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Abstract

Simple and statistically correct algorithms are developed for
batch estimation of spacecraft sensor alignments from pre-
launch and inflight data without the need to compute the space-
craft attitude or angular velocity. These algorithms permit
the estimation of sensor alignments in a framework free of un-
known dynamical variables. In actual mission implementation,
algorithms such as those presented here are usually better be-
haved and more efficient than those which must compute sen-
sot alignments simultaneously with the spacecraft attitude, say,
by means of a Kalman filter. In particular, these algorithms
are less sensitive to data dropouts of long duration, and the
derived measurements used in the attitude-independent algo-
rithm usually make data checking and editing of outliers much
simpler than would be the case in the filter. An estimator for
the launch-shock error levels is also developed and the effect
of unobservable launch shock on the misalignment estimates is
studied. The algorithms are applied to a realistic simulated
example which approximates actual missions.

INTRODUCTION
Sensor Referenced Measurements

A spacecraft line-of-sight sensor such as a vector Sun sensor
or star tracker measures a direction, U, ,, in sensor coordi-
nates, defined to be directed outward from the sensor, which is

describable statistically as
ﬂi,k = ‘3‘.-7):' + Aﬂc’,k ' (1)

where I:I:f,“" is the true value of the direction and Aﬁ,._,‘ is the
measurement noise. Here ¢ is the sensor index, t = 1, ... ,n,
and k is the temporal index, k = 1,...,N. We assume that
AI‘J,-,,‘ is Gaussian, zero-mean, and white, with covariance
Ry, .- In more compact notation

AU;, ~ N(0,Ry,,) . (2)

We assume more generally, in fact, that the measurements from
different sensors are statistically independent. Because the ob-
servations are constrained to be unit vectors, Ry , must be
singular. In particular,

Rg,, Ul =0 . (3)

Equations (2) and (3) can be true only to lowest order in R.
Since R is generally quite small, this level of approximation will
be adequate for the purpose of alignment estimation.

Daniel S. Pitone

Computer Sciences Corporation
Lanham-Seabrook, Maryland 20706

Body-Referenced Vectors and Alignments

I Wiv,‘ denotes the measured direction in the spacecraft
body frame, then the alignment matrix, S, is the proper or-
thogonal matrix defined by

Wir=80., 4)

and, therefore,
Wis =850+ 5, AU, (5)
= Wite + AW, . (6)

In general, the alignment matrix §; is not known exactly.
Instead, what is known is S?, the alignment matrix determined
by the prelaunch alignment calibration. Thus, we are led to
define the misalignment matrix, M;, according to

Si=M5° . )

M, is necessarily orthogonal. We define the misalignment vec-
tors, 8;, according to
M, s €%l
=I+[6]1+0(6F) , ®

where e{"} denotes here matrix exponentiation, and [[6]] de-
notes the usual antisymmetric matrix,

0 6 -6
ffelj= | -6, o 91} . (9
02 "01 0

Asarule, we will keep only first-order terms. The measurement
equation may now be written

U= SSTMIWIR + A0, . (10)

PRELAUNCH ALIGNMENT CALIBRATION

Prior to launch, the alignments of the attitude sensors are
measured on the ground. Generally, optical cubes, whose ad-
jacent faces are very nearly perpendicular, are affixed to each
sensor and the sensor is calibrated with respect to its optical
cube. One of these cubes affixed to the spacecraft payload or
structure, called the primary reference cube, defines the space-
craft body axes and provides the reference for all other cube
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alignments. At NASA Goddard Space Flight Center, for ex-
ample {1, 2], alignment calibration is accomplished by sighting
the normals to two faces of each cube. If these two normals
are denoted by #; ., m = 1, 2, then we may define a triad of
orthonormal unit vectors according to

&,=0;, , (11a)
&9 =0y X Ngoflh; ) X R, (11b)
o= xé&y . (11c)

The prelaunch alignment matrix is then given by
(89)ee = &30 &0 (12)

This is the way in which the prelaunch alignments have been de-
termined for the Solar Maximum Mission (SMM), Magsat, the
International Ultraviolet Explorer (IUE), and numerous other
spacecraft. Equation (12) is simply the TRIAD algorithm (3]
for attitude determination applied to alignment estimation.

