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ABSTRACT

Many results in attitude analysis are still meaningful when the attitude is

restricted to rotations about a single axis. Such a picture corresponds to attitude

analysis in the Euclidean plane. The present report formalizes the representation

of attitude in the plane and applies it to some well-known problems. In particular

we study the connection of the �additive� and �multiplicative� formulations of

the di�erential corrector for the quaternion in its two-dimensional setting.

Introduction

I call our world Flatland, not because we call it so, but to

make its nature clearer to you, . . . who are privileged to live

in Space.

	 A. Square in Flatland

The treatment of attitude, because of the non-linearity and non-commutivity of the

composition rule, is much more di�cult to treat than position, for which components may

be combined by simple addition. The complexity of the attitude composition rule leads

to virtually all attitude problems being intrinsically three-dimensional or, in the case of

the quaternion, four-dimensional. There is, however, a class of attitude problems which

are much simpler, namely, single-axis problems, and the study of these will in many cases

illuminate the more complex problems. The present report attempts to formalize such a

treatment.
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260 Malcolm D. Shuster

Attitude in Flatland

Having amused myself til a late hour with my favourite

recreation of Geometry, I had retired to rest with an unsolved

problem in my mind.

Let us imagine that the world, Flatland, has only two dimensions and a constant

isotropic Euclidean metric. Such a world was imagined by Edwin Abbott Abbott [ 1 ], with

the intent of satirizing the social and political foibles of his day as much as of clarifying

the concepts related to the dimensionality of space. Our interest here is more limited than

Abbott's. We develop the mathematical structure of Flatland somewhat further in order

to better understand those aspects of attitude which do not depend on the dimensionality

of space. The quotations which appear in this report are from [ 1 ]. Following Abbott we

will refer to our three-dimensional world as Space.

In Flatland, vectors are, of course, two-dimensional

v =

[

v1
v2

]

. (1)

The �dot� product takes the usual form

u · v = u1v1 + u2v2 , (2)

while the �cross product� is now a scalar

u× v = u1v2 − u2v1 . (3)

There is, therefore, no vector product, and as alternate names to scalar and vector products

we might prefer symmetric and asymmetric products. The lack of a meaningful vector

product in two dimensions was ultimately the cause of many years of grief for Hamilton

[ 2�4 ].

The attitude matrix in two dimensions is a 2 × 2 proper orthogonal matrix, A, which

transforms column vectors in the usual way

W = AV , (4)

with

ATA = AAT = I , (5)

det A = +1 , (6)

where I denotes the 2× 2 identity matrix,

I ≡
[

1 0
0 1

]

. (7)

It is a simple matter to show that in two dimensions the attitude matrix may be

represented as

A =

[

cos θ sin θ
− sin θ cos θ

]

, (8)
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and θ is the angle of rotation. If we de�ne the matrix J according to

J =

[

0 1
−1 0

]

, (9)

which satis�es

J
2 = −I , (10)

then Euler's formula becomes simply

A = cos θ I + sin θ J , (11)

which is much simpler than the three-dimensional form [ 5�10 ]. Note that J acting on

a vector always generates a vector perpendicular to it. The matrices I and J in Flatland

have an importance similar to that of the 3× 3 identity matrix and the Levi-Civita symbol

in Space. They are, in fact, the representations of these objects in two dimensions.

If we de�ne now

[[ a ]] ≡ aJ , (12)

then trivially

[[ a ]] [[ b ]] = −ab I , (13)

which again is much simpler than the three-dimensional variant, and Euler's formula

becomes

A = exp [[ θ ]] , (14)
as in Space.

Corresponding to the quaternion in Space, in Flatland we must be content with the

biernion (pronounced �by-Ernie-on�). The biernion is de�ned as

q̄ ≡

[

sin(θ/2)

cos(θ/2)

]

, (15)

for which

q̄T q̄ = 1 . (16)

We continue to use the notation q̄ (rather than b̄) in order to retain a greater resemblance

to the equations in Space.

