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Kalman Filtering of Spacecraft
Attitude and the QUEST Model

M. D. Shuster*

Abstract

Efficient aigorithms are presented for processing vector measurements within a Kal-
man Filter assuming a simple but realistic form for the measurement covariance matrix.
The resuits are sufficiently general to be applicable to any spacecraft attitude system for
which the vector measurements depend directly on the attitude aione or on the attitude
and unknown sensor alignments. When simuitaneous non-collinear vector measurements
are available, it is shown that the prior-free maximum-likelihood estimate of the attitude
based on these simuitaneous measurements (the singie-frame QUEST attitude) provides a
sufficient statistic which can greatly reduce the computationai burden of the fiiter.

Introduction

The present work compietes a series of papers concerned with attitude estima-
tion based on a simple but realistic measurement model [1] for vector observa-
tions. The first paper [2] showed that the Wahba probiem [3] for the attitude was
equivalent to a maximum-likelihood estimation problem given this measurement
model. The second paper {4] showed that the QUEST solution [1] to the Wahba
probiem couid be mechanized as a sequential filter which was equivaient term by
term to the usual Kalman filter for spacecraft attitude [5]. This fiiter QUEST was
efficient, however, only in cases where process noise couid be negiected or where
the prediction step of the filter could be represented effectively as a fading-
memory filter. More important, however, was the restriction that the angular ve-
locity be known exactly. Thus, in practical situations, filter QUEST becomes at
best a suboptimal filter relying on the exactness of a gyro-based angular velocity
or on the exactness of a dynamical model. Nonetheless, this level of optimality
and exactness has proven sufficient for at least three spacecraft (which, however,
relied on a batch rather than a filter implementation [6]).

The present work shows how the QUEST measurement model [1] can be in-
corporated within realistic Kalman filters (and smoothers). Since the QUEST at-
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titude estimation algorithm has proved very useful in batch attitude estimation
for several spacecraft, this is certainly of interest. The form of the measurement
model effects only the update step of the Kalman fiiter. Therefore. no discussion
is presented here of the initialization and prediction steps (for these see, e.g., [S]).
An example of the impiementation of these methods in a complete Kalman fiiter
for a proposed spacecraft has been completed recentiy [7].

The QUEST measurement model has been mentioned in connection with
Kalman filters previously by Bar-ltzhack and his collaborators for the attitude
matrix [8], the quaternion [9], and the Euler angles [10]. However, the results
presented in those works do not take advantage of the symmetry of the QUEST
model and simply present general Kalman filter results for an arbitrary linear
measurement. In addition, those works [8,9] use redundant attitude parameters
in the state vector rather than taking the orthogonality or normaiity constraint of
the attitude representation in account explicitly ab inirio. Therefore. in order to
compensate for the errors which arise from neglecting these constraints these
methods must impiement additional “fixes” in the update step and use an atti-
tude covariance matrix which. despite the redundancy of the estimated variabies.
1s not singular at every step. The present work. because it works entirely in terms
of local infinitesimal rotations (rather than in terms of the arithmetic differences
of the representations), avoids these complications entirely.

The present paper begins by comparing the QUEST measurement model with
a model which has been inferred for an actual vector sensor in common use. The
QUEST measurement model covariance is shown to be a reasonable approxi-
mation if the field of view of the sensor is not too large. The efficient implemen-
tation in the Kalman fiiter of the QUEST measurement model is then developed
in detail. The Kalman filter implementation displays a simplicity which mirrors
the simplicity of the batch QUEST algorithm. An important component in the
derivation of the QUEST Kaiman filter is to make a propitious choice of the
measurement components to include in the filter, because the QUEST measure-
ment model is necessarily singular. Efficient expressions are presented for both
covariance and information fiiters.

It turns out that the singularity of the measurement covariance. which arises
from the unit-normalization of the measurement, can be set aside, essentially
because the attitude is insensitive to the iength of the measured vector. The sin-
gular three-dimensional measurement covariance matrix can be replaced, there-
fore, with an equivalent measurement covariance matrix which is a muitiple of
the three-dimensional identity matrix. Thus, the need to construct independent
measurement components is replaced by the inversion of a slightly larger matrix.

