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The Kinematic Equation for the Rotation Vector

Different derivations of the kinematic equation for the rotation
vector are discussed within a commmon framework. Simpler and
more direct derivations of this kinematic equation are presented
than are found in the literature. The kinematic equation is
presented in terms of both the body-referenced angular velocity
and the inertially referenced angular velocity. The kinematic
equation is shown to have the same form in both the passive and
active descriptions of attitude.

. INTRODUCTION

A number of derivations [1-6] have been presented
of the kinematic equation of the rotation vector
defined as

0 =i 68

where § is the angle of rotation and i is the column
vector representing the axis of rotation. These different
derivations have much in common and all follow
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a general pattern. Three of these derivations are
essentially identical within a homomorphism.

There are likely no undiscovered magical
derivations of this equation. However, two of the
derivations already published can be considerably
simplified. After discussing the general character
of the published derivations of this equation, those
simplifications are presented.

Il. THE GENERAL METHOD

Each of the published derivations begins with some
other representation of the attitude, denoted here by S,
for which the kinematic equation is known and may be
written as d

—S =G(S, 2
S =G(Sw) @
where w is the body-referenced angular velocity

[6-8]. The representation S can be parameterized

as a function of the rotation vector and the angle of
rotation as

S =5(6,6). 3)
Thus, for example, the direction-cosine matrix can be
written

@6 =1+5010n+ =20 e (o)

where
0 Us —Uy
[w]]=|-us 0 w o)
U —Uy 0

and the related kinematic equation is

d
ZC =[[W]IC. ©)
It is, of course, possible to consider S as a function
of 8 alone. However, it is more convenient for the
discussion which follows to express separately the
dependence on 8 through 6.

Let F(S) be some differentiable function of S.
Differentiating F(S(6,8)) with respect to time leads
to

as OF . OF

d oF oS, : .
ZF(S) =35 [%9 + a—go] = 550 + 6—99' @)
Comparing (2) and (7) yields the system of equations
OF dé OF . OF

which yields an identity in 6, 6, 8, 8, and w, which we
can use to solve eventually for § as a function of w
and 6. Note that the derivatives in (7) and (8) with
respect to 6 and S are not simple, and the products
must be understood to imply a sum over elements as in
matrix multiplication.

In almost all of the derivations of the kinematic
equation for 8, in order to obtain an explicit expression
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for this quantity, the terms in § must be eliminated. All
of the derivations accomplish this in the same manner
which is as follows.

From (4) it follows that

trC =1+ 2cosf ®
where tr denotes the trace operation. Hence
4 ¢ = —2sin06 10
ZTC= : (10)
This is also equal to
2 C = te([]IC)
= —2ﬁe 1)
Comparing (10) and (11), one obtains
|
6= 50 -w. (12)

In all of the derivations, 6, when it appears, appears in
the combination 6. Thus,

oF

=5 = H(©.00.

(3)

The combination 66 may be further manipulated to
yield

1
66 = 2(6-w)8
= %(sz +6 x (6 x w)) 14)
and finally
oF ,
aoe =-H(6,0), (sz +6 x (8 xw))
+9F 350(56,6),%) (15)

which is now solved for 8. All of the published
derivations amount to applying these steps to a given
function of some representation of the attitude.

It is interesting to note that the differentiation of

9=(9-6)/? (16)
leads to

6=-6-9

DY =

(17

so that @ and w have identical components along 6.
Consequently, it must be true that
b=w+fi®)8xw+1(0)0x Oxw) (18)

for some functions f;(6) and f>(6).

lll. PUBLISHED DERIVATIONS

In the work of Bortz [1], the function studied is the
vector

F(C)=(C-ChHr (19)

where r is some arbitrary column vector. The specific
value of r is unimportant since it is discarded in
the course of the derivation. Other derivations
predate that of Bortz. Stuelpnagel [9] gives a result
for the kinematic equation expressed in terms of the
antisymmetric matrix but omits the derivation as being
too long and too complicated. Bortz acknowledges an
unpublished derivation of Lanning [10]. Undoubtedly, a
classical derivation exists but has been forgotten.
Gelman [2] works directly with (6), which he writes
in terms of elements using the Levi-Civita symbol. The
properties of the Levi-Civita symbol are then exploited
to obtain relations for the temporal derivatives of
the axis and angle of rotation in terms of the angular
velocity and the inverse relation.
In the work of Nazaroff [3], the function is the
Rodrigues vector g, [6-8]

F(g) =g = (tan(8/2))h.