In terms of the biernion Euler's formula becomes

A(q̄) = (q22 − q21) I + 2 q2 q1 J (17a)

= (q22 − q21) I + 2 q2 [[ q1 ]] (17b)

= (q1 I + q2 J)2 . (17c)

The biernion may be extracted from the attitude matrix in a manner similar to the method

for extracting the quaternion from the attitude matrix in Space,

q2 =
1

2

√
2 + trA , (18a)

q1 =
1

4q2
(A12 −A21) , (18b)
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where

trA ≡ A11 +A22 . (19)

Biernion composition follows directly from the trigonometric formula and reads

q̄′′ = q̄′ ⊗ q̄ (20a)

= { q̄′ } q̄ = { q̄ } q̄′, (20b)

where

{ q̄ } ≡
[

q2 q1
−q1 q2

]

= q2 I + q1 J . (21)

Note that biernion composition is commutative, as is the multiplication of attitude matrices

in two dimensions.

The Gibbs scalar or Rodrigues scalar is given by

g = q1/q2 = tan(θ/2) . (22)

Thus,

q̄ =
1

√

1 + g2

[

g
1

]

, (23)

and Cayley's formula takes the familiar form

A =
I + [[ g ]]

I− [[ g ]]
. (24)

The composition of Gibbs scalars is given by

g′′ =
g′ + g

1− g′g
, (25)

in complete analogy to the formula for the Gibbs vector in Space.

The Cayley-Klein parameters are

α ≡ q2 + i q1 = eiθ/2 , and β ≡ q2 − i q1 = e−iθ/2 = αc , (26)

and the superscript c denotes complex conjugation. These obviously satisfy

αβ = 1 . (27)

It follows that

A =
1

2
(α2 + β2) I +

1

2i
(α2 − β2)J . (28)

Attitude Kinematics in Flatland

Restraining my impatience	for I was now under a strong

temptation to rush blindly at my visitor and precipitate him

into Space . . .

The kinematic equation for the attitude matrix is given as usual by

d

dt
A(t) = [[ω(t) ]]A(t) , (29)
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which, in fact, de�nes ω(t). If we de�ne the biernion analogue,

ω̄ ≡
[

ω
0

]

, (30)

then the kinematic equation for the biernion is simply

d

dt
q̄(t) =

1

2
ω̄(t)⊗ q̄(t) = 1

2
Ω(ω(t)) q̄(t) , (31)

where

Ω(ω) ≡ ω J . (32)

Likewise, we can partition { q̄ } de�ned by equation (21) in terms of column matrices as

{ q̄ } ≡ [ Ξ(q̄) q̄ ] , (33)

which leads to
d

dt
q̄(t) =

1

2
Ξ(q̄(t))ω , (34a)

and

Ξ(q̄) =

[

q2
−q1

]

= J q̄ . (34b)

The kinematic equation for the Gibbs scalar becomes �nally

d

dt
g(t) =

1

2
[1 + g2(t)]ω(t) , (35)

while that for the angle of rotation is just

dθ

dt
= ω . (36)

Euler's equation for rigid-body dynamics is simply

I
dω

dt
= N , (37)

where N , the torque, is a scalar and I, the moment of inertia, another scalar, is given by

I =

∫

r2 dm . (38)

Attitude Errors in Flatland

If Fog were non-existent, all lines would appear equally and

indistinguishably clear.

The representation of attitude errors in Flatland follows that in Space, with obvious

simpli�cations. The error in the attitude matrix, since it has only a single degree of

freedom, can be written as

A∗ = (δA)Atrue , (39)
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with A∗ a random variable, usually an attitude estimate, and δA is the (multiplicative)

attitude error,

δA = exp{[[ ∆ξ ]]} ≈ I + [[∆ξ ]] , (40)

with ∆ξ, the attitude error angle, generally an in�nitesimal quantity assumed to have zero

mean. The attitude variance is de�ned to be

Pξξ = E{ (∆ξ)2 } , (41)

where E{ · } denotes the expectation.

