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Batch Estimation of Spacecraft Sensor Alignments

I. Relative Alignment Estimation

Malcolm D. Shuster,1 Daniel S. Pitone2 and Gerald J. Bierman3

Abstract

Simple and statistically correct algorithms are developed for batch estimation of spacecraft sensor

relative misalignments without the need to compute the spacecraft attitude or angular velocity. These

algorithms permit the estimation of sensor alignments in a framework free of unknown dynamical

variables. In actual mission implementation, algorithms such as those presented here are often better

behaved and more e�cient than those which must compute sensor alignments simultaneously with the

spacecraft attitude, say, by means of a Kalman �lter. In particular, these algorithms are less sensitive

to data dropouts of long duration, and the derived measurements used in the attitude-independent

algorithm usually make data checking and editing of outliers much simpler than would be the case in the

�lter. A factorized estimator for the alignments, which is better behaved numerically and in some ways

simpler to apply than the unfactorized algorithm, is also developed. Prelaunch alignment estimation is

treated in detail as an example of relative alignment estimation. A very e�cient approximation for this

algorithm is developed which relies on the QUEST measurement model. The algorithms are applied

to a realistic simulated example which approximates an actual mission.

Introduction

This is the �rst of two papers which will cover all aspects of batch estimation of

spacecraft sensor alignments including both prelaunch and postlaunch calibration.

Part I of this work is concerned largely with the inight estimation of relative

alignments. In many cases the relative alignments are all that are needed to

support the mission. To estimate the relative alignments inight it is helpful

to know the prelaunch values of the alignments as a �rst approximation in the
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inight estimation process. Due to the e�ects of launch shock, however, the

prelaunch estimates of the relative alignments often have much less validity inight

than the estimates from inight data alone. Thus, the estimators we study here are

all �prior-free.� For the inight estimation of absolute alignments the opposite is

true, as will be seen in Part II [ 1 ], which also treats the estimation of the launch-

shock error levels. Interestingly enough, the prelaunch alignment calibration

procedure is an example of relative alignment estimation and is treated here also.

While re-estimation inight of the alignment of spacecraft attitude sensors is

a part of nearly every mission, this area has not generally received much serious

attention. The earliest published work in this area seems to be that of desJardins

[ 2 ], who developed an unweighted least-squares method for estimating the sensor

alignments of the Orbiting Astronomical Observatory (OAO). This analysis did not

take account of any statistical information about the sensors nor of the pre-launch

alignment estimates, except as a linearization point for the estimates. DesJardins

did not use the inight data directly, which would have made the estimates

dependent on an unknown attitude, but instead considered the cosines of the

angles between pairs of sensor measurements as e�ective measurements. Clearly,

the absolute alignments of the sensors are not observable from this relative data.

For this reason desJardins was forced to consider one of the six OAO star trackers

as perfectly aligned and compute the alignments of the �ve remaining star trackers

relative to it. Thus, the six equivalent star trackers were treated unsymmetrically.

A similar approach was followed by Niebur et al. [ 3 ] for the Applications Explorer

Mission.

For the Magsat mission Abshire et al. originally followed a di�erent procedure

[ 4 ]. For this mission Ak, the attitude matrix at time tk, was computed by minimizing

the cost function [ 5 ]

L(Ak) =
1
2

nk
∑

i=1

ai |Ŵi,k − AkV̂i,k|
2 , (1)

where the sum is over the nk attitude sensors which are active in frame k. Abshire

et al. reasoned that the misalignment matrices Mi could be estimated by minimizing

Li(Mi) =
1
2

N
∑

k=1

|MiŴi,k − AkV̂i,k|
2 , (2)

summing over time and with assuming the Ak known (calculated with Mi = I). In

this way the Mi could also be calculated by means of the same algorithm as was used

for attitude determination. Thus, rather than compute relative alignments among

the attitude sensors, Abshire et al. compute absolute alignments (i.e., relative

to the spacecraft body frame). Such an estimation scheme is imperfect, because

these absolute alignment matrices and the attitude matrix are not simultaneously

observable from inight data. Thus, if the sensor alignments are recomputed

frequently in this way throughout the mission, they should display a (divergent)

random walk in their values. For this reason, only relative alignments, which were

not a�ected by this random-walk divergence, were reported.
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An earlier work [ 6 ], which may be regarded as a forerunner of the work

presented here, attempted to overcome the restriction to estimating only relative

alignments by including the prelaunch statistics heuristically. That work had

several drawbacks. In particular, it neglected correlations and redundancy in the

derived measurements (which were the cosines introduced by desJardins). Also,

the statistical modeling of the prelaunch alignment estimates was very crude. This

crudeness manifested itself in the resulting estimates of the postlaunch alignments,

all of which were well within the computed 1σ error brackets, as noted at the

time. Nonetheless, this was the �rst work which attempted to make any statistical

characterization of the inight alignment estimates or to take proper account of

the inight alignment estimates. The algorithm was e�cient and robust and has

been used since in nearly every mission supported by NASA Goddard Space Flight

Center (for a recent example see Snow et al. [ 7 ] for the alignment algorithms

proposed for the UARS spacecraft).

Part I of the present work is concerned chiey with the estimation inight of

relative sensor alignments, that is, the inight estimation of the alignments of the

attitude sensors relative to one of these sensors. There are several important

reasons for considering relative alignment estimation as a separate problem. First,

it is more convenient to estimate the relative alignments �rst without recourse to

prelaunch results (except as a �rst approximation) and only afterwards use the

prelaunch estimates to calculate the absolute alignments from these. Secondly, it

is often the case that the spacecraft payload can function as an attitude sensor

and, therefore, the alignments relative to this payload are all that is needed (or it

may be known that the alignment of one attitude sensor relative to the payload

should not be greatly a�ected by launch shock). Since the prelaunch data when

used inight is not generally of high quality (due to the errors induced by launch

shock), there is little quantitative gain in computing absolute rather then relative

alignments in this case. Also, the estimation of absolute alignments is an important

problem in itself and is treated in Part II of this work [ 1 ].

The present work is concerned only with batch estimation methods. These

methods, in order to avoid the estimation of a prohibitively large number of attitude

parameters (3N parameters for N frames of data), must necessarily remove the

attitude dependence from the estimation problem by using pseudo-measurements

(the measured cosines). In a sequential estimator, pseudo-measurements can be

avoided, and the complete vector data used to estimate attitude and alignments

(either relative or absolute) directly. A comparison of the two approaches is given

in [ 8 ].

The present work begins by de�ning the alignments in a manner which has

proven to be well adapted to alignment estimation problems and leads to the

simplest expressions. For simplicity, the alignment estimation problem is for-

mulated initially in terms of absolute alignments. Following this, the depen-

dence of the measurements, both the complete vectors and the derived cosines,

is presented, and the problem of the lack of observability of the attitude and

the alignments made manifest. In particular, the redundancy of the derived

measurements is discussed and an algorithm presented for obtaining a non-

redundant subset of these. The statistical character of the derived measurements
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is also developed. Given the statistical properties of the measurements the maxi-

mum likelihood estimate is derived for the relative alignments. When a spacecraft

has many sensors, the simple algorithm for obtaining a non-redundant set of

alignments may not be convenient and for poorly conditioned problems may also

be inaccurate. For these cases a factorized algorithm [ 9 ] is presented whose

implementation in software will require fewer decisions and which should be better

behaved numerically. Finally, the algorithms are tested with realistically simulated

data. The QUEST model is used to represent the errors in the sensor measure-

ments and the very simple expressions which result for this model are presented.

Appendix A gives the details on treating coplanar measurements. Appendix B

presents a sketch of an implementation of the algorithms.

De�nitions

Sensor Referenced Measurements

A spacecraft line-of-sight sensor such as a vector Sun sensor or star tracker

measures a direction, Ûi,k, in sensor coordinates, de�ned to be directed outward

from the sensor, which can be described statistically as

Ûi,k = Ûtrue
i,k + ∆Ûi,k , (3)

where Ûtrue
i,k is the true value of the direction and ∆Ûi,k is the measurement noise.

Here i is the sensor index, i = 1, . . . , nk, and k is the temporal index, k = 1, . . . ,N .