For the case where the attitude system furnishes a sequence of “frames” of
data, each consisting of several simultaneous non-collinear measurements, the
QUEST estimate of the attitude for each frame provides a sufficient statistic [11]
for the attitude which can be used in place of the actual vector measurements in
the Kalman filter. The reformulation of the Kalman filter in terms of this suffi-
cient statistic leads to computational savings. It is in this form that the filter has
been implemented in flight software destined for the Star Tracker mission [7].

In the beginning of the present work it is assumed that the vector measure-
ments depend on the attitude alone. If the vector measurements depend on other
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quantities as well, such as on sensor misalignments or on hardware biases, the
results presented here will need to be modified. For many spacecraft, for example,
the Star Tracker Mission [12], the algorithms derived here assuming sensor align-
ments and biases are known are entirely adequate. The special structure of the
QUEST measurement model makes the inclusion of alignment degrees of free-
dom in the Kalman filter particulariy simple. The modification of the QUEST
Kalman filter formalism to inciude simultaneous attitude and alignment estima-
tion is therefore also presented.

The Measurement Model

Vector measurements are usuaily of two types: (1) those which measure ail
three components; and (2) those which measure only a direction (line of sight).
The principal exampie of the first type is the vector magnetometer. The princi-
pal examples of the second type are vector Sun sensors. star cameras and star
trackers and. to some extent. Earth sensors. For complete vector sensors. the ob-
served vector at time #,, W;. is related to the reference vector V, according to

W, = A, V. + AW, (1)

where A, is the attitude matrix at time 1, and AW, is the measurement noise. usu-
ally assumed to be Guassian and white with covariance Rw,. Normalizing both
sides of the equation leads to

WI\ = AkC’k + AWL, (2)

where AW, is to good approximation Gaussian and white and related to AW, ac-
cording to

AW, = — l]{Ak\'Ikuz AW, . 3)
Vil

Here. {v] denotes the 3 x 3 antisymmetric matrix given by

O Vs =V
[vi=|-vs 0 v | (4)
Va -V O
Note that
R(,8) = ¢!
=cos 81 + (I — cos ®)fin’ + sin @ [A], (5)

which is Euler’s formuia for the rotation matrix for a rotation through an angle
about an axis n. and

I = (AN (AN,
@(Ako‘-) ’ (6)
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is the projection operator onto the space perpendicular to 4, V;. Thus. the mea-
surement covariance matrix of the unitized measurement is given by

PN 1
RWL = E{Akaw‘T} = lv':g’mn'fanlg’M.\'f.-h (7
k
where Rw, is the covariance matrix for the ununitized measurement. If it is fur-
ther assumed that R, is proportional to the identity matrix. then we obtain us-
ing equation (3) the covariance matrix of the QUEST measurement model.
UEST 2 ‘< <
RS = a1 = (V) (AT, ®)
which was the assumed covariance matrix for line-of-sight sensors in the
QUEST model {1]. :
Line-of-sight sensors effectively measure the elevations of the line of sight as
projected onto mutually perpendicular planes which contain the sensor boresight
axis (here the z-axis). Denoting these two angies bv a and S, the sensed line of
sight is given bv
1 tan a l 2
Z21. (9)

W= tan = ————————o—
V1 + tan- a + tan‘ g 16 \/1+z,=+z§1

The measurements tan a and tan 8 are largely uncorrelated. For a commercially
available vector Sun sensor which has been used frequently in near-Earth space-
craft. the covariance matrix of these two quantities has been determined to have
the form

-

o’ 1+ czi)  (czi1z2) ]

1+ c(zi + z)| (czvza) (A + cz3) (10)

2
where ¢ is a quantity of order unity. Note that the covariance matrix of
equation (10) has been written in terms of the measurement vector itself. which is
only approximately correct since it makes the covariance matrix a random quan-
titv. However. since truth is never available to us. this is an approximation which
ultimatelv will always have to be made. If equation (8) is written equivalentlyv in
terms of the quantities z, and z,, the result for z, and 2z, not too large is

(I -z + z{ + z3) z1z2z7 + z3)
21227 + z3) (1 = z)(1 + z7 + 23)]’

RYUEST = a"‘,‘[ (1)
For zi + z3 < 1, the QUEST measurement model agrees well with the inferred
measurement model for the reai sensor. Thus. for both models the diagonal ele-
ments differ from the same constant by terms of order {z{* and the off-diagonal
terms differ from zero by terms of order |z|".