Nazaroff actually derives kinematic equations for  and
it and then determines 6 from

(20)

d dé di
-&-;9 (dt) +0<dt) (21)
Savage [4] employs the quaternion g which he
writes as 1
—sin(6/2) ) 6
7= [(95‘“(/)) ] @2)
cos(6/2)

The function F(g) consists of the vector components
of g. The derivations of Bortz, Nazaroff, and Savage,
all follow rather closely the program outlined above.
Hughes [6] uses the full direction-cosine matrix and
determines w as a function of § and # by evaluating

[[w]] = CT(6,)C(®,1n,6,1). (23)

This leads to three equations which are linear in §
and i, which Hughes then solves for these quantities.
Equation (21) then yields . Hughes’ method is
equivalent to the program outlined above with F(C) =
C, but he simply solves first for w as a function of 8
rather than vice versa. For lack of a better name, we
have termed equations like (23) the inverse kinematic
equation.

Jiang and Lin in the most recently published and
rather novel derivation [5] deviate from this pattern by
considering the equation

(C€-1n8=0 24)
which may be differentiated to obtain
(C-Db+Co=0. (25)
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With considerable effort this equation may be solved
for . While their starting point is very different

from that of the other authors, most of the remaining
steps of their derivation are very similar to those of
the derivations which proceeded theirs. In the work
of Jiang and Lin, w is the space-referenced angular
velocity, and the direction-cosine matrix is given in the
active description. In the passive description with the
body-referenced angular velocity, the more common
convention, their equation becomes

(C€T-no+CTo=0. (26)

(Note that 6 is an eigenvector with eigenvalue
+1 of both C and C7, so that (25) and (26) hold
simultaneously in both the active and passive
descriptions.) Substituting

CT = CTw])’ = -CTw]] @n

(26) may be transformed to

(I-C(6,0)8 = [[w]}6 (28)

a rather simpler equation than, in fact, appears in the
note of Jiang and Lin. The virtue of the method of
Jiang and Lin is that the quantity 6 does not appear
and, therefore, need not be eliminated. In revenge for
the loss of this chore, however, Jiang and Lin must
perform a complicated matrix inversion, which they
seem to accomplish by means of the Cayley-Hamilton
Theorem [11].

The comparison of these derivations is complicated
by the fact that some authors work in the active
description, while others work in the passive
description, and also some of the authors use the
body-referenced angular velocity while others use the
space-referenced angular velocity. The discussion of the
work of Jiang and Lin above illustrates this confusion
and the danger of taking a result out of the context of
its derivation without exercising due caution.

IV. YET ANOTHER DERIVATION

The derivation by the author is similar to that of
Bortz [1] but has been simplified considerably (and
the need for a helping vector r has been eliminated)
by taking advantage of the algebra of the 3 x 3
antisymmetric matrices [8]. These matrices satisfy

[[ul)” = —[[u]] (29)
[[ullv=-uxv (30)
[[]]? = — [’ + ua” (31)
[l = —|u[[u]] (32)
(NI = [vI[fu]] = —[[u x v]] (33)
w’[V]]+ [V]juu” = —[fux @x V)]l  (34)
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From (4)

—c” =29 011 = a6

(9)
and
(€~ CTy = a@)[[0]) + @ @)[61]
= a@)[G]] + @ @56 +6 x (O x )]
(%)

where a’(6) denotes the derivative of a(f) with respect
to 6. Likewise,

2(C~ €Ty = [wlic - Tl
=[WIC+CTIWl.  (37)
Substituting (4) into (37), this becomes
2 =Ty =20t + 52 qragen - onrRe)

1 cosO

(NI + [ETRIID.
(38)
Applying (31), (33), and (34), (38) becomes
(e chy =]l + Sy x
+ 1220 g2l - 16 x @ x ).
(39)

Equating the right members of (36) and (39) and
evaluating the simple derivative a’(6) leads to

sinf . sinf —fcosf 1

2
2 9 6-2 7 (9 w+ 0 x (0 xw))
sinf 1-—cosé
—2w+—o Oxw+ 2

X (—28%w — 0 x (6 x w)). (40)

Collecting terms,

(2ﬂ -+ cos€)> 6 x (6 x w).
(41)

Solving for 8 and simplifying the one trigonometric
expression which remains, one obtains finally

. 1
O=w+_-0xw+

> 0—12(1 — (6/2)cot(8/2))8 x (8 x w)

(42)
which is the desired result.




V. SAVAGE'S DERIVATION

The simplest and most direct of all derivations
is that of Savage [4]. Unfortunately, his work is not
easily obtainable, and his presentation is clouded by
the use of an older convention (which has existed
since Hamilton) in which scalars and vectors dwell
harmoniously in a common space in which they may
be not only multiplied by but also added to one
another. Savage’s derivation is repeated here in more
transparent notation.