The modeling of vector measurement errors follow a similar pattern. We write


W = e[[ ε ]]A
V , (42)

where ε is a zero-mean random variable with variance σ2W . In linear approximation this

may be written as

W = A 
V+∆ 
W , (43)

with

∆ 
W = εJA
V = [[A
V ]] ε , (44)

and we have de�ned [[v ]] with vector argument to be

[[v ]] ≡ Jv =

[

v2
−v1

]

. (45)

Thus,

[[u ]]T v = −u× v = −uT [[v ]] , (46a)

[[v ]]T v = 0 , (46b)

[[u ]]T [[v ]] = u · v , (46c)

[[u ]] [[v ]]T = (u · v) I− vuT , (46d)

[[ a ]]v = [[v ]] a . (46e)

Batch Attitude Determination in Flatland

I answer that though we cannot see angles, we can infer

them, and this with great precision.

We can now examine some well-known algorithms in their Flatland setting. These are

the DYAD algorithm, the two-dimensional analogue of the TRIAD algorithm [ 11�12 ],

and the BEST algorithm, the two-dimensional analogue of the QUEST algorithm [ 12 ].

The development of these algorithms in two dimensions is very similar to that of their

forbears in Space. As can be expected, the results are much simpler in the smaller

dimension.
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The DYAD Algorithm

For the DYAD algorithm* we seek an attitude matrix which satis�es

W = AV , (47)

where V and W are arbitrary vectors. In a space of n dimensions, n − 1 linearly

independent vector measurements are required to uniquely determine the attitude matrix

[ 13 ]. In two dimensions, therefore, a single measurement su�ces. (In one dimension,

zero measurements are su�cient.)

To construct the attitude matrix we �rst construct orthonormal dyads of reference and

observation vectors as


r1 =

V

|
V|
and 
r2 = J
r1 , (48a)

and


s1 =

W

| 
W|
and 
s2 = J
s1 . (48b)

From

J
3 = −J , (49)

it follows that

JAJ
T = A . (50)

Hence,


si = A
ri , i = 1, 2 , (51)

De�ning now orthogonal matrices (labeled by their columns)

MR = [
r1 
r2 ] , and MS = [
s1 
s2 ] , (52)

it follows that

MS = AMR , (53)

whence

A =MSM
T
R . (54)

The development of the DYAD attitude variance follows almost identical steps as in the

calculation of the TRIAD attitude covariance in Space [ 12 ] with the result

PDYAD = σ2W . (55)

The BEST Algorithm

The BEST (Biernion ESTimator) algorithm in Flatland is only slightly less complicated

than the QUEST algorithm in Space. As usual, we seek an attitude matrix which minimizes

[ 12, 14 ]

J(A) =
1

2

n
∑

i=1

ai | 
Wi −A 
Vi|
2 , (56)

*F. Landis Markley has suggested that the DYAD algorithm be renamed the BAD algorithm in contrast
with BEST.
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where the ai, i = 1, . . . , n > 2, are a set of positive weights, whose sum, we will assume,

is unity. As in the Space we de�ne a gain function, g(A), such that

g(A) = 1− J(A) = tr
(

BTA
)

, (57)

which is a maximum when J(A) is a minimum, and, as before the attitude pro�le matrix

is given by

B =
n
∑

i=1

ai

Wi


VT
i . (58)

Substituting equation (17a) in equation (57) leads straightforwardly to

g(q̄) = (q22 − q21) s+ 2 q1 q2 z , (59)

where

s ≡ tr(BT ) = trB = B11 +B22 , (60a)

z ≡ tr(JBT ) = −tr(JB) = B12 −B21 . (60b)

Thus,

g(q̄) = q̄TKq̄ , (61)

with

K =

[

−s z
z s

]

. (62)

The maximization of g(q̄) leads to the familiar eigenvalue problem

Kq̄∗ = λmax q̄
∗ , (63)

but in Flatland λmax can be calculated in closed form as

λmax =
√

s2 + z2 , (64)

and

q̄∗ =
1

√

z2 + (λmax + s)2

[

z
λmax + s

]

. (65)