We assume that ∆Ûi,k is Gaussian, zero-mean, and white, with covariance RÛi,k
. In

more compact notation

∆Ûi,k ∼ N (0, RÛi,k
) . (4)

We assume more generally, in fact, that the measurements from di�erent sensors

are statistically independent, thus

E{∆Ûi,k ∆ÛT
i′k′} = δii′ δkk′ RÛi,k

. (5)

Here, E{ ··· } denotes the expectation operator. Because the observations are

constrained to be unit vectors, RÛi,k
must be singular. In particular,

RÛi,k
Ûtrue
i,k = 0 . (6)

Clearly, equations (4) through (6) can be true only to lowest order in R. Since

R is generally quite small, this level of approximation will be adequate for the

purpose of alignment estimation.

Body-Referenced Vectors and Alignments

If Ŵi,k denotes the measured direction in the spacecraft body frame, then the

alignment matrix, Si, is the proper orthogonal matrix de�ned by

Ŵi,k = Si Ûi,k , (7)
and, therefore,

Ŵi,k = Si Ûtrue
i,k + Si ∆Ûi,k , (8)

≡ Ŵtrue
i,k + ∆Ŵi,k . (9)
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Thus, the body-referenced observations have an error model given by

∆Ŵi,k ∼ N (0, RŴi,k
) , (10)

with

RŴi,k
= Si RÛi,k

STi , (11)

and

RŴi,k
Ŵtrue

i,k = 0 . (12)

Misalignments

In general, the alignment matrix Si is not known exactly. Instead, what is known

is Soi , the alignment matrix determined by the prelaunch alignment calibration.

Thus, we are led to de�ne the misalignment matrix, Mi, according to

Si =Mi S
o
i . (13)

Mi is necessarily orthogonal. Therefore, we de�ne the misalignment vectors, θi,
according to

Mi ≡ e
[[θi ]] ,

= I +
(

sin |θi|
|θi|

)

[[θi ]] +
(

1 − cos |θi|
|θi|2

)

[[θi ]]2 , (14)

where e{ ··· } denotes matrix exponentiation, and [[θ ]] denotes the usual antisymmetric

matrix,

[[θ ]] ≡

[ 0 θ3 −θ2
−θ3 0 θ1
θ2 −θ1 0

]

. (15)

Equation (14) is just Euler's formula for the rotation matrix as a function of

the rotation vector. The angles θ1, θ2, θ3 are the misalignment angles or simply

the misalignments (Do not confuse the subscripts on θ, which label components,

with those on θ, which label sensors. To be more consistent, we should write

θi = [ θi1, θi2, θi3 ]T . Whenever possible, however, we will avoid such a cumbersome

notation, which invites confusion of the component index with the temporal index.).

Since the misalignment matrix is generally a very small rotation, the misalignments

will be small, and we can write

Mi = I + [[θi ]] + O(|θi|
2) , (16)

As a rule, we will keep only �rst-order terms. The measurement equation now

becomes �nally

Ûi,k = SoTi M
T
i Ŵtrue

i,k + ∆Ûi,k . (17)
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Alignment Measurements

Dependence of the Vector Measurements on the Attitude

If V̂i,k denotes the reference vector, i.e., the representation of the measured

vector in the primary reference system, then the attitude matrix, Ak, is de�ned

according to

Ŵtrue
i,k = Ak V̂true

i,k , (18)

whence,

Ŵi,k = AkV̂i,k + ∆Ŵi,k − Ak∆V̂i,k , (19)

where ∆V̂i,k is the uncertainty in the reference vector, which we assume to be

Gaussian and zero-mean. Hence,

E{∆V̂i,k ∆V̂T
i,k} = RV̂i,k

. (20)

The reference vector errors are not necessarily white, however, since the same

reference object may be used repeatedly, and its direction is not remeasured

(from the Earth) at each occurrence. We may, however, neglect the errors in the

reference vectors compared to those in the observations, which are usually an order

of magnitude larger. From this it follows that the actual sensor measurements are

related to the reference vectors to good approximation by

Ûi,k = STi AkV̂i,k + ∆Ûi,k . (21)

We note immediately from equation (21) that the values of the measurement

vectors are unchanged by the simultaneous transformations

Si → T Si , i = 1, . . . , n , (22a)

Ak → T Ak , k = 1, . . . ,N , (22b)

where T is an arbitrary proper orthogonal matrix. Thus, it is impossible from

sensor measurements to distinguish a common misalignment of the sensors from a

change in the attitude. It is, therefore, impossible to estimate the sensor alignments

and the attitude unambiguously from the spacecraft sensor measurements alone.

In terms of the misalignments, equation (21) becomes

Ûi,k = SoTi M
T
i AkV̂i,k + ∆Ûi,k . (23)

The Attitude-Independent Measurements

Equation (23) is the starting point for processing the inight data. We begin by

de�ning an �uncalibrated� body-referenced observation vector, Ŵo
i,k, according to

Ŵo
i,k ≡ Soi Ûi,k =MT

i Ŵi,k , (24)

so that

Ŵo
i,k =MT

i AkV̂i,k + ∆Ŵo
i,k . (25)
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Equation (25) de�nes ∆Ŵo
i,k. Thus, neglecting the random errors in the reference

vectors,

∆Ŵo
i,k ∼ N (0, RŴo

i,k
) , (26)

with

RŴo
i,k
= Soi RÛi,k

SoTi . (27)

If we now expand Mi to �rst order in θi, we obtain

Ŵo
i,k ≈ (I − [[θi ]]) Ŵtrue

i,k + ∆Ŵo
i,k ,

= Ŵtrue
i,k + [[ Ŵtrue

i,k ]]θi + ∆Ŵo
i,k . (28)

The uncalibrated body-referenced observation, Ŵo
i,k, as a function of the mis-

alignments depends even to lowest order also on the attitude through Ŵtrue
i,k . We

would prefer not to solve for 3N attitude parameters, which for N = 1000, a not

unreasonable amount of data to process, would be in a batch framework quite

overwhelming computationally. (Equation (23) supplemented by the prelaunch

calibration estimates could be the basis for a Kalman �lter/smoother solution of

the problem [ 8 ], but this approach lies outside the context of the present work.

Also, if the spacecraft is not equipped with three-axis gyros, which very often is

the case, a Kalman �lter/smoother solution may not even be feasible.) Thus, we

look for a means of removing the attitude dependence of the measurements. To

accomplish this we note that to �rst order in θi, θj, and the measurement noise

terms

Ŵo
i,k ··· Ŵ

o
j,k = V̂i,k ··· V̂j,k + (Ŵo

i,k × Ŵo
j,k) ··· (θi − θj)

+ Ŵtrue
i,k ···∆Ŵo

j,k + Ŵtrue
j,k ···∆Ŵo

i,k , (29)

which is independent of the attitude. Thus, we de�ne for i 6= j

zij,k ≡ Ŵo
i,k ··· Ŵ

o
j,k − V̂i,k ··· V̂j,k , (30)

whence,

zij,k = (Ŵo
i,k × Ŵo

j,k) ··· (θi − θj) + ∆zij,k , (31)

with

∆zij,k ≈ Ŵo
i,k ···∆Ŵo

j,k + Ŵo
j,k ···∆Ŵo

i,k . (32)

In equation (32) we have replaced Ŵtrue
i,k by Ŵo

i,k since this leads to no errors to

lowest order in the covariance. The derived measurements, which are the observed

cosine errors, are independent of the attitude to �rst order in the misalignments.

The derived measurement errors satisfy to lowest order in the misalignments and

the measurement noise

E{∆zij,k} = 0 , (33a)

E{∆z2
ij,k} = Ek(i | j | i) + Ek(j | i | j) , (33b)

E{∆zij,k ∆zi`,k} = Ek(j | i | `) , (33c)

E{∆zij,k∆z`m,k} = 0 , (33d)
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where i, j, `, and m above denote distinct indices and Ek(i | j | `) is given by

Ek(i | j | `) ≡ ŴoT
i,k RŴo

j,k
Ŵo

`,k . (34)

Note that zij,k is symmetric in the indices i and j.