Differentiating (22) leads to

6 b'(6)66
=0 foow] @
with
b@)= - sm(o /2); c(0) = cos(8/2) 44

the prime mdlcatmg again differentiation with respect
to 6. Recalling (14)

s , 1
dq=b(0)[g] .\ [b (0)5(02w+9x(9xw))] .

c'(9)8
(45)
The kinematic equation for ¢ is
d_ 1. 1 [[w]] w] [6(6)8
@?=20WT=3 | 1 o] [ c(6) ]
_1 b(8)0 x w + c(f)w
-3 —b(B)w -6 J ()

Comparing the vector components of (45) and (46)
yields

b(8)6 = - b'(e)%(ozw +8 % (0 xw))

+3b(6)0 x w + Jc(f)w. 47
Carrying out the simple differentiation, solving for 8,
and collecting terms leads directly to (42).

VI. INVERSE KINEMATIC EQUATION

The inverse kinematic equation for 9, i.e., the
equation for w as a function of 8, is simpler than the
kinematic equation and has the form

dae (l—cos0)9 de

Tar T\ e X ar

(O 0 (0x%0).

Hughes [6] derives this equation by developing (23),
which requires considerable effort. A simpler approach
is to use the rules for quaternion composition [6-8] to

write
()2

. (49)

Substituting (43) and noting

-b(6)8
7“=[ “] (50)
c(9)
leads directly to
w =2[bch + (b'c —bc')68 +b%0 x 6).  (51)

Evaluating the derivatives and collecting terms yields

sinf , 1 —cosG 1 siné

Noting finally the relation

66 = %(a-é)e = %(029 +6x(@x6) (53)

and substituting this into (52) leads directly to (48).

Vil. OTHER FORMS OF KINEMATIC EQUATION

The results above assumed that the direction-cosine
matrix was defined passively, that is, representations
of vectors are transformed under a change from an
orthonormal basis £ = {&;,&;,&3} to an orthonormal
basis £’ = {&],&,,&;} according to

(4)

Ugr = Cllg

where ug denotes the column-vector representation
of the abstract vector u with respect to the (abstract)
basis £. In most instances £ is an inertial basis,
frequently denoted by Z, and £’ is a body-fixed basis,
sometimes denoted by B. Also, w was taken to be the
body-referenced angular velocity, (that is, wg) so that
(6) is satisfied.

We can consider also the space-referenced angular
velocity wz, which satisfies

w =Cwg. (55)

Hence,

%:C = Clwr)

and (42) and (48) become, with respect to this angular
velocity,

(56)

é—wI-—-Oxw1+

92
x (1= (8/2)cot(8/2))8 x (8 x wz)  (57)
and
de 1—cosé de
w71 =—E—t— ( 02 ) 8 x E
+ (0—;.0) 8 x (e x %) (58)

The space-referenced angular velocity is seldom
used since the inertia tensor of a rigid body is not
constant in time with respect to an inertial coordinate
system.
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A more important complication comes from the
choice of an active or a passive description. In the
active description, the direction-cosine matrix is the
orthogonal matrix which transforms representations of
the inertial basis into representations of the body basis,
both respect to the inertial basis. Thus,

(E)e = C*'™(&)e (9
where (€;)¢ is the representation of the body basis
vector & with respect to the inertial basis.

Thus,
Caaive = CT. (60)
In the active description, (4) becomes
sinf 1—cos#
C(6.6) = I - ——[161 + —g—[6]” (6
and (6) becomes
d
—C=— . 62
=€ =-llic ©)

However, although (61) and (62) are different

in form from the equivalent equations in the

passive description, the rotation vector 8 and the
(body-referenced) angular velocity vector w have the
identical geometrical significance. Therefore, (42) and
(48) remain true in the active description.

VIII. DISCUSSION

All of these derivations, including the one offered
by the author, have much in common. In finding
the simplest method there is an obvious tradeoff
between two conflicting desires. On the one hand,
one wishes to have a system of equations of the
smallest possible dimension in order to minimize the
number of intermediate terms which must be cancelled
against one another. Thus, Bortz, Hughes, and Jiang
and Lin, who choose the direction-cosine matrix
as the intermediate representation, are forced ipso
facto to treat a system of dimension nine. The naive
consideration of dimension alone, however, would
lead one to the Rodrigues vector or (gasp!) the Euler
angles. On the other hand, one wants the kinematic
equation of the intermediate representation to be as
simple as possible, which means linear. This suggests
either the quaternion or the direction-cosine matrix
as possible candidates, of which the quaternion is the
clear winner. Thus, Savage must be credited with the
simplest derivation, which he has kept well hidden.

The author’s derivation, despite its forbidding
dimensionality, is nonetheless rather simple and
difect. This is because he has chosen to work as much
as possible with the 3 x 3 identity matrix and the
3 x 3 antisymmetric matrices. Thus, his operations
are largely similar to those for the quaternion [8],
although (29)-(34) must seem more complicated than
the quaternion algebra. The algebra of these 3 x 3
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antisymmetric matrices is an extremely valuable tool
for developing attitude identities, a fact that has been
recognized by many authors.
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