The attitude variance of the BEST algorithm is calculated most easily from the Fisher

information matrix using the fact that the BEST algorithm is a maximum-likelihood

estimator [ 15 ]. Assuming the errors to have a Gaussian distribution, the calculation is

straightforward and leads to

P−2BEST =
n
∑

i=1

σ−2Wi
. (66)

The optimal angle of rotation can also be computed directly by noting that the gain

function can be written in the form

g(θ) = s cos θ + z sin θ , (67)
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which is obviously a maximum when θ = θ∗, with

cos θ∗ =
s√

s2 + z2
and sin θ∗ =

z√
s2 + z2

. (68)

We write the solution of equation (68) more conveniently as

θ∗ = arctan2(z, s) , (69)

where arctan2 is the same function as ATAN2 in FORTRAN. Equation (68) leads directly

to a solution for the optimal attitude matrix, namely,

A∗ =
1√

s2 + z2

[

s z
−z s

]

. (70)

Substitution of equation (65) into equation (17) leads somewhat less directly to the same

result, which should be compared with the construction of the optimal attitude matrix in

Space developed by Markley [ 16 ]. Markley's FOAM algorithm [ 17 ] carries over with

little change into Flatland and yields necessarily the same result as equation (70).

General Comments on Attitude Estimation in Flatland (and Space)

I am about to appear very inconsistent.

There seems to be some confusion concerning the use of representations in attitude

estimation, which we will now attempt to muddy further. Typically in attitude deter-

mination, one is given a set of measurements, {z1, . . . , zN}, from which one wishes to

infer the attitude, which we will denote without reference to a representation by A. The

space of A we know from long experience is an m-dimensional manifold, where m = 1 in

Flatland, m = 3 in Space, and m = 6 in worlds so unfortunate as to be four-dimensional.

An important milestone in every probabilistic estimate of the attitude is the construction

of the probability density function (pdf) of the measurements as a function of the atti-

tude, pz1, ... , zN (z
′
1, . . . , z

′
N ; A), where the primed variables denote the values taken by

the (unprimed) random variables, and the attitude manifold is assumed to be simply a

parameter space rather than a space of random variables. If A is also a random variable

then the pdf of interest is pz1, ... , zN ,A(z
′
1, . . . , z

′
N , A′). When one constructs a square

loss function, one is, in fact, constructing part of the appropriate pdf assuming Gaussian

random noise.

The maximum-likelihood estimate is simply the value of A (or A′) which maximizes

the appropriate pdf [ 18 ]. In mathematical notation we can write∗

A∗ML ≡ arg max
A

pz1, ... , zN ,(z
′
1, . . . , z

′
N , A) , (71a)

or

A′∗ML ≡ arg max
A′

pz1, ... , zN ,A(z
′
1, . . . , z

′
N , A′) , (71b)

∗In the particular case where A is a random variable one usually speaks of a maximum a posteriori estimate.
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according to whether or not A is a random variable, and the maximum is taken over the

manifold of A (or A′). Likewise, in the special case that A is a random variable, we can

de�ne a minimum variance estimate of the attitude as

A′∗MV ≡ E{A | z′1, . . . , z′N} , (72)

that is, as the conditional expectation of A. This form of the minimum variance as given

by equation (72) is not meaningful, generally, unless the representation of A has minimum

dimension. Otherwise, the conditional expectation will usually lead to a value which is

not on the manifold, and, therefore, unacceptable as a solution. It is di�cult, in general,

to calculate the minimum variance estimate except in the case where the measurement

depends linearly on the quantities to be estimated and on the measurement noise, which

is assumed to be Gaussian, in which case the minimum-variance estimate is identical to

the maximum-likelihood estimate.