To compute a covariance matrix for the prelaunch alignment
estimates we assume that the measured normals may be de-
scribed statistically by

b= 0T+ 00, . (13)

The An,, are assumed to be Gaussian, zero-mean and with
covariance given by
. ~T N .

E{Oh; O] 0} = 6, 840 0 (Taya — DA RTT) L (14)
The interpretation of equation (14) is that each unit normal
has errors which are distributed with axial symmetry about
the true value of the normal with angular standard deviation

@,. As a consequence of the errors in the measured normals we
write

67 (prelaunch) = 0 = 2""*“"® 1 A6/ (prelaunch) , (15)

where the A6 (prelaunch), i = 1,...,n, are the errors in
the prelaunch estimates of the misalignment vectors, which are
then also zero-mean and Gaussian. In general, a caret will be
used to denote unit vectors; estimates (and estimators) will be
denoted by an asterisk. We write

E{A8 (prelaunch)} =0 , (16a)

E{AO,-'(prelaunch)AOJ-'T(prelaunch)} = P,;(prelaunch) ,
(16b)

The prelaunch alignment covariance matrix based on these
statistical assumptions is (4]

P,j(prelaunch) = o2 (14 6;;) Iy an

showing that the prelaunch alignments are correlated. The sim-
plicity of equation (17) is due in part to the fact that because
of equation (7) all misalignments are referred, within small er-
rors, to the same reference frame. Thus, the alignment matrices
themselves do not enter equation (17). From the observed re-
peatability of the measurements we are led to assign to o, a
value (in radian equivalent) consistent with

0, 3 3.5. arc sec . (18)

LAUNCH SHOCK

The values of the spacecraft sensor alignments change after
the launch of the spacecraft from their prelaunch values. This
change is due to a variety of phenomena including vibration,
changes in the distribution of temperatures in the spacecraft
(which are responsible both for deformation of the spacecraft
and the sensors as well as for changes in the sensor electronics),
and zero-gravity effects. We lump all of these effects under the
general heading of launch shock. Since there is little similarity
among spacecraft, it is difficult to obtain a truly representative
general statistical characterization of launch shock. For the
sake of simplicity we write

@inﬁight = Gprclnunch + A@lnunch-lhock , (19)

where
o=, . 07 , (20)

and assume that

A@ sunch-shock N(O, Qé’;n‘h"h“k) . (21)

In order to make the distinction between (possibly random)
physical variables and their estimates more visible, we have
written the labels for the former as verbal superscripts and
the labels of the latter in parentheses. Based on this model,
the a prior{ maximum likelihood estimate of the inflight sensor
misalignments and their covariance is given by

@*(~) = ©*(prelaunch) =0 , (22)

Pog(—) = Pgg(prelaunch) + Qganehehock . (23)

Since the launch-shock introduces a change in the physical
alignments we must now distinguish between @pre!sunch apq
©'nAight Ty simplify the notation, when @ appears without a
verbal superscript, it generally denotes @i"fisht,

INFLIGHT ALIGNMENT CALIBRATION
Dependence of the Measurements on the Attitude

If V'-.,‘ denotes the reference vector, i.e., the representation

of the measured vector in the primary reference system, then

the attitude matrix A, is defined according to
Wi =4, Vik (24)
whence,

W,-',‘ = Akvi,k + AWM - AkAvi,k y (25)

where AV;',, is the uncertainty in the reference vector, which
we assume to be Gaussian, zero-mean, and white, Hence,

E{AV,—I,‘ sz‘k'} = 6".'1 6kkl Rv‘,'h . (26)

From this it follows that the actual sensor measurements are
related to the reference vectors by

U, =STAV,  + A0, -STA LY, . (@27
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We note immediately from equation (27) that the values of
the measurement vectors are unchanged by the simultaneous
transformations

§;—-TS, , i=1..,n , (28a)
A, —TA, , k=1,...,N | (28b)

where T is an arbitrary proper orthogonal matrix. Thus, it is
impossible from sensor measurements to distinguish a common
misalignment of the sensors from a change in the attitude. It
is, therefore, impossible to estimate the sensor alignments and
the attitude unambiguously from the spacecraft sensor mea-
surements alone.