For precise sensors the measurements are constrained typically to be within
fifteen degrees or less of the sensor bore-sight. Hence, for very accurate sensors
the QUEST approximation is very good indeed. Less precise sensors generally
have much larger fields of view, the vector Sun sensor cited above being one ex-
ample. However. for these sensors the accuracy requirements are also much more
modest. and the approximation of using the QUEST measurement model. is not
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significant except, perhaps in those cases where the measurement covariance
matrix is radically anisotropic.

The Kalman Filter
True Measurement Model

The measurements z, and z,, defined by equation (9), implemented straight-
forwardly furnish a not inefficient Kalman filter. Let {G,, 0, 43} denote the three
sensor axes with @: the sensor boresight. Then

ﬁ,-Wk ﬁg'wk
Zik Eanaw = —=, Zyx = tan By = T (12)
us - Wk U=z * wl

If, following the notation of [4], A%-, denotes the predicted” attitude matrix at
time 1, then the attitude error & is given by

Ay = el&lgy _ (13)
or. to first order in &,
A= + [&DAK-,. (14)
It is easy to show then that
Zyx = tan auuw- + Hiik + Az, (15a)
Zyx = tan B + Haurdi + Az, (15b)
where
ﬁ * W - ﬁ 2" W -
tan - = #‘—Aﬂ_l, tan Buk-r = ’.L—ﬁu' (16)
U3 Wiy U3 s Wi
1 R “ R ~
H = ———— (i1 X Win-i) = tan axu—(Giz X Win-)]', (17a)
Wz " VW
1 . " . .\
HEAL = _—.——[(u“ X W“k_.) - tan ﬂl.,k.q(l.ll.-._\ X W,..xk_,)]’. (17b)
U r Wiy

and Az, and Az, . are sensor random noise. As in earlier work,
Wik-1 = A=V (18)

Equations (15a) and (15b) assume that the measurements depend only on the atti-
tude. Otherwise, additional terms must be added.

The QUEST Measurement Model

Geometrically, the QUEST measurement model is identical to the true mea-
surement model. It differs only in the vaiue of the measurement covariance,
which we have seen above is a good approximation to the true measurement co-
variance. The simplicity of the QUEST measurement covariance should lead to
“In general. carets will denote unit vectors and asterisks estimates. However. when the subscript.

such as klk—1 or k|k. makes it obvious that the quantity in question is an estimate, the asterisk
often will be ieft off to avoid an overly cumbersome notation.
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simplifications of the Kalman filter. An idiosyncratic exampie of this was demon-
strated in [4] for the special case that the state vector consisted of the attitude
alone. More general implementations of the QUEST measurement model. how-
ever. require greater care. because the QUEST measurement covariance matrix
is singular. and cannot. therefore, be inserted directly into the usual Kalman fil-
ter formuiae. The implementation of this simple but singular covariance matrix
in the Kalman filter equations is carried out by first projecting it onto a two-
dimensional space on which it is non-singular. This projection turns out to be a
purely formal device. which can be removed once suitable expressions for the
Kalman filter quantities are generated.

