-W;=V,-¥,, i=1..N, j=l,....N (12)

Thus, the total number of unconstrained components in the
vector measurements, i.e., the number of components that
carry independent information about the attitude, is Nn
~N(N + 1)/2. The minimum number of measurements, then,
is the minimum value of N satisfying

_N(N+l)>n(n-—l)

Ni
n 2 2

(13)

The equality. in fact, has two solutions, n — 1 and 2. Thus,
Npin=n -1 (14)
Ebert’ has offered a geometrical argument for this resuit.

Suppose that we are given 7 —m vector measurements. These
n — m vectors span a subspace V, _,, of dimension n — m of the
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n-dimensional vector space V.. The vector space V, may be
written, therefore, as the direct sum V, =V,_,,£V,, of this
subspace and the subspace of vectors perpendicular to the
n —m measurements. Clearly, any rotation within V,, will
leave the n — m measurements unchanged. Thus, forthen —m
measured vectors to define the attitude uniquely, it is necessary
that the dimension of V,, be so smail that rotations are not
possible. Thus. we must have either m =0 or i. The latter
vaiue leads to the smalier value of n —m and Eq. (14).

Thus, the attitude determination probiem is to determine an
n x n proper orthogonai matrix A given n — | linearly indepen-
dent n-dimensional vector measurements W, k =1,...,n - 1.

General n-Dimensional Algorithm
Given the n — 1 vectors ¥, k=1,...,n — |, we construct a
set of n — | orthonormal vectors 7., Kk =1,...,n — |, according
to the Gram-Schmidt orthogonalization.?® Thus,

ry=¥, Fo=r/|r|
ry= V= (F)- V2)Fy, Fa=ra/ir,y|
n-2
’n-|=yn-|—2(;k'yn—l);k, ;n-|="'l-l/;’n—ll “5)
Similarly, we construct ~ —1 orthonormal vectors 5.,
k=1,...,.n—1,fromthe W,,k=1,...,n—1. [t follows from
Eq. (11) that
$¢ = APy (16)

We now construct the vector 7, (and in a corresponding fash-
ion §,) according to

(Fade= L

(1062, 0 -1

Eiigein 0 (P (F2iy -~ (Fpli), ., (ID)

where (#),, denotes the mth component of 7,, and the sums
over each index are from | to n. The quantity ¢,,;,,, is the
Levi-Civita symbol in n indices, which is just the parity of the
permutation taking (I,2....,n)into (i\,i;,....i,) and vanishes
if the latter is not a permutation of the former. Thus, the
Levi-Civita symbol satisfies

€123-n = | (18)

e"|"""/’10I in —Eil THjendy In (l9)

The determinant of an n x n matrix M is often defined in terms
of the Levi-Civita symbol® as

detM= Y

iyeigees-olpy

€iriginMiyMay - May, (20)

where M), denotes the (k,ix) element of M. From Eq. (17)

$n)e= Y i AR (AR, - (ARpl)i,
i13i300 e rin =
= E €iyigrrigyl E AiiyAiviy Al ln
Pgedgeeciin oy J1ddeidn =
X (Fy)), (F2)jy - (Faci)y, 21
Thus,
(A73,) = E(Ar)fi,, Ga)i, = EAi,,{(En)i, = E €iliyrn
in In fyadge..os in
x X AniAny o Aiue A

Jid2aees Ja <1

><(il)j.(i'z)j:"'(;n—l)/.-nz(det/” E €y sn-it

Jiad2eeees, I -1

X (F)j, (F2)j, - (Facidj, =(Fa)e 22)
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so that
3, =AF, (23)

We can show likewise from the properties of the Levi-Civita
symbol in n dimensions that

Fe 7 =0, k=1l,....,.n-1 (24a)
$¢ -8, =0, k=1,...,n=1 (24b)
FooFpn=38,:3,=1 295)

[t follows that the two n x n matrices R and S defined accord-
ing to their columns by

R={;||;:v"'iin]l S=[3|,32,--~,3"] (26)

are each proper orthogonal and

S =AR (27)
Thus,
A =8RT (28)

is proper orthogonai and is the desired n x n attitude matrix.

Comparison with the Triad Method

This method bears a clear resemblance to the triad method*$
first published by Black® in 1964 to solve this particuiar at-
titude estimation problem in three dimensions. The resem-
blance is made all the stronger if we note that Eq. (17) can be
written as

(Fade=det|?) Py - Faoy 14 (29)
where 1,denotes a column vector every element of which van-
ishes except the £th, which is unity. Equation (29) is the gener-
alization in n dimensions of the vector product, which is
prominent in the triad method. The triad aigorithm, in fact,
had already been in use in the previous decade,!? and Eq. (28)
as the relation between a rotation matrix and the two ortho-
normal bases it connects can be found for three dimensions in
dyadic form in the works of Gibbs.!! One can only imagine
that if Eq. (11) were set before Gibbs he would have computed
the attitude matrix via the triad method.

The triad method has been variously called the aigebraic
method!2? or the Sun-Mag method, after the once two most
commonly used sensors to which this method was applied. In
the triad method, the two sets of orthonormai matrices are
computed according to

o= /vl (302)
B3 = Vi x Vo/|Vy X Vs (30b)
Py =F XF; (30c)

and correspondingly for §; , kK =1, 2,3. The primes distinguish
the quantities in the triad method from those just defined.

Clearly, 7 is identical to 7,. From the weli-known Grass-
man identity

ax(bxe)=(@-c)b —(a-b)c 31

we see that the definition of #; is equivalent to

ry==Vi+ (¢, V))p{ (32a)
Py =ry/lry| (32b)
Thus.
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Finally,
(73)e = L e (F1)i (P2 (34)
1Y)
sO that
Fi="F; 3%

R ={#, P35, Fi]= (P, ~Fy, Fi] (36a)
S =(s{, §1, 53] =18, ~5;5, ;] (36b)
5o that
R’ =RO, S’'=80 37
where
0
0=10 01 (38)
0 -1 0

is evidently proper orthogonai. The triad solution for the atti-
tude matrix is thus.

A=S8S'R'T=SRT (39)

and is, therefore, a special case of the general n-dimensional
method.

Conclusions

The problem of estimating an n x n proper orthogonal ma-
trix from N linearly independent vector measurements has
been considered. [t has been shown that a unique solution for
the proper orthogonal matrix exists provided that N=n - 1.
An aigorithm for constructing the attitude matrix based on the
Gram-Schmidt orthogonalization method was presented. The
special case of this algorithm for n =3 was shown to be equiv-
alent to the weil-known triad algorithm.
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