In terms of the misalignments, equation (27) becomes

U= SITMIAY,, + AT, - SITMT ALV, . (29)

The Attitude-Independent Measurements

Equation (29) is the starting point for processing the inflight
data. We begin by defining an “uncalibrated” body-referenced
observation vector, W, according to

Ney = 8¢ ﬁ:‘,k =MIW,, ., (30)
so that N .
Weo, = MT AV, +AWE, (31)
with .
AW, ~ N(0, Ry ) (32)
and
Ry, =S¢ Ry, ST+ MT ARy, ATM; (33)

If for i # j we define effective scalar measurements,
Zijk = W Wo =V Vi (34)

then, to first order in 8,, 6;, and the measurement noise terms
we have that

Zijk = (W) x W;,k)'(al' -0,)+Az;, , (35)

with
Bz W AW, + W3- AWE, . (36)

which are independent of the attitude. The derived measure-
ments, which are the observed cosine errors, are independent of
the attitude to first order in the misalignments. To lowest order
in the misalignments and the measurement noise, the derived
measurement errors satisfy

E{Az;,} =0 (37a)
E{AzZL Y =EGIiID+EGIilD

(37b)

E{Az; Azi = EG i1 8 (37¢)

E{Azij Azgmp} =0 (37d)

where ¢, j, ¢, and m above denote distinct indices and
E (i} j |2 isgiven by

Ey(i| j | 0= Wik Ry W2, (38)

Note that z;; , is symmetric in the indices i and j.

The Redundancy Problem

The measurements z;; ,, i < j, cannot all be independent. If
there are n sensors, each measuring a unit vector, then there
are only 2n equivalent independent scalar measurements, while
there are n(n — 1)/2 possible z;; , with i < j. Since three com-
binations of the W:-",‘ are necessary to determine the attitude,
and the z;; , are by explicit construction attitude-independent,
there can only be 2n —3 statistically independent z;; ,. Clearly
forn>3

2n-3<“—("—21-11 ) (39)

A set of 2n — 3 independent measurements can be obtained as
{Z1j00 = 20000 vm5 254,57 = 3,... 0}

provided that W{",‘ and W,"',‘ are not collinear nor are they
coplanar or nearly coplanar to any of the remaining measure-
ments [4]. When the measurement vectors are all coplanar,
the derived scalar-product measurements are not sensitive to
misalignment components out of the plane and must be sup-
plement by scalar-triple-product measurements (4] of the form

Zijen = Wi (Woe x We,) (40)
leading to a far greater redundancy.
The Inflight Estimator
If we define

- T
Ze = {zg 000 v Zip 0 Do 0 Ban gl (41)

we may write
2,=H,©0+A4Z, , (42)

Thus, AZ, is a white Gaussian sequence with covariance ma-
trix Py . The matrices H, and Pz, are obtained directly from
equations (35) through (38). The a posteriori inflight estimate
of the misalignments, ©*(+), together with the a posteriori es-
timate error covariance, Pgg(+) , may be obtained straightfor-
wardly by maximum likelihood estimation {5, 6]. The negative-
log-likelihood function (the negative of the logarithm of the
joint probability density function of the measurements and the
parameters), which in maximum likelihood estimation serves
as a cost function, is simply

1
Jo(©®) = 3 [©TP54(-)© + log det Pog(~) + 3n log 2r]

N
+1 3 [(2u - H,©) P7} (2, - H, ©)
k=1
+ log det Pz, + (2n, —3) log 2r]
(43)

where 2n, —3 is the dimension of Z, if there are fewer than the
full complement of sensors active at a given time t,. Minimizing
Jo(©) leads to the usual normal equations:

N
Pga(+) @ (+) =Y HI P;'2Z, , (44)
k=l
N
Pod(+) = Pad(-)+ D> _HT Pz} H, . (45)
k=1

Since the measurements are assumed to be Gaussian, we have
already written the a posteriori Fisher information matrix as
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Pgo(+), since in this case it is equal to the inverse of the es-
timate error covariance matrix even for small samples. When
there are only a few sensors, say three or four, which are typi-
cally far from having parallel boresights among them, the above
formalism (augmented by a suitable model for Pgg(~)) should
be adequate for alignment estimation and is certainly simple to
implement. Complications which arise from the combinatorics
entailed in having a large number of sensors or from nearly
parallel measurements are treated elsewhere [4, 7).

Animportant complication that arises in evaluating Eqs. (44)
and (45) is that Pgg(—) depends on the launch-shock process
whose parameters are generally unknown and must be inferred
also from the inflight data. ©®*(+) is a very inconvenient quan-
tity to use to estimate the launch-shock parameters since it
depends on them directly.

ESTIMATION OF LAUNCH-SHOCK
ERROR LEVELS

We develop now a methodology for estimating the launch-
shock covariance parameters from inflight data. Since so little
data is available to characterize the launch shock we might
choose to make the simplest model possible for the launch-
shock error covariance matrix, namely,

Qleagnch-chock = qlanxan . (46)

In some cases, say when the primary reference cube and some
of the sensors are mounted to an extremely rigid instrument
plate (optical bench) while other sensors are scattered about
the spacecraft, we might wish to propose a smaller value, g,, for
the sensors on the instrument plate and a larger value g,, for
the other sensors, or allow the launch shock effects of a number
of sensors jointly mounted on some distant but rigid surface
to be highly correlated. However, it should be considered first
that not all of the apparent misalignment is due to geometric
distortion of the spacecraft. Secondly, it must be kept in mind
that the number of sensors in the spacecraft is limited, so that
there are only 3n — 3 quantities which may be used to esti-
mate the parameters of the launch shock, Hence, while it may
be reasonable to simulate detailed launch-shock effects before
launch, it is a hopeless task to try to estimate the parameters
of a very detailed model from inflight data, For the sake of
generality, however, we write

Qleusnch-lhock = Qleagnch-lhock(q) , (47)

where q is the vector of launch-shock parameters.

We could estimate the launch-shock covariance parameters
simply by looking at the distribution of the inflight estimates
of the misalignments 8;(+), i = 1, ... ,n, but this would be
difficult owing to the complicated dependence of ®*(+) and
Pge(+) on q. For this reason we examine instead the set of
relative misalignments defined as

v, =260,-6, , i=2,...,n . (48)

This reduced set of parameters is observable from inflight data
alone. The total relative misalignment vector is defined as

T={y], %], ..., ¥1 T, (49a)
=Fe , (49b)
where
=Iixs Inxa Oaxy - Oays
Fe ‘:“xa 0.‘!.)13 Ia.xa 0.‘!.)(3 o (s0)
“I3x3 Osxs Oaxs ** Iaxs

In terms of the relative misalignments the measurement vector
may be written as

Z,=H, ¥ +40Z, , (51)

where the measurement sensitivity matrix, H,, has been par-
titioned as
Hy=[hy | H] . (52)

We may estimate W based on the inflight data alone, not taking
into account the a priori model. The negative-log-likelihood
function for this prior-free estimate of ¥ is simply

N
Jsrmr-frec(\p) = _%_ Z [(Zk - HL \II)T Pz-: (z, - Hp’, ¥)
k=1
+log det Py, + (2n, — 3) log 2]
(53)

Minimizing J.g""'""(\ll) over ¥ leads to the equations

N
Py (prior-free) W*(prior-free) = Z HT PIZ, , (54)
k=1
with
N
Pyy(prior-free) = Y~ H{T Pp Hy . (55)
k=1

The a posteriori estimate of the absolute misalignment vector
can be easily recovered from the prior-free estimate of the rel-
ative misalignment vector according to

Pe'é(+) O (+) = FTPW‘",(prior-free) ¥*(prior-free) , (56)

and
P3a(+) = Poa(=) + FT Py} (prior-free) F . (57)

Note, however, that equations (56) and (57) can only be im-
plemented after q has been determined, since Pgg(~) depends
on q.