The Redundancy Problem

The measurements zij,k, i < j, cannot all be independent. If there are nk active

sensors in frame k, each measuring a unit vector, then there are only 2nk equivalent

independent scalar measurements, while there are nk(nk − 1)/2 possible zij,k with

i < j. Since three combinations of the Ŵo
i,k are necessary to determine the attitude,

and the zij,k are by explicit construction attitude-independent, there can only be

2nk − 3 statistically independent zij,k. Table 1 displays these numbers. We see that

for more than three sensors the derived measurements, zij,k, become redundant

and this redundancy grows disproportionately with the number of sensors. (If some

of the sensors are capable of measuring more than one vector simultaneously, the

redundancy will be increased further. It should be noted, however, that the angles

between vectors measured by the same sensor have no alignment information.)

To determine 2nk − 3 independent measurements from among the nk(nk − 1)/2
possible zij,k we remark that

2nk − 3 = (nk − 1) + (nk − 2) . (35)

Thus, it is tempting to suggest that the set of measurements

{z1j,k , j = 2, . . . , n ; z2j,k , j = 3, . . . , nk}

is the desired set provided that Ŵo
1,k and Ŵo

2,k are neither collinear nor are they

coplanar nor nearly coplanar with any of the remaining measurements. That

these 2n−3 measurements are indeed not statistically dependent (in the sense that

no linear combination of them with nonvanishing coe�cients can have vanishing

variance) is easily seen by arranging the noise terms as

∆z12,k = Ŵo
1,k ···∆Ŵo

2,k + Ŵo
2,k ···∆Ŵo

1,k , (36a)

∆z1j,k = Ŵo
1,k ···∆Ŵo

j,k + Ŵo
j,k ···∆Ŵo

1,k , j = 3, . . . , nk (36b)

∆z2j,k = Ŵo
2,k ···∆Ŵo

j,k + Ŵo
j,k ···∆Ŵo

2,k , j = 3, . . . , nk (36c)

Table 1. Number of Independent Attitude-Independent Measurements Compared with Number of

Derived Measurements

n 2n-3 n(n-1)/2

2 1 1

3 3 3

4 5 6

5 7 10

6 9 15
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The expressions in the second and third lines are clearly not statistically dependent,

since they contain distinct components of ∆Ŵo
j,k, j = 3, . . . , nk, and these are

independent (in the same sense) of the expression in the �rst line since the

components of ∆Ŵo
1,k and ∆Ŵo

2,k which appear in equation (36a) are linearly

independent of those which appear in equations (36b) and (36c) according to our

assumption that Ŵo
1,k and Ŵo

2,k are neither mutually parallel nor parallel to any of

the other observations. Thus, the only linear combination of these (2nk − 3) zij,k
which has zero variance must have vanishing coe�cients.

The condition that Ŵo
1,k, Ŵo

2,k and Ŵo
j,k for j > 2 not be coplanar is necessary

because ∆Ŵo
i,k has non-vanishing components only in the plane normal to Ŵo

i,k.

Thus, if all the measurements are roughly coplanar, the present construction will

yield pseudo-measurements which are not sensitive to one �active� component of

Ŵo
i,k (namely, the component out of the plane) and will not yield an acceptable

set of derived measurements. In this case we must examine a more complete set

of measurements which, in addition to those given by equation (30), includes as

well the di�erences in the reference and observed scalar triple products

zij`,k = Ŵo
i,k ··· (Ŵo

j,k × Ŵo
`,k) − V̂i,k ··· (V̂j,k × V̂`,k) , i < j < ` (37)

The changes which must be made in our estimation algorithms when using this

extended set are described in Appendix A.

(Note that vector magnetometers supply three equivalent scalar measurements,

not two. The additional attitude-independent measurement may be taken to be

|Bk|, the magnitude of the measured �eld, which is independent of the alignments

but not of additive magnetometer biases, which are often signi�cant.)

The Inight Estimator

If we de�ne

Zk ≡ [z12,k, . . . , z1nk ,k, z23,k, . . . , z2nk ,k]T , (38)

we may write

Zk = Hk Θ + ∆Zk , (39)

where

Θ ≡ [θT1 , θ
T
2 , . . . , θ

T
n ]T , (40)

is the total (absolute) misalignment vector. Thus, ∆Zk is a white Gaussian sequence

with some covariance matrix PZk
. The matrices Hk and PZk

are obtained directly

from equations (31) through (34).

We remark again that from equation (31) the derived measurements Zk, k =
1, . . . , N , are sensitive only to the relative misalignments, and, therefore, only the

3n − 3 relative misalignments can be estimated unambiguously from the inight

data. For this reason we examine now the set of relative misalignments de�ned as

ψi ≡ θi − θ1 , i = 2, . . . , n . (41)
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This reduced set of parameters is completely observable. The total relative

misalignment vector is de�ned as

Ψ ≡ [ψT2 , ψ
T
3 , . . . , ψ

T
n ]T , (42a)

= F Θ , (42b)

where

F =









−I3×3 I3×3 03×3 · · · 03×3
−I3×3 03×3 I3×3 · · · 03×3

...
...

...
. . .

...

−I3×3 03×3 03×3 · · · I3×3









. (43)

We now write the measurement vector de�ned in equation (38) as

Zk = h1k θ1 +H
′
k [θT2 , . . . , θ

T
n ]T + ∆Zk , (44)

where the measurement sensitivity matrix, Hk, has been partitioned as

Hk = [ h1k | H
′
k ] . (45)

From equation (31) we note that Zk is unchanged by the substitution

θi → θi − λ . (46)

Setting λ = θ1, it follows that Zk can be written as a function of Ψ alone and the

measurement model becomes equivalently

Zk = H ′kΨ + ∆Zk . (47)

The application of maximum likelihood estimation techniques [ 10, 11 ] is now

straightforward. The negative-log-likelihood function for the prior-free maximum

likelihood estimate of Ψ (prior-free because no prior statistical information about

Ψ is assumed) is simply

J
prior-free
Ψ (Ψ) = 1

2

N
∑

k=1

[

(Zk −H
′
kΨ)T P−1

Zk
(Zk −H

′
kΨ)

+ log detPZk
+ (2nk − 3) log 2π

]

(48)

Minimizing J
prior-free
Ψ (Ψ) over Ψ leads to the normal equations

P−1
ΨΨ(prior-free) Ψ∗(prior-free) =

N
∑

k=1

H ′ Tk P−1
Zk

Zk , (49)

and

P−1
ΨΨ(prior-free) =

N
∑

k=1

H ′ Tk P−1
Zk
H ′k , (50)

with P−1
ΨΨ(prior-free) the inverse of the prior-free estimate-error covariance matrix.

These are the desired equations for the relative misalignment estimates. (In

general, unit vectors will be denoted by a caret; estimates (and estimators) by an

asterisk.) The di�erent r
oles played by prior-free, a priori and a posteriori estimates

will be important in Part II of this work [ 1 ].
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A Factorized Method

The methodology derived above for treating the inight data su�ers from two

important drawbacks. First, the set of active sensors may be di�erent in every frame

(labeled by k) and a complicated logic may be required, therefore, to determine

Ŵ1,k and Ŵ2,k in each frame. Also, if, perchance, one of these two vectors is

nearly collinear with one of the remaining vectors, the derived measurements may

su�er greatly from loss of numerical signi�cance. The present section presents an

algorithm [ 9 ] which relies on the singular value decomposition and is numerically

superior to the one above.

We may write the covariance matrix of the uncalibrated measurements in the

form

RŴo
i,k
= GŴo

i,k
GT

Ŵo
i,k

, (51)

where GŴo
i,k

is a �square-root� of the covariance matrix RŴo
i,k
. This factor may be

symmetric and positive semi-de�nite, or triangular, or have any structure, provided

that it satisfy equation (51).

