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ABSTRACT

The composition of Euler angles, often stated to be very complicated, simplifies immensely when the connec-
tion between the Euler angles and spherical trigonometry is exploited. This connection with the Euler angles
permits the simple derivation of the fundamental theorems of spherical trigonometry as well.

INTRODUCTION

Any rotation matrix may be parameterized in terms of a symmetric sequence of Euler angles [ 1], which we
write in the form

Rtmt(‘p’ ﬂv "/)) = R(ﬁt’ “/)) R(ﬁm1 19) R(ﬁt’ 90) ) (1)

where i1, and 1,,, are two distinct unit column-vectors which are chosen from the set
1 0 0
a, =0, d9,=j1], and 93=|0]. (2)
0 0 1

1 0 0 ¢l 0 —sb cd s6 0
R(G,,0)=10 ¢ s8], R, H=|0 1 0 , R(bz,0)=|—s0 c6 0f, 3)

Thus,

0 —s6 cf s0 0 cf 0 0 1
where ¢f = cos 6 and sf = sin 6. The three angles, ¢, 9, ¥, are usually restricted to the intervals
0<p<2r, 0<9I<7, and 0<y <27, 4

We call the sequence of Euler angles appearing in the parameterization of the rotation matrix in Eq. (1) symmet-
ric in order to distinguish it from an asymmetric sequence of Euler angles in which no two axis column-vectors
are identical. The problem we wish to address in particular in this note is as follows: Given two successive rota-
tions parameterized by {-m—¢ Euler angles (¢, ¥,, ¢,) and (p,, ¥,, ¥,), respectively, how does one construct
expressions for the ¢~m~¢ Euler angles (¢, ¥, ¢) of the combined rotation as a function of (¢,, ¥;, ¥,) and
(2, 9y, ¥y) satisfying

Ryme(#, 9, ¥) = Rypy(92, 935 ¥2) Rypm(1, 91, 1) 7 (5)

It turns out that spherical trigonometric considerations lead to a simple expression for the Euler angles of the
combined rotation.



a. Locus of the £-axis b. Locus of the m-axis

Figure 1. Loci of the body-coordinate axes

We note first that with some rearrangement Eq. (5) may be written as

Rymep = ¢1, 9, ¥ = ¥3) = Ry (91, 92+ ¥, 95) - (6)
If we compare the (3,3) elements of both members of Eq. (6) we find immediately that
cos ¥ = cosd, cosd, —sin ¥, sind, cos(p, + ;). N
Likewise, comparing the (3,1) and (3, 2) elements leads to the two equations
sin ¥ sin (¢ — ;) = sin Y, sin (g, +v,), (8a)
—sind cos(p — ;) = — cos J, sin¥; —sin Y, cos ¥, cos(p, + 9,), (8b)

which results in the expression

© = ¢, + arctan, (sin d; sin (p, + ¢,), cos 9 sind, +sinJ; cos I, cos(p, + ¥,)), (9a)
and a similar cumbersome expression for ¢ from the comparison of the (1,3) and (2, 3) elements

¥ = b, + arctan, (sin 9, sin (¢, + ¥, ), cos I, sin 9, + sin I, cos I, cos (p, + ¥;)) . (9b)

The function arctan,(y, ) is the function whose value is arctan(y/z) and additionally lies in the proper quad-
rant. In FORTRAN this function has the name ATAN2.

AN ALTERNATE APPROACH

Let us instead rearrange Eq. (6) as

R(G,,,, —9,) R(4,, ¥ — ¥,) R(4,, 9) R(4,, ¢ — ) R(8,,, —9,) R(G,, —¥) —p,) = I, (10)
and examine the locus of the ¢- and m-axes through the various steps of the six rotations. For the f-axis a
rotation about i1, will generate an arc of a great circle, which we usually call an arc in spherical trigonometry
[2], while a rotation about i, will generate a dihedral angle, and contrarily for the locus of the m-axis. Since
the product of all six rotations in Eq. (10) is the identity matrix, the locus of each of the axes must be a closed
spherical polygon. The locus of the ¢- or m-axes for each rotation has three arcs and three dihedral angles and
is therefore a spherical triangle, as illustrated in Figure 1. (The locus for the third body-fixed axis is an irregular
right spherical hexagon.)