The general method of solution by maximum-likelihood estimation to an attitude

estimation problem given a set of measurements and a probabilistic measurement model

is to write the negative-log-likelihood function

J(A′) ≡ − log pz1, ... , zN ,A(z
′
1, . . . , z

′
N , A′) , (73)

where for de�niteness we consider the case that A is a random variable. The negative-

log-likelihood function is a minimum at the maximum-likelihood estimate. The procedure

is thus to minimize the expression in equation (73) by an iterative method, such as the

Newton-Raphson method. Thus, if A′i is the i-th iteration we write

A′ = A(β)⊗A′i , (74)

where A(β) denotes the general attitude as a function of β, which is one of the many

minimum-dimensional representations of the attitude which is Euclidean at the origin and

for which A(0) is the identity rotation. Expanding A as a function of β leads to

J(A′) = J(A′i) +
[

∂

∂β
J(A(β)⊗A′i)

]

β=0

β

+
1

2
βT
[

∂2

∂β∂βT
J(A(β)⊗A′i)

]

β=0

β +O(|β|3) , (75)

and minimizing this expression keeping terms only up to second order in β leads to the

next iteration

βi+1 = −
[

∂2

∂β∂βT
J(A(β)⊗A′i)

]−1

β=0

[

∂

∂β
J(A(β)⊗A′i)

]

β=0

, (76)

A′i+1 = A(βi+1)⊗A′i . (77)

This procedure will generally converge to a minimum of the negative-log-likelihood

function. In well-de�ned attitude problems this minimum is usually unique and hence,

A′∗ML = lim
i→∞

A′i . (78)
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In the limit that the amount of data is in�nite the attitude covariance matrix can be

written as

P−1ββ = E

{[

∂2

∂β∂βT
J(A(β)⊗A′)

]}

β=0,A′=A′∗ML

. (79)

If the measurement errors are Gaussian, then within the linearization approximation,

equation (79) will be true even for small samples.

Treatment of the Biernion/Quaternion in Attitude Estimation

It is high time that I should pass from these brief and

discursive notes about things in Flatland to the central event

. . .

Several schemes have been proposed [ 19 ] for mechanizing the Kalman �lter update

for the quaternion. The e�ect of these and other schemes has been studied via numerical

examples by Bar-Itzhack, Deutschman and Markley [ 20, 21 ]. These latter authors make a

distinction between the update step of the Kalman �lter using what they call the additive

as opposed to the multiplicative update. This distinction is arti�cial and misleading, as

we shall now show.

Let us write the relation between the updated and predicted quaternions/biernions as

q̄k(+) = q̄k(−) + ∆q̄k(+) , (80)

which Bar-Itzhack et al. call the additive approach. The components are all resolved

with respect to inertial axes. Let us examine the same equation expressed with respect

to the predicted spacecraft body frame, i.e., we express all rotations as rotations from

the predicted spacecraft body frame. Denoting the quaternions/biernions of rotation with

respect to this frame by q̄′ where

q̄′k = q̄k ⊗ q̄
−1
k (−) , (81)

it follows that

q̄′k(+) = 1̄ + ∆q̄′k(+) , (82)

where 1̄ = [ 0 0 0 1 ]T for quaternions, and 1̄ = [ 0 1 ]T for biernions. If we write now

δq̄k(+) ≡ q̄′k(+) , (83)

then it follows that

q̄k(+) = δq̄k(+)⊗ q̄k(−) , (84)

which is the so-called multiplicative correction. Thus, the distinction between the additive

and the multiplicative formulations of the Kalman �lter is not one of the fundamental

mechanization of the �lter but simply the frame in which it is desired to compute the

update. These two formulations are present in Reference [ 19 ], where they are given the

names �truncated covariance representation� and �body-�xed covariance representation.�

Admittedly, the presentation by those authors gave the appearance of there being one

more distinct formulation of the Kalman �lter than was actually the case. This has even

led one careful study to test both formulations, as if they were distinct [ 22 ].

Where the important distinctions do lie is in how ∆q̄k or ∆q̄′k is calculated, and conse-

quently, whether δq̄(+) has unit norm. From the earlier discussion it is clear that a correct
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approach is obtained by expressing this quantity in terms of some representation of the

attitude of minimal degree. In this case it is clearly advantageous to work from the

spacecraft body frame so that this minimal-dimensional representation will be far from a

singularity, and it will be most revealing to compare the results of References [ 19 ] and

[ 20, 21 ] in that frame. The results of [ 20, 21 ], however, are not directly comparable to

[ 19 ] because the former rests on the attitude Kalman �lter of Bar-Itzhack and Oshman

[ 23 ]. However, many points of commonality will be apparent.