It follows that the uncalibrated measurement noise may be rewritten

∆Ŵo
i,k = GŴo

i,k
εi,k , (52)

where

E{εi,k} = 0 , (53)

E{εi,k ε
T
j,k} = δij I3×3 . (54)

(Note that RŴo
i,k

is only rank 2. Hence, εi,k should perhaps be modeled as

a two-dimensional random vector with mean zero and covariance I2×2. The

larger dimension also works because GŴo
i,k

discards the extra component, i.e., the

unphysical component is a right null vector of GŴo
i,k
.) Therefore, we may write

zij,k = (Ŵo
i,k × Ŵo

j,k) ··· (θi − θj) + B
i
ij,k εi,k + B

j
ij,k εj,k , (55)

with

Biij,k = (Ŵo
j,k)T GŴo

i,k
, (56a)

B
j
ij,k = (Ŵo

i,k)T GŴo
j,k

. (56b)

Thus, we may construct a measurement vector, Zk, of dimension mk, where

mk = nk(nk − 1)/2, which is the concatenation of all the cosine errors, as given by

equation (30), and for which

Zk = Hk Θ + Bk εk , (57)

where

εk ≡ [ εT1,k, . . . , ε
T
nk ,k

]T ∼ N (0, I3nk×3nk ) , (58)

and Bk is an mk × 3n-dimensional matrix whose nonvanishing submatrices are

the Biij,k and B
j
ij,k of equations (55) and (56). Hk now has dimension mk × 3n.

Therefore,

PZk
= Bk B

T
k . (59)
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By the singular-value-decomposition (SVD) theorem [ 12 ], Bk may be factored as

Bk = Uk Sk V
T
k , (60)

where Uk and Vk are orthogonal and Sk is a diagonal mk × 3nk matrix, and

(Sk)11 ≥ (Sk)22 ≥ . . . ≥ 0 , (61)

so that

PZk
= Uk Dk U

T
k , (62)

with

Dk = Sk S
T
k , (63)

which is a diagonal and positive semi-de�nite mk × mk matrix.

If we now de�ne

ζk ≡ UT
k Zk , (64)

Ck ≡ UT
k Hk , (65)

then

ζk = Ck Θ + Sk ε
′
k , (66)

where

ε′k ≡ V
T
k εk ∼ N (0 3nk , I3nk×3nk ) . (67)

If `max,k is the largest index for which (Sk)`` > 0, then the �rst `max,k components of

ζk contribute `max,k independent measurements of Θ. The remaining components

correspond simply to the constraints on Zk and are eliminated by truncation. Thus,

we write

ζ̃k = C̃k Θ + S̃k ε
′
k , (68)

where the tilde denotes the truncation (by row). The covariance matrix of ζ̃k, D̃k,

is now non-singular. Note that for nk > 3, Bk must have at least one vanishing

singular value. (Care must be exercised in determining `max,k because the vanishing

of the singular value is always obscured by numerical error.)

In order to obtain the prior-free maximum likelihood estimate of the relative

misalignments, the �rst three columns of C̃k can be eliminated in the same manner

as Hk was truncated. Thus, we write

ζ̃k = C̃ ′kΨ + S̃k ε
′
k , (69)

from which it follows in the same way that

P−1
ΨΨ(prior-free) Ψ∗(prior-free) =

N
∑

k=1

C̃ ′ Tk D̃−1
k ζ̃k , (70)

P−1
ΨΨ(prior-free) =

N
∑

k=1

C̃ ′ Tk D̃−1
k C̃ ′k , (71)

in analogy to equations (47), (49) and (50).
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In general, the SVD operation will yield 2nk − 3 positive singular values and

the remaining singular values will be zero. The 2nk − 3 columns of Uk which

do not correspond to vanishing singular values provide the coe�cients of those

linear combinations of the zij,k which are sensitive to the misalignments. The

remaining column vectors of Uk provide the coe�cients of the linear combinations

of the zij,k which are insensitive to the misalignments. These are the coe�cients

of the constraints on the zij,k. Since the covariance matrix of these new derived

measurements is D̃k, these new derived measurements are statistically independent

as well. Thus, the SVD provides a maximal set of derived measurements which

have the maximum sensitivity to the misalignments. When nk = 3, the zij,k are a

maximal non-redundant set of derived measurements, and there is no advantage to

using the factorized algorithm unless PZk
is ill-conditioned due to poor geometry.

Note that equation (69) is in a form which is suitable for square-root �ltering

[ 13 ], should the relative alignments turn out to be poorly observable and require

a more cautious numerical treatment.

Relative Attitudes as Relative Alignments

Frequently a single sensor is able to calculate its attitude at a given instant

independently of other sensors. This is particularly the case for imaging devices

which can sense the directions of stars and are often part of the spacecraft scienti�c

payload. The CCD star camera, sometimes a component of the spacecraft attitude

determination system, is also such a device. For such sensors it is possible to

compute relative alignments directly from the relative attitudes.

To develop an estimator for this case we de�ne the uncalibrated single-sensor-

based attitude for sensor i at time tk as Aoi,k, where

Ŵo true
i,k = Aoi,kV̂true

i,k , (72)

with Ŵo
i,k is given by equation (24). Clearly,

Aoi,k =MT
i Ak . (73)

If Ao ∗i,k is the estimate of Aoi,k based on data from sensor i alone at time tk (not

corrected for the unknown misalignment), then

Ao ∗i,k = (δAoi,k)Aoi,k , (74)

and δAoi,k is with large probability a small rotation, so that

δAoi,k = I + [[ ξi,k ]] + O(|ξi,k|
2) , (75)

and

|ξi,k| � 1 (76)

with very large probability, and

E{ ξi,k } = 0 , (77a)

E{ ξi,k ξ
T
j,k′ } = δij δkk′ Pi,k . (77b)
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Thus,

Zij,k ≡ A
o ∗
i,k A

o ∗ T
j,k = (δAoi,k)MT

i Mj (δAoj,k)T (78)

is also with large probability a small rotation and we may write

Zij,k = I + [[ z(2)
i,k ]] + O(|z(2)

i,k |
2) , (79)

and |z(2)
i,k | � 1 with very large probability. Thus, from the de�nition of the quantities

appearing in equation (78) it follows to lowest nonvanishing order that

z(2)
ij,k = θj − θi + ξi,k − ξj,k , (80a)

= θj − θi + ∆z(2)
ij,k . (80b)

The superscript on z(2)
ij,k serves to distinguish this derived measurement from the

one de�ned earlier. From equation (80) we can construct

Z(2)
k = [ z(2) T

12,k , . . . , z(2) T
1nk ,k

]T , (81)

for which

Z(2)
k = H

(2)
k Ψ + ∆Z(2)

k , (82)

with

∆Z(2)
k ∼ N (0, P (2)

k ) . (83)

The quantities H
(2)
k and P

(2)
k are easily constructed from the quantities appearing

in equations (77) and (80). Note that P
(2)
k will not be block diagonal owing to the

correlations introduced by ξ1,k. In the special case that all the sensors are able to

determine their attitude instantaneously and independently of all the other sensors,

and all sensors are present in a given frame, then H
(2)
k is simply the 3nk × 3nk

identity matrix.

In general, one will have some sensors which measure a complete attitude

(that is, they measure more than one direction) instantaneously and others which

measure only a single direction. We require, therefore, a derived measurement

which uses data both from a sensor which measures a single vector and from a

sensor which measures a complete attitude. For this case we de�ne

Ŵo ∗
ij,k ≡ A

o ∗
i,k V̂j,k , (84)

that is, the estimated value of Ŵo
j,k based on the uncalibrated spacecraft attitude

determined by the complete attitude sensor i at time tk and ignoring the unknown

misalignments. It is straightforward then to show that to lowest nonvanishing order

the desired e�ective measurement of the alignments is

z(3)
ij,k ≡ P (Ŵo

j,k)Ŵo ∗
ij,k × Ŵo

j,k (85a)

= P (Ŵo
j,k)(θj − θi) + ∆z(3)

ij,k (85b)

with

∆z(3)
ij,k ≈ −P (Ŵo

j,k)
[

ξi,k + [[ Ŵo
j,k ]]∆Ŵo

j,k

]

. (86)
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Here P (Ŵo
j,k) is a 2 × 3 matrix which projects three-dimensional vectors onto the

two-dimensional space normal to Ŵo
j,k. Thus, if {Ŵo

j,k, âk, b̂k} is a right-handed

orthonormal triad, then we may choose

P (Ŵo
j,k) = [ âk | b̂k ]T , P (Ŵo

j,k)[[ Ŵo
j,k ]] = [ b̂k | −âk ]T . (87)

This projection is necessary since by explicit construction the covariance of Ŵo ∗
ij,k ×

Ŵo
j,k can only be rank 2.