We carry out the projection as follows: Let y be a unit vector which is very
close to A: Vi, and let {xi,a:(x:), b«(xx)} be any right-handed orthonormai triad
having x; as the first vector. Define projected measurements

O = am) - WL- iy = Bk(i’k) W, (19)
and the projection matrix
Uik = [0k & b)), (20)
which satisfies
Udx)Ui(x) = a2, (21a)
Ui )Udx) = Lixa — XXk - (21b)
Then. the projected measurement vector is
G =l du) = Uk(fk)wk, (22a)
= Ui + AL, (22b)
where the projected measurement noise is
AL = U)W, (23)
and satisfies
E{AL) = 0. (24a)
E{A&L ALY} = ol ~ a&l]. (24b)
Now
& = Ui (Ve — &) (25)

and because y; is very close to A4, V,, it follows that |g| < 1, and we may neglect
the second term of equation (24b) and write to good approximation

Ry = E{ALALY = oilaxa, (26)
which is certainly non-singular. {; is the measurement vector which will be used

in the Kalman filter update equations. In addition, we will make a very specific
choice for y which simplifies the filter equations.
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The Update Equations

Following [5] we write the state vector as

Xi = [(7‘], 27)
A3

where 4, is the attitude quaternion at time ¢, and y, denotes all other components
of the state vector. For the moment. we assume that the unit-vector measure-
ments do not depend explicitly on y;. Other measurements may depend explicitly
on y,, and for these measurements the Kaiman filter update equations will not
benefit from the resuits derived here. It need not be the case. however, that anv
of the measurements depend on y, in order to have a reasonabie filter. Consider.
in this regard. the case where y, denotes the spacecraft angular velocitv. which
can be updated in the Kalman filter even though the unit-vector measurements
do not depend on it explicitly {7].

If x4 -1 1s the predicted state vector. then the state errors at the update times.
6gx and Ay, are defined so that

O0Gx @ Guw- "
. = R 28
. [yklk-l + A)’/.} (28)

where ® denotes quaternion composition and we foliow the convention that the
earliest quaternion is rightmost. In particuiar.

Gk = 6@k @ Guk-1 s (29a)
Yk = Yak-1 T AYai . (29b)
By definition. these state errors satisfy
0
6(7k;k_| = [1} , (30a)
Ayk}kq =0. (30b

To linearize the measurement equation. we write. in similar fashion to equa-
tions (13) and (14).

__[asinqa/2] _ (&2
0gq; = = . 31
‘ [ cos(1&d/2) I (
where necessarily.,
&u-1 = 0. (32}
We are led. therefore, to define the state error vector as
_| &
6x;, = [Ayk} . (33)

Note that if y, has dimension m, then the state error vector has dimension (m +
3). while the state vector has dimension (m + 4). as in [5] (which was specialized
tom = 3).
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The vector y: has been undefined except for being close to AV We may now
take advantage of the freedom which choosing this vector provides us. Recalling
equation (14). we have to lowest order in &

& = Uk) U + [6DWaio + AL,
= Ud(t) Went = [Win-il&) + Al (34)
If we choose now
% = Waiei, (35)
then the first term in equation (34) vanishes identically because
Uk(wklk-l)wklk-l =0, (36)
and it follows that
L = U,.;k_.VAV,.. (37a)
= Uil Win-iJ& + AL, (37b)
where we have defined
Uk=r = Ud(Waiemr) . (38)
Then, the linearized measurement equation becomes finally
& = Hi 8xi + Al (39)
where the measurement sensitivity matrix. H,, is given by
H, = [_Uklk-lﬂwklk-in i Oaxmls (40)
= [he i Ognm]- 41)
We may write the usual Kalman filter update equations as
Bi = HiPuu- HI + Ry, (42)
= hi(Pehu-htd + 0@ l2x:. (43)
K, = P H{B{'. (44)
v = & — Hidxuu-i.
= & (45)
X = OXpuw—r + Kiwi,
= Kidi, (46)
P = (I = Ki H)Pis-s (47)
= (I = KiH)Pu-(I ~ K H) + KR K. (48)

Here. w is the innovation. B, is the innovation covariance. and K is the Kalman
gain matrix. The submatrix P, of the state error covariance matrix is sometimes
written Py in the references. R is given by equation (26). Note that the sensitiv-
ity matrix with respect to the attitude error vector is given by
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hy = —Uhk-)ﬂwklk—lua (49)
[—Bk(wklk—l) : ﬁk(wklk—l)]l- (50)

so that the matrix muitiplication of equation (49) need never be carried out in
practice. . .