To determine q* we note that

¥ (prior-free) = "M 4 A@*(prior-free) (58)
and ‘
ginflight _ g prelaunch | A g launch-shock
= F@Prelanch | pa@launchshock  (59)
From Eq. (15)

@rrelunch = @ (prelaunch) — A®®(prelaunch)
= -A@"(prelaunch) . (60)
and, therefore,
E{¥"(prior-free)} =0 , (61a)

E{ W (prior-free) ¥* T (prior-free) } = Pyy (total)
(61b)

where

Pyy(total) = Py (prelaunch) + @iy (q) + Pyy(prior-free)
(61c)
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and

Py (prelaunch) = F Pyg(prelaunch) FT

(62a)

Py (prior-free) = F Pgg(prior-free) FT |
(62b)
Q¥y(q) = F Qg™ o FT (62c)

Thus, the negative-log-likelihood function for q given
W *(prior-free) is

J:""'""(q) =3 [\II'T(prior-free)P;Mtotal) U *(prior-free)

+ log det Pyy(total) + (3n — 3) log 27r] ,
(63)

which depends on q only through Q¥4(q). We could, as in-
dicated earlier, also have constructed a negative-log-likelihood
function based on ¥*(+) or even ®*(+), but the dependence
on q would have been more complicated because q enters ex-
plicitly in the calculation of these quantities. Note that equa-
tions (54) and (55) do not depend explicitly on q. Thus, q* is
a solution of

prior-free
2{156— (q@)=1% { [-— ¥ T(prior-free) Py (total)

x 3Qg:(Q) Pyl (total) \Il‘(prior~free)]
8 Is
+ tr (wa(mta-l)—g';:ﬂ>}

which must be solved iteratively for q*. Asymptotically (i.e.,
as n — 00) the variance of the estimate error for q* is given by

o coan 2
P =t [(P;;(tom) -————an:(“)> } . (69)

As an example, consider the simplest parameterization of
QUunch-shock given by Eq. (46) and the parameterization of
the prelaunch alignment estimate error covariance given by
Eq. (17). If we assume that sufficient data has been collected
that

P,y (prelaunch) << Q¥o(q) , (66a)

P, 4 (prior-free) << Q¥y(q) (66b)

then Egs. (64) and (65) reduce to

e (g |3 (prior-free)

2
). @

(68)

i +); (prior-free)

1
"=

and 2
~ 29
9" 3(n-1)

A NUMERICAL EXAMPLE

We illustrate the power of these methods with a numerical
example. Consider a typical spacecraft equipped with three
vector sensors each with an accuracy of 10. arc sec/axis and
an effective (weighted) field of view of £10, deg/axis. We as-
sume the sensor errors to be well represented by the QUEST
measurement model (3}, which has been used in the attitude
determination algorithm for several spacecraft. We may write
this measurement model as

B{aU, AU} = o} (I-0ipe OiT) ,  (69)
for the sensor measurements and
E{aV, aVT Y=o (1-VigevieT) | (70)

for the reference vectors. Thus, to lowest order in the misalign-
ments

B{aWZ, AW} = of, (T- W2, WD) (1)

with

ol = a%“ + ai-,m . (72)
Substituting these expressions into equation (38) it follows for
the QUEST model that

E(ililt)=0, (W, x W3,)-(Wg, x W . (T3)

Note that the approximation of the QUEST measurement mod-
el lies in the form of the covariance matrix of the measurement
noise, not in the nonrandom part of the measurement.