A complete measurement vector, Zk, can now be constructed from the zij,k, the

z(2)
ij,k, and the z(3)

ij,k. The corresponding Hk and Pk are then readily constructed from

the quantities appearing in equations (31)�(34), (77), (80), and (84)�(87). Usually,

only two of the three derived measurement types will appear. (We choose not

to consider the case in which the derived triplet measurements of equation (37)

must also be taken into account.) The incorporation of the z(2)
ij,k and the z(3)

ij,k in

the factorized algorithm is somewhat more complicated but straightforward.

Prelaunch Alignment Calibration

As an example of the use of the attitude matrix as a relative alignment, we

may consider the method by which the alignments are determined on Earth prior

to launch. This is accomplished by measuring the attitude of each sensor relative

to a set of axes �xed in the laboratory. The attitude of each sensor is de�ned

by a reference cube glued to that sensor. This cube is optically at and its sides

are perpendicular with great precision, typically 1. arc second. The attitude of

each cube is determined by measuring the directions of the normals to two faces

of each cube. These same cubes are then used as attitude references when the

sensor itself is calibrated. These methods, as performed at the Optical Alignment

Facility of NASA Goddard Space Flight Center, have been documented previously

[ 14, 15 ].

Given the set of measured normals, which may not be exactly perpendicular,

a set of exactly perpendicular directions is computed. Thus, for example, if n̂i,1
and n̂i,2, corresponding to the normals of the +x and −z faces of the ith cube, are

measured, an exactly orthonormal set of �cube� axes can be constructed as

êi,1 ≡ n̂i,1 , (88a)

êi,2 ≡ n̂i,1 × n̂i,2/|n̂i,1 × n̂i,2| , (88b)

êi,3 ≡ êi,1 × êi,2 , (88c)

and similarly for all other cubes, including the primary reference cube. The

measured faces have been chosen so that the auxiliary axes will be close to the

normals to the +x, +y, and +z faces of the cubes, which simpli�es the treat-

ment which follows. A di�erent choice of the measured surfaces would have

required only that we relabel the indices of the auxiliary vectors in order to bring

them into the received order. It should be noted that the choice of measured

faces given above is a frequent impossibility because the −z face is typically the

glue joint. However, for the purpose of illustration this choice gives us a convenient
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order for the hierarchy of cross products (it makes them look like those of the

TRIAD algorithm of [ 5, 16 ]) and makes êi,1, êi,2, and êi,3 correspond to the

orthogonalized x, y, and z axes of the cube.

From the auxiliary vectors so de�ned, the estimated elements of the prelaunch

alignment matrices can be computed as

(So ∗i )``′ = êTo,` êi,`′ , (89)

where the subscript o denotes the principal reference cube. Equation (89) is

equivalent to equation (78) above. Note that for the prelaunch calibration the mis-

alignments vanish by de�nition. This is the procedure by which the prelaunch align-

ments have been determined for the Solar Maximum Mission (SMM), Magsat, the

International Ultraviolet Explorer (IUE), and numerous other spacecraft. Equa-

tion (89) is simply the TRIAD algorithm for attitude determination applied to

alignment estimation.

To estimate the covariance of the prelaunch alignments, we write

n̂i,` = n̂true
i,` + ∆n̂i,` , (90)

where

∆n̂i,` ∼ N (0, Rnn(i, `)) . (91)

It is then straightforward to compute the covariance of (So ∗i )``′ from the results

for the TRIAD algorithm [ 5, 16 ]. Since the prelaunch estimate of the alignment

matrix is Soi (we discard the asterisk on this quantity henceforth), it follows that

the prelaunch estimate of the misalignment matrix, Mi, is the identity matrix, and

the prelaunch estimate of the misalignment, θi, is 0 by de�nition. Thus, we write

in general,

θ ∗i (prelaunch) = 0 = θ
prelaunch
i + ∆θ ∗i (prelaunch) , (92)

where the ∆θ ∗i (prelaunch), i = 1, . . . , n, are the errors in the prelaunch estimates

of the misalignment vectors, which are then also zero-mean and Gaussian. We

write, therefore,

E{∆θ ∗i (prelaunch)} = 0 , (93a)

E{∆θ ∗i (prelaunch) ∆θ ∗ Tj (prelaunch)} = Pij(prelaunch) , (93b)

(Note that we have designated the physical random variable by a literal superscript

while quantities associated with the estimator are indicated by a literal argument

in parentheses.)

Since the orientation of the primary reference cube appears in the de�nition

of every alignment, the alignment estimates are correlated. This is reected in

equation (80), which is true generally. Thus, the general structure of the alignment

estimate covariance matrices is

Pij(prelaunch) = δij P
lab
i (prelaunch) + P lab

o (prelaunch) , (94)

where P lab
i (prelaunch), i = 0, . . . , n, denotes the covariance of the alignment of

each cube relative to the laboratory. In particular, for the algorithm above and
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assuming that the measurement covariances are described well by the QUEST

model [ 5 ],

Rnn(i, `) = σ2
p

(

I3×3 − n̂true
i,` n̂true T

i,`

)

, (95)

we obtain the simple expression

Pij(prelaunch) = σ2
p

(

1 + δij
)

I3×3 , (96)

exhibiting explicitly the correlation in the prelaunch alignment estimates. From the

observed repeatability of the measurements at NASA/GSFC we are led to assign

to σp a value (in radian equivalent) consistent with

2σ2
p ≈ (5. arc sec)2 , (97)

which holds approximately for all sensors. Equation (96) probably overestimates

the correlation between alignments slightly since typically there will be fewer

sources of measurement error for the normals of the primary reference cube.

At the same time, sources of correlation between the measured normal vectors

have been neglected. The expression and the degree of correlation are, thus, very

reasonable and considering the uncertainties which are introduced by launch shock,

and the degree of subjectiveness which exists in the prelaunch measurements, a

more detailed model is probably not justi�ed.

A few words should be said on the use of the TRIAD algorithm for the

estimation of the prelaunch alignment matrix. The construction of an exactly

orthonormal set as given by equations (88) is necessary simply to de�ne the cube

coordinate systems unambiguously in the absence of exactly orthogonal faces. If

these orthonormalized axes are used deterministically as the estimated coordinate

axes of the cube, the result is the TRIAD estimate of the attitude of the cube

relative to the laboratory. Alternately, one may consider equations (88a) and (88b)

as de�ning e�ective measurements of these axes. Thus

êi,` = AT (i) ûi,` + ∆êi,` , i = 0, . . . , n , ` = 1, 2 , (98)

where ûi,` denotes the representation of the normal to face ` of cube i with respect

to the coordinate axes of cube i. In the present example

ûi,1 =

[ 1
0
0

]

, ûi,2 =

[ 0
1
0

]

, (99)

The êi,`, it will be recalled, are the representations of the corresponding cube

normals with respect to laboratory axes. The cube attitude, A(i), i = 0, . . . , n is

de�ned as the transformation from the laboratory to the cube coordinate systems;

hence, the transpose appearing in equation (98). The e�ective measurement noise

is

∆êi,1 = ∆n̂i,1 , (100a)

∆êi,2 = [[ êi,2 ]]2 ([[ n̂i,2 ]]∆n̂i,1 − [[ n̂i,1 ]]∆n̂i,2
)

, (100b)

where we have used the fact that n̂i,1 · n̂i,2 ≈ 0.
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The cube attitude matrices, A(i), i = 0, . . . , n, may now be estimated using the

attitude estimation algorithm of choice. The prelaunch alignment matrices are

then given by

Soi = A∗(0)A∗ T (i) . (101)

For the special case of the TRIAD algorithm, equation (101) reduces to equa-

tion (89). Equation (94) will hold generally provided that there is only one set of

normals

{n̂i,1, n̂i,2} measured for each cube. This is generally the case since these measure-

ments are costly and the errors associated with a single set of measurements are

much smaller than those which will be introduced later by launch shock. For this

reason there is little motivation to improve the prelaunch alignment calibration

procedures as they presently exist.