Note that the vectors fu(Wm;.) and b.(W,_,) are arbitrary except for the fact
that a,(Wik-1), bi(Wyi-y) and W, _, form a right-hand orthonormai triad. Thus,
the only sensor-dependent quantity in these filter equations is the sensor vari-
ance, ;.

Further Simplification
Let us note that
hi B hy = hi{hd Pehw—h ] + i Lo}~ 'ha,
= [Wese I Wes- ] Peddea-ld Wa I + 07 Lo} IWanoid. (5D

which may be obtained either bv expanding B, ' in a Tavlor series. collecting
terms, and finallv recombining the terms of the Tavlor series as a new inverse.
or by repeated application of the Sherman-Morrison-Woodbury formula [13].
Similarly,

hi B U=y = —ﬂwklk—lﬂr{ﬂwklk-lﬂ(Pa)klk-n[lwuk-lﬂr + i la} ™, (52)
If we now define
% = [~EWan-1] ¢ Ouxm], (53)
B = Kl Pedn1 K + 05 Lrxs, (54)
= [Wisko ] (Pedisl Winl” + 07 I3, (55)
then it follows that
K H, = H,Hs, (56)
and
K = LW, (57
where
He = (Peehs—1 Hi B . (58)
These relations permit us to rewrite the Kalman filter equations as
B = I (Pehu-136 + R4, (59)
Hi = (Pehw— HIB', (60)
v = W — e Xini s (61)
= W, (62)
OXix = OXuk—1 + Himro (63)

H Wi (64)
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Poi = (I = K Pew-r (65)
= (I = K H)Poso(I = HH) + HRHS (66)

and
R = 0F s (67)

Thus. the projection matrix. U«-), no longer appears. In its place we must invert
a 3 X 3 matrix rather than a 2 x 2.

The physical interpretation of the new Kalman filter equations is that we have
replaced a singular three-dimensional measurement by a statistically equivalent’
non-singular three-dimensional measurement of the form

Wi = AV + AW.. (68)

with W/ identical in value to W;. The new equivalent measurement noise satisfics
E{AW(} = 0. {69)

EAAW AW} = ai l: = . (70)

To equation (34) there now corresponds
W, = Wiior = [Waoij& + AW (1)

The first term of equation (71) no longer vanishes by itseif: it does not contribute
in the new Kalman filter equations. however. because

%L{Wklk—l =90. (72)

Equation (2) in our filter computations is thus effectively replaced by equa-
tion (68) but with W, a unit vector by accident. not by constraint.

The Information Filter

The equations for the information filter may be written directlv now that the
measurement sensitivity matrix has been determined {14.15). Thus. in informa-
tion form

POl= Pl + H{R'H:. (73)

which lcads directiy to

Pl = Pl + [0;2(1 ~ W oWl i0) 0;,".]_ 7
Omxs Umxm
and the Kaiman fiiter gain is given by
K= PuHIR. (75)
or
K = P“[”‘-lﬂw(‘)“"ﬂu‘l“']. (76)

‘Equivalent in the sense that it leads 1o the same estimator.
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Again.
me. = Kk;k- (77)

Similar simplifications can also be obtained for the formulation in terms of the
information vector {11]. Using the resuits for the covariance just derived’. we
have immediately for the effective three-dimensional measurements that

Pil = Paioi + HIR'H, (78)

which. when evaluated. leads again to equation (74). The Kalman filter gain for
the three-dimensional measurement in the information filter form is

'J{‘ = P‘zk?fkrgh_’ , (79)

which becomes

(80)

Uk-zﬂwu--|ﬂ]
Umx; )

J{( = Pkl[

and again.
8xeu = HWi. 81

This result has already been used in {4] for the special case that the state vector
consists of the attitude alone.

Alignment Estimation

The above results relv fundamentally on the assumption that the measured di-
rections depend explicitly only on the attitude and not on other components of
the state vector. For many parameters which are estimated in a typical mission
(for example, gyro biases) this is true. Sensor alignments. unfortunately, do not
fall into this category. The extension of these results to include the estimation of
sensor alignments. however. is not difficuit.