Consider now the estimation of a constant biernion from scalar measurements of the

form

zk = 
uTk Wk , k = 1, . . . , N , (85)

where 
uk is a known direction in the spacecraft body and Wk is some vector measured

in the body frame. We assume that Wk is related to a representation of the same vector

in the inertial frame according to

Wk = AVk + vk , (86)

where A is the attitude matrix and vk is white Gaussian noise. We wish to compute the

batch attitude estimate from these measurements, using an good approximate estimate of

the attitude as a point of departure.

If we write now

A = (δA)Ao , (87)

where Ao is the approximate value of the optimal attitude estimate, then the measurement

equation becomes

zk = 
uTk (δA)Wo,k + 
uTk vk , (88)

where 
Wo,k = AoVk, the expected value of the measurement in the body frame. δA

is now an in�nitesimal rotation, which we shall parameterize in terms of the additive

biernion error as in equation (82). Recalling equation (17c) it is a simple manner to

expand zk to lowest order in ∆q̄ with the result

νk ≡ zk − zo,k = Hk∆q̄ + vk , (89)

where zo,k is the value of the measurement with ∆q̄ = 0̄, vk is the scalar white Gaussian

noise term appearing in equation (88) and the 1× 2 sensitivity matrix Hk is given by

Hk = [H1,k H2,k ] = [ (
uk ×Wo,k) , (
uk ·Wo,k) ] . (90)

The maximum likelihood estimate of ∆q̄ (for the additive biernion correction, which is

not constrained to preserve the norm) is given by

∆q̄∗add = Pqq p , (91)

where the covariance matrix, Pqq, and the information vector, p, are given by

Pqq =

[

N
∑

k=1

HT
k R
−1
k Hk

]−1

, p =
N
∑

k=1

HT
k R
−1
k νk . (92)

For the multiplicative correction (which is norm-preserving) the estimate for the same

data is

∆q̄∗1,mult = Pmult p1 ,
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with

Pmult =

[

N
∑

k=1

HT
1,k R

−1
k H1,k

]−1

=
(

P−1qq

)−1
11

, (93a)

p1 =
N
∑

k=1

HT
1,k R

−1
k νk , (93b)

so that p1 is just the �rst component of p. Note that we have written unnecessary (but not

incorrect) transpose signs and not commuted symbols, even between scalars, to preserve

the resemblance with the equations of Space. We can �nd a relation between the additive

and the multiplicative corrections to the biernion by solving equation (91) for p in terms

of ∆q̄∗add and using the value of p1 from this expression in equation (93).

This leads to

∆q̄∗1,mult = ∆q̄∗1,add +
(

P−1qq

)−1
11

(

P−1qq

)

12
∆q̄∗2,add . (94)

We will return to this equation soon.

The additive correction, ∆q̄∗add, allows us to construct an optimal biernion, q̄∗add,

q̄∗add = 1̄ + ∆q̄∗add . (95)

Because it does not necessarily have unit norm, q̄∗add does not without further e�ort have

an unambiguous connection to the attitude. However, we note that although q̄∗add is not

a �biernion of rotation,� it is a su�cient statistic [ 18 ] for the attitude, certainly within

the linear approximation of equation (89). It is, in fact, an estimate of the biernion of

rotation, and we know also that were the measurement noise covariance to vanish (perfect

measurements), q̄∗add would have unit norm and be the desired biernion. Thus, denoting

the desired biernion of rotation by η̄, we have that

q̄∗add = η̄ +∆η̄add , (95)

and

∆η̄add ∼ N (0̄, Pqq) . (96)

Hence, the negative log-likelihood function of q̄∗add given η̄ is

J(q̄∗add | η̄) =
1

2

[

(q̄∗add − η̄)TPqq (q̄∗add − η̄) + log detPqq + 4 log 2π
]

. (97)

and the maximum-likelihood estimate of η̄ is simply

η̄∗ = arg max
η̄ : η̄Tη̄=1

J(q̄∗add | η̄) , (98)

where, since we know that the true biernion must lie on the manifold of unit four-vectors,

we must maximize the negative log-likelihood subject to the norm constraint.