Transformations between Relative Alignment Representations

The above discussion assumed that it is sensor 1 to which the relative mis-

alignments are referred. This need not be the case. It is simple, in fact, to

transform relative misalignment estimates and their covariances between di�erent

representations originating in di�erent choices of the reference sensor.

Let us de�ne

ψmi = θi − θm , i = 1, . . . , n , (102)

which are the relative misalignments with respect to sensor m. Likewise we de�ne

Ψm ≡ [ψTmi, . . . , ψ
T
mn ]T . (103)

Thus, Ψm is a 3n-dimensional vector for which three components (corresponding

to ψmm) vanish identically. We write also

Ψ∗m ≡ [ψ∗ Tmi , . . . , ψ
∗ T
mn ]T , (104)

with necessarily

ψ∗mm = 0 . (105)

If ∆Ψm is the estimate error of Ψm, then

PΨΨ(m) ≡ E{∆Ψm∆Ψ
T
m} (106)

is a 3n×3n matrix for which 3 rows and 3 columns are identically zero. We construct

Ψm and PΨΨ(m) from the (3n−3)-dimensional relative misalignment vector estimate

and (3n − 3) × (3n − 3) estimate-error covariance matrix by inserting zeros in the

appropriate places. To transform a set of relative misalignments referred to sensor

m, together with the corresponding covariance matrix, to a set referred to sensor

`, we note that

ψ`i = ψmi − ψm` . (107)

Thus,

ψ∗`i = ψ
∗
mi − ψ

∗
m` , (108)

and

[PΨΨ(`) ]ij = [PΨΨ(m) ]ij − [PΨΨ(m) ]i` − [PΨΨ(m) ]`j + [PΨΨ(m) ]`` . (109)
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By deleting now the rows and columns associated with ψ`` the desired (3n − 3)
relative misalignment vector relative to sensor ` and (3n − 3) × (3n − 3) covariance

matrix are obtained.

A Numerical Example

We illustrate these methods with a numerical example. Consider a typical

spacecraft equipped with three vector sensors each with an accuracy of 10. arc

sec/axis and an e�ective (weighted) �eld of view of ±10. deg/axis. We assume

the sensor errors to be well represented by the QUEST measurement model [ 5 ],

which has been used in the attitude determination algorithm for several spacecraft.

We may write this measurement model as

E{∆Ûi,k ∆ÛT
i,k} = σ2

i,k

(

I − Ûtrue
i,k Ûtrue T

i,k

)

. (110)

Thus, to lowest order in the misalignments and neglecting errors in the reference

vectors

E{∆Ŵo
i,k ∆ŴoT

i,k} = σ2
i,k

(

I − Ŵo
i,k ŴoT

i,k

)

. (111)

Substituting these expressions into equation (34) it follows for the QUEST model

that

Ek( i | j | ` ) = σ2
j,k (Ŵo

i,k × Ŵo
j,k) ··· (Ŵo

`,k × Ŵo
j,k) . (112)

Note that the approximation of the QUEST measurement model lies in the form

of the covariance matrix of the measurement noise, not in the nonrandom part of

the measurement.

Thus, the measurement is described by

Zk =

[

z23,k
z31,k
z12,k

]

= Hk Θ + ∆Zk , (113)

where the reordering of the components and sign changes will serve to give

the measurement vector a cyclic symmetry and simplify later calculations. The

sensitivity matrix, Hk, is now given by

Hk =







0T (Ŵo
2,k × Ŵo

3,k)T −(Ŵo
2,k × Ŵo

3,k)T

−(Ŵo
3,k × Ŵo

1,k)T 0T (Ŵo
3,k × Ŵo

1,k)T

(Ŵo
1,k × Ŵo

2,k)T −(Ŵo
1,k × Ŵo

2,k)T 0T






, (114)

and

PZk
=

[

d23,k f23,31,k f23,12,k
f23,31,k d31,k f31,12,k
f23,12,k f31,12,k d12,k

]

, (115)

where

dij,k = (σ2
i,k + σ

2
j,k)|Ŵo

i,k × Ŵo
j,k|

2 , (116a)

f23,31,k = −σ
2
3,k (Ŵo

2,k × Ŵo
3,k) ··· (Ŵo

3,k × Ŵo
1,k) , (116b)

f23,12,k = −σ
2
2,k (Ŵo

2,k × Ŵo
3,k) ··· (Ŵo

1,k × Ŵo
2,k) , (116c)

f31,12,k = −σ
2
1,k (Ŵo

3,k × Ŵo
1,k) ··· (Ŵo

1,k × Ŵo
2,k) . (116d)
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For the QUEST model [ 5 ] we may factor the measurement covariance matrix as

RŴo
i,k
=
(

σi,k [[ Ŵo
i,k ]]

) (

σi,k [[ Ŵo
i,k ]]

)T
. (117)

Thus, the total measurement sensitivity in the factorized algorithm becomes

Biij,k = (Ŵo
j,k)T (σi,k [[ Ŵo

i,k ]])

= σi,k (Ŵo
i,k × Ŵo

j,k)T , (118a)

B
j
ij,k = σj,k (Ŵo

j,k × Ŵo
i,k)T , (118b)

from which it follows that

Bk = Hk











σ1,k I3×3 O3×3 · · · O3×3

O3×3 σ2,k I3×3 · · · O3×3
...

...
. . .

...

O3×3 O3×3 · · · σnk ,k I3×3











. (119)

Thus, Bk in this special case is obtainable from Hk by simple scalar multiplication

of the latter's columns.

The absolute misalignments were sampled from a Gaussian distribution with

zero mean and covariance matrix given by equation (96) and (97) on which

were superimposed launch-shock errors assumed to have mean zero and standard

deviation 1. arc min. for each component of Θ. This is a reasonable value for the

launch-shock error level, which overwhelms, in general, the prelaunch alignment

estimation errors. The nominal alignments, expressed in terms of the Gibbs vector

[ 17 ], were taken to be

g1 = 0 , g2 = (2.5, 0, 0)T , g3 = (0, 2.5, 0)T , (120)

which is a typical set of alignments if sensor 1 is a Sun sensor and sensors 2 and

3 are star trackers.

One hundred samples of simulated data were generated. Attitude independent

measurements were generated using both the factorized and unfactorized algorithms

and the maximum likelihood estimate of Ψ and PΨΨ(prior-free), its estimate-error

covariance matrix, were computed from equations (49) and (50) and equations (70)

and (71), respectively.

Table 2 shows the comparison of the model values and the corresponding

estimates. For the particular simulated data set, no di�erence was observed

between the results for the factorized and the unfactorized algorithm. Note that

two-thirds of the estimates fall approximately within one standard deviation of the

model misalignments as expected.

Discussion and Conclusions

We have developed a statistically consistent batch methodology for estimating

spacecraft sensor relative misalignments from inight data. The methodology

begins with a general statistical model for the errors in the individual sensors

and from these develops a statistical model for a set of derived measurements

which are insensitive to the attitude. The derived measurements are just the ob-
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Table 2. Comparison of Model and Estimated Relative Misalignments

Model Relative Misalignments Estimated Relative Misalignments

−73. arc sec −73. ± 1. arc sec

−40. −50. ± 8.

63. 78. ± 13.

−14. −7. ± 7.

−43. −45. ± 1.

131. 146. ± 12.

served cosines between the measurements. This derived data set will be adequate

provided that the data is not coplanar. In the extremely unlikely event that the data

is coplanar, one must use instead a larger set of derived measurements consisting

of these cosines and the scalar triple products of the measured directions. On the

basis of this set of derived measurements we obtain a simple batch estimator of the

relative misalignments. A factorized method, which is better behaved numerically

is also developed. These algorithms have performed well in tests with realistic

simulated data.

Some details of the implementation should be noted:

In the discussion above, sensor 1 was chosen both as the sensor to which the

relative misalignments were referred and as the �rst of the two preferred sensors

for computing the derived measurements. This choice was made to simplify the

indices. There is no need for sensor 1 to have this double role, and, in fact, the

relative misalignments may be referred to sensor �a� while the cosines are computed

from the measurements of sensors �b� and �c� with the identity of sensors �a,�

�b,� and �c� perfectly arbitrary except for the noncoplanarity restriction.