Assume that the spacecraft is equipped with n vector sensors for which we
wish to estimate alignments in the filter and let U, . denote the direction mea-
sured bv sensor i at time ¢, in the sensor frame. It will be convenient to define
the temporal index so that there is only one sensor measurement at each time ;.
Simultaneous measurements are handled by letting several consecutive ¢, have
the same value. The U; . is related to the measured direction in spacecraft body
coordinates by

Wii=SUs i=l....n. (82)

which defines S,. the alignment matrix, which is proper orthogonal. Thus, we
may write equivalently in sensor coordinates

Ui = STAN, + a0, i=1...n, (83)
with
E{aU,,} = 0. (84a)

*The same results follow trom a rigorous treatment.
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E{Aﬁv.k Aﬁ]k} = 0'."?&([ - (Sr,AL{/i.k)(SiIAk{/:.L)r)~ (84b)

If we wish to estimate sensor alignments as well as the attitude in the fiiter. we
must linearize the dependence of the measurements on the sensor alignments aiso.
Thus, analogously to equation (13) we define the misalignment matrix, M, ., by

S:.k = Mi_kS:.l(lI(—lv (85)

where S, -1 is the predicted estimate of the alignment at 1, based on all the data
previous to ¢,. Note that aithough the alignment matrices are constant.

Sl.k = SLI(-I = Sl’ (86)

(leading to a prediction step, S, ii-) = S:i-1u-)) the estimates of the alignment
matrices are not. In similar fashion to the definition of the attitude error. the

misalignment vectors. 6., = 1...., n, are defined by
M, = el%d P=1...., n. (87)

and to lowest non-vanishing order in 0, ;

Sov = (I + [6DSickn -1 (88)
Combining equations (83), (85), (87), and (13) leads to
Uik = STueetebg  V, + AU, (89)
We now define the “misaligned™ measurement by
W:fk = S«'.uk-nwi.h (90).
from which it follows immediately that
Woe = eTthdglell ., + AWY,, oD
with W,-.m-. defined anaiogously to equation (18),
Wikt = Afuci Vi (92)
_\\A’V?_k is. therefore. a discrete white Gaussian process satisfying
E{AaW,} = 0. (93a)
E{AW? AWT} = R, (93b)
and
R, = Si‘klk-lRfJ,;,,SIklk-l . (94)

Equation (91) is very similar in form to equation (13). Linearizing equation (91)
leads directly to

Wi = Worior — ﬂw.:m-nﬂ(tfk - 0. + AWY, . (95)
The two-dimensional measurements are defined analogously to equation (37).
Gx = [f:.:.h;z.l.t]r = Ul((ﬁ':.m-n)wfk. (96a)

= i.klk—iw;’.k . (96b)
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The steps which led from equation (37) to equations (59) through (67) will not
be repeated here in the context of combined attitude and alignment estimation.
The resuits will simply be sketched. The reader should have little difficulty in
completing the derivations.

The state vector in the context of combined attitude and alignment estimation
is now

Xy = {qz;q{kv-"vq;kyyzlry (97)

where g; «,i = 1....,n, are the alignment quaternions. which have the same re-
lation to the respective alignment matrices as the attitude quaternion has to the
attitude matrix. y, now represents ail the remaining components of the state vec-
tor which again are assumed to not depend explicitly on the attitude. Similarly to
the earlier development. the state error vector is defined as

ox, = [&1,074,....00 ., 4y]]. (98)

so that x, has dimension {4(n + 1) + m], while &x. has dimension {3(n + 1) +
m). We have now’ (always with an additional subscript to label the active sensor)

Cw = hisk — hinbi + ALk, (99
= Hi 6% + Adix (100)

with
Hii={hieiOnai-- i = RixiOpai-ri0iem] (101)

and
ik = =UskgeiiWori-]. (102)

In equation (101) the matrix — /1, 4 is located in the submatrix of H, . which multi-
plies 6, ,. With these new definitions, equations (42} and (44) through (48) remain
unchanged in the context of alignment estimation except for the expansion of
the subscript to inciude the designation of the active sensor. Equation (43) corre-
sponds in the current context to