We handle the constraint in the usual way, using Lagrange's method of multipliers,

and optimize

J(q̄∗add | η̄) +
1

2
λη̄T η̄
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without constraint and then choosing the value of the Lagrange multiplier, λ, for which

the constraint is satis�ed. Di�erentiating the above expression with respect to η̄ and

setting the derivative equal to zero leads to

η̄∗ =
(

I + λPqq
)−1

q̄∗add , (99)

and λ is a solution of

f(λ) ≡ η̄∗T(λ) η̄(λ) = q̄∗Tadd
(

I + λPqq
)−2

q̄∗add = 1 . (100)

We expect λPqq to be small. Therefore, it will usually be su�cient to calculate λ using

one iteration of the Newton Raphson method with vanishing initial value. Thus,

λ ≈ 1− f(0)
f ′(0)

=
1

2

(

q̄∗Tadd Pqq q̄
∗
add

)−1 (
q̄∗Tadd q̄

∗
add − 1

)

. (101)

To �rst order

q̄∗Tadd q̄
∗
add = 2∆q2 . (102)

Hence,

λ =
(

Pqq
)−1
22

∆q2 . (103)

Substituting this in equation (99) leads to lowest order in ∆q̄∗add

η̄∗ =
(

I + λPqq
)−1

q̄∗add (104a)

≈
(

I − λPqq
)

q̄∗add (104b)

= q̄∗add −∆q∗2,add
(

Pqq
)−1
22
Pqq q̄

∗
add . (104c)

The �rst component of the desired optimal biernion is simply (to this same order)

η∗1 = ∆q∗1,add −
(

Pqq
)−1
22

(

Pqq
)

12
∆q∗2,add . (105)

But

−
(

Pqq
)

12

(

Pqq
)−1
22

=
(

P−1qq

)−1
11

(

P−1qq

)

12
, (106)

so that, in fact, comparing equation (106) with equation (94) we have

η̄∗1 = ∆q∗1,mult . (107)

Since the other component must also agree to linear order in ∆q̄∗mult, it follows that

η̄∗ = δq̄mult . (108)

Thus, the additive correction to the biernion, followed by the normalization correction

dictated unambiguously by the maximum likelihood criterion , is identical (at least up to

linear terms in ∆q̄∗) to the so-called multiplicative correction. It is hard to imagine that

any other answer could be possible. It is obviously less burdensome to calculate the
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multiplicative correction directly. Identical arguments hold for sequential correction of

the biernion as in the Kalman �lter.

Discussion

. . . my Lord has shewn me the intestines of all my country-

men in the Land of Two Dimensions . . .

The representation of attitude in two dimensions has been described in detail. Two-

dimensional analogues have been presented for the well known TRIAD and QUEST

algorithms. General properties of attitude estimation in two and three dimensions have

been discussed. The question of whether the multiplicative or additive correction to the

quaternion is to preferred has been has a clear answer in Flatland.

In Space the answer is no di�erent. We have been careful to arrange the expression

dealing with the di�erential correction of the biernion in such a way that they have the

same form as the corresponding expression for the quaternion, in which many of the

factors are matrices, which do not commute under multiplication. The only di�erence

in the derivations for the quaternion and the biernion are the speci�c expressions for

H1,k and H2,k. However, these di�erences do not e�ect the �nal result, which requires

no speci�c expression for these quantities. Thus, the derivation of the result has been

proved for the quaternion as well.

The additive correction, if done correctly, is identical to the multiplicative correction

but is much more burdensome. The �rst commandment of biernion correction (and,

one can show, also for quaternion correction in Space), therefore, is to multiply. We

emphasize that this result is not the product of some heuristic argument or arbitrary

procedure to be justi�ed by experiment but the unavoidable conclusion to which one is

led unambiguously and rigorously by the maximum likelihood criterion.
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