Because the calculation of the zij,k as given by equation (30) requires the

subtraction of nearly equal quantities, the numerical signi�cance of the zij,k is

much less than that of the original vector measurements. If the misalignments are

as small as an arc second, then nearly six signi�cant �gures (eighteen signi�cant bits)

are lost in the calculation of the zij,k. Thus, on many computers the calculations

must be carried out in double precision.

The linearization of equation (31) discards truly negligible terms which are on

the order of |∆Ŵi,k|2 and terms on the order of |θi|2, which may be less so. For

|θi| on the order of an arc minute, linearization errors will be on the order of .001

arc min, so that the zij,k will possess only three signi�cant digits in this case. The

lack of numerical signi�cance coupled with poor geometry can lead to inaccurate

estimates. The errors due to the lack of numerical signi�cance can be minimized

by using the factorized techniques. (Note that in a Kalman �lter mechanization,

these same subtractions will occur in computing the innovation.)

The linearization errors proportional to |θi |2 (i.e., |ψi |2) can be eliminated by

evaluating the normal equations iteratively. In this case one uses the misalignments

just calculated to update the alignment matrices and then repeats the calculation of

a new Ψ∗(prior-free) and PΨΨ(prior-free) for the corrections to these new alignment

matrices. In general, this procedure will not be necessary.
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The estimate is not optimal over all 2n sensor measurements since e�ectively

three of the measurements have been removed in order to achieve attitude in-

dependence. Thus, the results of this algorithm will di�er somewhat from the

results that would obtain, say, from a complete Kalman �lter treating both the

attitude and the alignments. The di�erence in the relative alignment estimates

that would arise from estimating the attitude simultaneously (say, in a Kalman

�lter) is not expected to be signi�cant, however, provided that the data stream is

not very defective (i. e., that the full complement of sensors appears in almost

every frame). In the limiting case that no sensor data is simultaneous with any

other, the above methodology cannot be used at all and one must have recourse

to a Kalman �lter in order to be able to estimate the misalignments.

Since the zij,k are zero-mean and have easily calculable variances, the detection

of outliers among these derived measurements is very direct. In general, these

outliers will be due to an improper measurement of a vector Ŵi,k or Ŵj,k (due,

for example, to the misidenti�cation of a star). In this case, it is expected that

most of the zij,k for the given i and k or j and k will be outside the bounds. This

makes the identi�cation of outliers simple.

Very often, spacecraft carry sensors of widely di�erent accuracies, some supplying

attitude information with an accuracy of 10. arc sec while others are accurate to

only 0.5 deg. If there are su�cient highly accurate sensors available most of

the time, there is little to be gained by estimating the misalignment of the

coarse sensors simultaneously with the �ne. In this case it is preferable to

estimate the misalignments of the �ne sensors �rst using the attitude-independent

algorithm presented here and then use simple regression techniques to estimate

the misalignments of the coarser sensors using the computed spacecraft attitude

from the �ne sensors to remove the ambiguity. This approach replaces one large

estimation problem by many much smaller ones.

The above algorithm is applicable to those spacecraft for which the payload can

be treated as a vector sensor or for which it can be assumed that the payload will

not be misaligned from one of the vector sensors during launch. For the Solar

Maximum Mission (SMM) the payload was mounted near the �ne pointing Sun

sensors (FPSSs) on a rigid titanium plate. Thus, it might appear that the SMM

satis�ed this criteria. However, the misalignment of a sensor depends on more

than just thermal distortion e�ects. In particular, sensors deteriorate in space due

both to use and to the interaction with the space environment. Also, the internal

distortion of the sensor will not be prevented necessarily by the manner in which

it is mounted. Thus, it is not clear that this algorithm is applicable to missions

for which the payload does not sense the attitude. For the SMM, however, where

two FPSSs were mounted in close proximity, it was observed that the relative

misalignment of these two sensors remained nearly zero throughout the mission

[ 18 ] lending credibility to the notion that the payload remained aligned with the

FPSSs at all times. (But see also the remarks at the end of Part II.)

Finally, it should be noted that the estimated relative misalignments cannot

themselves be implemented in spacecraft mission support without some additional

assumption. The alignment matrix of sensor i relative to sensor 1 is

Si←1 = Si S
T
1 =M (∆θi)S

o
i S

o T
1 MT (∆θ1) , (121)
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with M (∆θ) given by equation (14). Thus, one cannot combine an estimate of

(∆θi − ∆θ1) with the prelaunch alignments directly to obtain a corrected relative

alignment matrix. The usual solution is to set

∆θ1 = 0 , (122)

which is equivalent to referring all alignments before and after the launch to the

reference frame de�ned by the measurements made by sensor 1. If it is not

known that the misalignment of sensor 1 relative to the payload is negligible, this

prescription can lead to di�culties, which are discussed more completely in Part

II of this work.
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Appendix A: A More Complete Set of Attitude-Independent Measurements

When the measurements are all nearly coplanar, then the construction

zij,k = Ŵo
i,k ··· Ŵ

o
j,k − V̂i,k ··· V̂j,k , 1 ≤ i < j ≤ nk (A1)

will only take account of projections of Ŵo
i,k in that single plane, and one of

the components of that projection will always be along Ŵo
i,k itself. Thus, the

construction given by equation (A1) does not provide a complete set of attitude

independent measurements.

This lack of completeness stems from the fact that the construction of equa-

tion (A1) is not the only set of fundamental scalars (i.e., not a combination of

other scalars) we can construct which is independent of the attitude. There is in

addition one other choice, which is the scalar triple product. Thus, we de�ne also

zij`,k = Ŵo
i,k ··· (Ŵo

j,k × Ŵo
`,k) − V̂i,k ··· (V̂j,k × V̂`,k) , 1 ≤ i < j < ` ≤ nk (A2)

for which it can be shown that to �rst order in the θi and the ∆Ŵi,k

zij`,k = [Ŵo
i,k × (Ŵo

j,k × Ŵo
`,k)] ···θi + [Ŵo

j,k × (Ŵo
`,k × Ŵo

i,k)] ···θj
+ [Ŵo

`,k × (Ŵo
i,k × Ŵo

j,k)] ···θ` + ∆zij`,k , (A3)

with

∆zij`,k = (Ŵo
j,k × Ŵo

`,k) ···∆Ŵo
i,k + (Ŵo

`,k × Ŵo
i,k) ···∆Ŵo

j,k

+ (Ŵo
i,k × Ŵo

j,k) ···∆Ŵo
`,k . (A4)

Note that zij`,k is symmetric in the indices i, j, and `. Also, the value of zij`,k is

unchanged under the transformation

θi → θi + λ , i = 1, . . . , n . (A5)
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Hence zij`,k is sensitive only to the relative misalignments, as expected.

When Ŵo
i,k, Ŵo

j,k and Ŵo
`,k are not coplanar, then it is easy to show that

zij`,k = βij`,k zij,k + βi`j,k zi`,k + βj`i,k zj`,k , (A6)

where

βij`,k ≡
(V̂i,k × V̂`,k) ··· (V̂`,k × V̂j,k)
(

V̂i,k ··· (V̂j,k × V̂`,k)
)

. (A7)

As the three vectors approach a coplanar geometry, the coe�cients become in�nite,

so that we cannot express the scalar triple products in terms of scalar products

in that case. Thus, in this case, we must include the scalar triple products as a

distinct measurement.