Bix = h,_;,[(Pff)klk-l = (Peo k-1 — (Poghu—1 + (Po,-O;)klk-l]hi.Tk + Ry, (103)

Equations (51) through (67) have analogous results, mutatis mutandis, in the con-
text of alignment estimation. The only changes are that the new equations which
correspond to equations (51) and (52) contain replacements similar to those in
equation (103), %, . has an additional non-vanishing submatrix in similar fashion
to H; . in equation (101), and all quantities now have an additional subscript to
designate the active sensor. (Note that since only one value of the active sensor
index corresponds to each temporal index &, the labeling of all quantities by both
i and k is redundant (except, of course, for 6; , and the like). However. the double
index makes the notation clearer in most cases.)

’Note that H, . defined here is not the same sensitivity matrix as appears in equations (17a) and
(17b).




390 Shuster

In actual practice. sensor misalignments generaily have not been estimated in
a Kalman fiiter but rather with sub-optimal but attitude-independent batch esti-
mators [16.17].

The QUEST Algorithm as Data Compressor

Because the Kalman filter can be regarded as the mechanization of a maximum
likelihood estimate (18]. and the QUEST attitude is the maximum tikelihood es-
timate of the attitude given a set of simultaneous vector measurements [2], it fol-
lows that the QUEST attitude provides a sufficient statistic (1] for the attitude
and may be used in the filter as an effective measurement in place of the vector
measurements W,. This substitution is certainly exact if the state vector consists
only of the attitude. For the more general case. where other guantities are also
being estimated in the filter. this substitution is onlv approximate. holding to
lowest order in o~. However. since o is almost always a verv small quantity. this
approximation is generally more than satistactorv. This attitude estimation
scheme has been implemented recentlv in the on-board attitude determination
system for the Star Tracker mission [7] and also in studies of Kalman-tilter-based
attitude systems for a gravity-gradient stabilized spacecraft {19] operating at more
modest accuracy levels.

To see how this may be accomplished in practice. let C" denote the QUEST
attitude matrix” solution for a frame of data (i.c.. a set of simultaneous vector
measurements) at time .. Provided that the frame at ¢, contains at least two non-
collinear vectors. the “per-frame” maximum likelihood estimate of the attitude
will be unambiguously determined. Thus. the QUEST solution at time ¢, may be
written

Cr =e"yq,, (104)

where v, is the attitude error from QUEST. which. given the vector measurement
model of equation (2), satisfies [1]

E{v} = 0. (105a)
E{wiv[} = ROVEST, (105b)
with
- al l A A
(RRVESTy) = 3 —{7- AV AV ] (106)
(=) LA

Substituting equation (13) into equation (104) leads to
Ci = elelelay, . (107

Again, A, is the predicted attitude at time 1, based on all previous frames of
data up to and including time ¢, _;. and C; is the QUEST estimate of the attitude
matrix based only on the data at time ¢;. It is this equation which we must lin-
earize. which is simple for the attitude matrix and only slightly more complicated
for the quaternion {7].

"QUEST actuallv computes a quaternion. However. the present discussion will be somewhat sim-

pler in terms of the aititude matrix. Reference {7] presents a compiete mechanization of the fil-
ter in terms of the QUEST quaternton.
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To accomplish this linearization we define z, by
W= CrAal. (108)
Then from equations (107),
ettt = plulelad, (109)

Since all the quantities in the matrix exponents are expected to be much smalier
than unity. we may write immediately to iowest order in v;

= & + vi, (110)
whence,
7, = Hidxi + i, (111)
with
Hi = [T i Osem]s (112)
and
vi ~ N(0, ROVESTy. (113)

The construction of the Kaiman fiiter update is now straightforward.
Discussion and Conclusions