N

The Polar Complement Theorem

We remark first that the two spherical triangles are related, with the arcs of one corresponding to the polar
compliment of the dihedral angles of the other and vice versa. (An angle and its polar complement sum to 7.)
Thus, we have derived the polar complement theorem: namely, that if a spherical triangle has dihedral angles,
A, B, and C, with opposing sides, a, b, and ¢, then one can also construct a spherical triangle with dihedral
angles, 7 — a, # — b, and 7 — ¢, and opposing sides, 7 — A, # — B, and = — C. Note also that the law of cosines
for sides for a spherical triangle is identical to the law of cosines for the dihedral angles of the corresponding
complementary spherical triangle. The law of cosines for sides was obtained essentially as Eq. (7).

The Construction of the Composite Angles

Returning to Figure 1, the law of sines for either triangle yields

sin(p = 1) _ sin(¥ = vy) _ sin(=gy = %y) -
sin(r+19,) sin(r+9,)  sin(m—9) ’

which may be solved to yield

sin 9

sin(p— ) = sint92 sin (¢, + ¥y) (12a)
ind
sin (¢ — ¥,) = Ss‘i’in; sin (5 + 1,) - (12b)

Likewise, applying the law of cosines for sides to the appropriate vertex of Figure 1a yields

cos (—19,) = cos ¥ cos(—v,) +sind sin(—9,) cos (7 — o+ ¢;), (13)
which may be solved to yield
cos(p = 1) = = ﬂszin_ ﬂcZ?nﬂaclos - (14)
Similarly, one of the remaining vertices yields Eq. (7), while the other results in
con (= ) = LSBT (15)
Combining Eqs. (7), (12), (14) and (15) leads finally to
J = arccos(cos ¥, cos 9, — sin ¥, sind, cos(p, + ¥;)), (16a)
@ = ¢, + arctan,(sin J; sind, sin (¢, + ¥,), cos ¥, — cos ¥ cos¥,), (16b)
¥ = 1, + arctan, (sin 9, sind, sin(p, + ¥,), cos¥; — cos ¥ cosV,). (16¢)

Similar results for a slightly restricted case were obtained previously by Lindberg [3].

The above results can be obtained analytically by using the same techniques as were used to obtain Egs. (7)
and (8) by applying these to the equivalent relations

lel("‘P +¢1, t91v P2 + ¢1) = lem(ﬂ’ ¢ - ¢2’ —’92)» (173)
and

lel(so2 + ‘wll 192’ —¢ + ¢2) = lem(_!’l, Y =% 0) ) (17b)

which can be obtained by rearranging Eq. (6), although the derivation is far more cumbersome. A similarly
simple result does not hold, apparently, for the asymmetric sequences of Euler angles (for example, the 3-1-2
sequence), the simplest loci of whose Euler axes correspond to spherical quadrilaterals.



ADDITION OF ANGULAR YELOCITIES AND EULER ANGLE RATES

If R = R"” R’ is a composite rotation and

iR:—[(.c.!)(]R,

¥ QR = (xR, and LR =_[W'X]R, (18)

dt dt

where [vx ] is the matrix representation of the cross-product operation, vx, [ 1], then the angular velocities
combine according to the rule
w=w"+R'W. (19)

The body-referenced angular velocity is related to the temporal derivatives of the Euler angles according to [ 4]

4 4
w= R(ﬁb 1/)) [R(ﬁm, ﬂ)ﬁl | 1Alm lﬁl] [Z] = Mlml(()o: 19’ 1/)) [Z] ’ (20)

where the second factor in the central member of Eq. (20) is a 3 x 3 matrix labeled by its columns. The Euler
angle rates from the two successive rotations can be combined then as

P2 1
W = Myp(93, 92, ¥,) [‘92] + Ryme(02, 935 ¥2) Mypmo(21, 91, ¥1) |:191} ) (21
by 2
which leads to
¢ é 2
9| = M (@, 9, %) § Myme(p2, 9, ¥3) By | + Reme(P2) B2, ¥3) Myme(#1, 91, ¥1) | 9y - (22)
¥ ¥ ¥
CONCLUDING REMARKS

These results, which do not seem to be known generally, are satisfied by any symmetric set of Euler angles.
(Equations (18) through (22) hold for any of the twelve Euler angle sequences.) We feel that the spherical
trigonometric approach provides the most efficient and elegant path to these results.
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