The new means and covariances can now be written

E{∆zij`,k} = 0 , (A8a)

E{∆z2
ij`,k} = Ek(i , j | ` | i , j) + Ek(j , ` | i | j , `)

+ Ek(` , i | j | ` , i) , (A8b)

E{∆zij`,k ∆zijm,k} = Ek(j , ` | i | j , m) + Ek(` , i | j | m , i) , (A8c)

E{∆zij`,k∆zimp,k} = Ek(j , ` | i | m , p) , (A8d)

E{∆zij`,k∆zmpq,k} = 0 , (A8e)

E{∆zij,k∆zij`,k} = Ek(j | i | j , `) + Ek(i | j | ` , i) , (A8f)

E{∆zij,k∆zi`m,k} = Ek(j | i | ` , m) , (A8g)

E{∆zij,k∆z`mp,k} = 0 , (A8h)

where i, j, `, m, p, and q above denote distinct indices and Ek(i , j | ` | m , p) and

Ek(i | j, | ` , m) are given by

Ek(i , j | ` | m , p) ≡ (Ŵo
i,k × Ŵo

j,k)T RŴo
`,k

(Ŵo
m,k × Ŵo

p,k) , (A9)

Ek(i | j | ` , m) ≡ ŴoT
i,k RŴo

j,k
(Ŵo

`,k × Ŵo
m,k) . (A10)

For the QUEST measurement model, these take the form

Ek(i , j | ` | m , p)

= σ2
`,k [Ŵo

`,k × (Ŵo
i,k × Ŵo

j,k)] ··· [Ŵo
`,k × (Ŵo

m,k × Ŵo
p,k)] , (A11)

Ek(i | j | ` , m) = σ2
j,k [Ŵo

j,k × Ŵo
i,k] ··· [Ŵo

j,k × (Ŵo
`,k × Ŵo

m,k)] . (A12)

The redundancy of the derived measurements in now much greater. If we de�ne

Np ≡ Npair =
nk(nk − 1)

2
, (A13)

Np+t ≡ Npair +Ntriplet =
nk(nk − 1)

2
+
nk(nk − 1)(nk − 2)

6

=
nk(nk + 1)(nk − 1)

6
, (A14)
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Table A1. Number of Independent Attitude-Independent Measurements Compared with Number-
of Derived Measurements

nk 2nk−3 Np Np+t

2 1 1 1

3 3 3 4

4 5 6 10

5 7 10 20

6 9 15 35

7 11 21 56

8 13 28 84

9 15 36 120

10 17 45 165

then we see that the redundancy of the derived measurements becomes much

greater than for the cosine errors alone as shown in Table A1. If the measurements,

while largely coplanar, are not nearly all parallel or antiparallel, then an e�ective

measurement vector of length 2n − 3 whose covariance matrix is full rank can be

constructed from the set

{z1j,k , j = 2, . . . , n ; z12j,k , j = 3, . . . , nk} .

The factorized algorithm works equally well with these additional measu rements.

It is straightforward to show that

zij`,k = [Ŵo
i,k × (Ŵo

j,k × Ŵo
`,k)] ···θi + [Ŵo

j,k × (Ŵo
`,k × Ŵo

i,k)] ···θj
+ [Ŵo

`,k × (Ŵo
i,k × Ŵo

j,k)] ···θ`
+ Biij`,kεi,k + B

j
ij`,kεj,k + B

`
ij`,kε`,k , (A15)

with now

Biij`,k = (Ŵo
j,k × Ŵo

`,k)T GŴo
i,k

, (A16a)

B
j
ij`,k = (Ŵo

`,k × Ŵo
i,k)T GŴo

j,k
, (A16b)

B`ij`,k = (Ŵo
i,k × Ŵo

j,k)T GŴ`,k
. (A16c)

Thus, we may still write

Zk = Hk Θ + Bk εk , (A17)

and

PZk
= Bk B

T
k . (A18)

and apply the singular-value decomposition as before. The dimension of Zk,

however, is much greater. In practice, the need for this more extensive set of

derived measurements will, hopefully, occur only rarely. If we consider, however,

the case of a spacecraft with a very precise Sun sensor and two �xed-head star

trackers, the two star trackers may have their boresights in a �V�-con�guration

with the plane of the �V� containing the boresight of the Sun sensor. Such a

con�guration is evidently a candidate for using the scalar triple products in addition

to the scalar products as derived measurements.
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Appendix B: Implementation

We give here the steps to implement both the factorized and the unfactorized

algorithms in software. In general, the unfactorized algorithm will be used mostly

with spacecraft having only a few sensors. For such spacecraft it is reasonable

to process only those frames of data in which all the sensors have usable data.

For spacecraft with many sensors, however, the fraction of complete frames may

be too small and the number of logical decisions required to select two active

sensors in each frame as cosine error references can easily outweigh the complexity

of implementing the singular value decomposition, for which many published

algorithms exist [ 12, 19, 20 ]. For simplicity, we assume that the sensors considered

measure only a single vector or that for sensors which measure multiple vectors

simultaneously it is the vectors which are used as measurements and not an

intermediately computed attitude.

The Unfactorized Algorithm

• The index λ of the sensor to which the relative alignments will be referred is

identi�ed.

• The indices µ and ν of the sensors to which the cosines will be referred are

identi�ed.

• The uncalibrated sensor measurements, Ŵo
i,k, are computed from the sensor

measurements in the sensor frame, Ûi,k, using the prelaunch alignment matrices,

Soi according to equation (24).

• The cosine-error measurements zµj,k, j 6= µ, and zνj,k, j 6= µ or ν, are computed

according to equation (30).

• For each frame of data the total measurement Zk, of dimension no greater than

2nk − 3, is constructed according to equation (38).

• The measurement sensitivity matrix, Hk, de�ned by equation (39) is computed

according to the coe�cients in equation (31).

• The total measurement covariance matrix, PZk
, which is the covariance of ∆Zk

of equation (39), is computed in terms of the individual expectations given by

equations (33) and (34).

• The truncated measurement sensitivity matrix H ′k is computed by truncating the

columns of Hk corresponding to sensor λ.

• These quantities are inserted into the right members of equations (49) and (50),

which are solved to obtain Ψ∗(prior-free) and PΨΨ(prior-free).
• The misalignment matrices, Mi, are calculated according to equation (14).

• The corrected alignment matrices, Si, are calculated according to equation (13).

• The procedure is repeated until the computed misalignments are driven to zero

(generally, a single iteration will su�ce.)

The Factorized Algorithm

• The index λ of the sensor to which the relative alignments will be referred is

identi�ed.

• The uncalibrated sensor measurements, Ŵo
i,k, are computed from the sensor

measurements in the sensor frame, Ûi,k, using the prelaunch alignment matrices,

Soi according to equation (24).
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• The cosine-error measurements, zij,k, are calculated for all i 6= j according to

equation (30).

• For each frame of data the total measurement vector Zk of dimension nk(nk−1)/2
is constructed from these cosine-error measurements.

• The measurement sensitivity matrix, Hk, of dimension nk(nk−1)/2 × 3nk, de�ned
by equation (57), is computed according to the coe�cients in equation (31).

• The square roots of the RŴo
i,k

are computed.

• The matrix Bk, de�ned by equations (55) and (56), is computed.

• The SVD of Bk is computed to obtain Uk and Sk according to equation (60).

• The vector ζk and the matrix Ck are computed according to equations (64) and

(65).

• The value of `max beyond which the singular values of Bk are e�ectively zero is

determined.

• All but the �rst `max rows of ζk, Ck, and Sk are discarded to obtain ζ̃k, C̃k, and

S̃k.
• The truncated measurement sensitivity matrix C̃ ′k is computed by deleting the

columns of C̃k corresponding to sensor λ.

• These quantities are inserted in the right members of equations (70) and (71),

which are solved to obtain Ψ∗(prior-free) and PΨΨ(prior-free).
• The misalignment matrices, Mi, are calculated according to equation (14).

• The corrected alignment matrices, Si, are calculated according to equation (13).

• The procedure is repeated until the computed misalignments are driven to zero

(generally, a single iteration will su�ce.)

Coplanar Measurements

Unfactorized Algorithm: In cases where the measurements all lie in the same

plane, and at least one measurement Ŵµ,k is far from being parallel to any of

the other measurements, it should be possible to use the unfactorized algorithm

with only the cosine errors zµi,k, i 6= µ, and the scalar-triple-product errors zµνi,k,

i 6= µ or ν, with ν any other sensor. The additional elements of the measurement

sensitivity matrix Hk and the covariance matrix PZk
are computed in accordance

with the results given in Appendix A.

Factorized Algorithm: The measurements consist now of all the zij,k and all the

zij`,k. The steps above are repeated using the results of Appendix A.
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