General equations have been presented for the processing of direction mea-
surements within the Kalman filter using the QUEST measurement model of the
sensor errors and assuming that the observed directions are a function of the at-
titude alone. Because the QUEST measurement covariance matrix is singular
owing to the presence of redundant components in the measurements. the con-
straint must first be projected out of the measurement before the measurement
can be incorporated in the Kalman filter. Algorithms are presented for doing
this which take advantage of the special structure of the QUEST model and the
Kalman filter. It has been shown that the projection mayv be dispensed with if the
QUEST measurement model is replaced with a non-singular measurement model.
which essentially regards the unit normalization of the measurements as acci-
dental rather than constrained. The computational burden of the projection is now
replaced by the computational burden of inverting a 3 x 3 rather thana 2 x 2
matrix. The extension of the methodology to include alignment estimation was
also presented. Lastly, when two or more simultaneous direction measurements
are available in a given frame. the QUEST algorithm provides a useful sufficient
statistic for compressing this simultaneous data.

The greatest benefit of the QUEST model in the filter implementation. per-
haps. is that it leads to a Kalman fiiter in which only the geometry of the mea-
sured unit vectors is important and not the construction of the sensor. Thus.
both equation (37) and. even more manifestly. equation (71) depend only on the
measured direction and not on the direction of any sensor coordinate axes. The
only sensor dependent quantity in this model is the sensor variance o} (or o).
This makes the QUEST model particularlv attractive as a simulation tool. The
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QUEST measurement model is surely the simplest measurement model for line-
of-sight sensors which correctly reflects the geometrical properties of those mea-
surements. The realism of these resuits rests, of course, on the faithfulness of the
QUEST model as a representation of the sensor errors. For spacecraft with very
limited fields of view, the QUEST model provides in general a very realistic rep-
resentation of sensor errors. The adequacy of the QUEST model in actual mis-
sion support has been demonstrated for numerous spacecraft including the three
HEAOQO spacecraft [6], Magsat 2], and the Solar Maximum Mission. to name
only a few.

The alignment estimation methodology presented here is of interest bevond
the context of the QUEST model. Provided that the alignment degrees of free-
dom are represented in the filter according to equations (85) and (87) and the
attitude degrees of freedom according to equation (13), then the form of the sen-
sitivity matrix as given by equation (101) (i.e.. the sensitivity of the measurement
to the misalignments will differ onlv in sign from the sensitivity to the attitude
error} will be obtained no matter what the measurement model.

What is the advantage of being able to discard the normalization constraint in
the three components of the line-of-sight measurements? Since the Kaiman fiiter
is usuallv most efficient when vector measurements are processed as a simulta-
neous sequence of scalar measurements. this means that the addition of a redun-
dant component to the line-of-sight measurements increases the processing of
these measurements in the update step by fifty per cent. This increment is off-
set somewhat by the elimination of the projection operation. Thus, the two ap-
proaches are roughly equivalent in computational burden, especially when one
considers that the update from line-of-sight measurements represents only a part
of the filter computational burden.

What is the physical origin of the result that we can simply ignore the unity
constraint on the line-of-sight measurements and treat them as if they had three
statistically independent degrees of freedom? The reason for this is fairly obvious.
though we would be wary of immediately constructing the filter equations (59)
through (66) on the basis of these arguments. The argument is as follows:

Consider equation (1), which is the equation tor a vector measurement of a
sensor which provides vectors with three statistically independent components
(such as a vector magnetometer). If we muitiply W,, V,, and AW,, by a common
factor. the equation is satisfied. clearly. by the same value of the attitude matrix
as before. Thus, the magnitude of W, is insensitive to the attitude. Hence. if we
linearize the magnitude of W; as a function of & in the manner of equation (39).
we must find that the sensitivity matrix corresponding to the magnitude of W,
vanishes. Thus. no matter what the variance of the magnitude of W,. this magni-
tude wiil not contribute at ail to the estimate and we may replace the variance of
the magnitude of W, by any value. What the rigorous derivation of this result
(equations (51) through (67)) telis us is that this statement is true even if the vari-
ance of the magnitude of W, vanishes! In an equivalent systems theory problem
we would sav that we have a pole-zero cancellation. Also. it is clear that with
minor alterations. this result holds for any measurement model for line-of-sight
measurements.
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