Thus, the measurement is described by

223,k
Z,= |24 | =H,©0+4AZ, , (74)
Tk

where the reordering of the components and sign changes will
serve to give the measurement vector a cyclic symmetry and
simplify later calculations. The sensitivity matrix, H,, is given
now by

o7 (Wsax W)™ —(W3, x W3 )7
Hy= | ~(W3,xWs )7 o7 (W3, xW3 )7
(WSAxW3 0T =(Wi.xW3 )T o7
(75)

and, therefore,

diax  faagie Jaspan
Pzr=1lonax 9nx  faak ' (76)
fisaae faraak Gk

where
dije = (ol e + o3 )IWEL X W2, (772)
frama = =03, (W3, x W3,)-(Wg, x Wg,)
(77b)
Frapan = =036 (W, x WE,)-(We, xW3,) 1)
[+

Forae = =08 x (W, x W3 0)-(We, x W3, .
(174)
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We assume also that the prelaunch alignment calibration is de-
scribed by equation (17) with o, = 3.5 arc sec and that launch
shock errors are described by Eq. (46) and have a standard
deviation of 1. ar¢ min. Thus, the model misalignments them-
selves have the form

6,=a,+b , (78)
where
a, ~N(0, (0 + q)ax3) » baN(0,03L,,) , (79)

and were sampled accordingly. The nominal alignments, ex-
pressed in terms of the Gibbs vector (8], were taken to be

g, =0 , g =(25007 , g =(0,2507 , (80

which is a typical set of alignments if sensor 1 is a Sun sensor
and sensors 2 and 3 are star trackers.

One hundred samples of simulated data were generated. Ta-
ble 2 shows the comparison of the model values and the corre-
sponding estimates. Note that two-thirds of the estimates fall
within one standard deviation of the model misalignments as
expected.

Model Misalignments Estimated Misalignments

37. arc sec 27. £ 29. arc sec
-23. 31. £ 29.
—58. -72. £ 30.
-36. —46. + 29.
-63. —18. + 29.

4. 3.£29.

22. 18. £ 29,
-66. -14. £ 29,

73. 69. £ 29,

Table 2
Comparison of Model and Estimated
Misalignments

The estimated launch-shock standard deviation and its error
from equations (67) and (69) was

(q')'/2 = 50. % 28. arc sec (81)

in good agreement with the model value of 1. arc min.

The level of agreement will be more manifest if we compare
instead the components of @ along the eigenvectors of Pgg(+).
If we define the orthogonal matrix C according to

C Poo(+)CT = PE(+) = diag(py, Py, -+ P3a) »  (82)

and
=C0 , (83)

then the estimates of the components of & are uncorrelated
and their estimate-error variances are given by the p;,i =
1, ..., 3n. We call the components of ® the eigenmisalign-
ments. If we compare these with the corresponding model val-
ues we find the result in Table 3.

Model Estimated
Eigenmisalignments Eigenmisalignments

60. arc sec 0. £ 50. arc sec
-18, 0. £ 50,

63. 0. £ 50.

33. 43. £ 10.

85. 90.+ 9.

-8, —-4.£ 5.

58, 57.% 1.
-31. -32.+ 1
-17. =-17.+ 1

Table 3

Comparison of Model and Estimated
Eigenmisalignments

This shows the true level of agreement. Note that three of the
estimates of the eigenmisalignments are exactly zero, a conse-
quence of equation (17) above (i.e., that the prelaunch align-
ment estimation errors are identically distributed (but not in-
dependent)), and that the uncertainties in these estimates is
given by the launch-shock error levels. This result is discussed
in more detail in (4]. Also, three of the remaining estimates of
the eigenmisalignments are nearly an order of magnitude more
accurate than the other remaining three, a phenomenon which
will also be discussed in detail in [4] and [9].

In the current example the three unobservable eigenmisalign-
ments are quite large, on the order of ¢'/2. Tt is these three
eigenmisalignments which dominate the differences between the
model values and the estimates in Table 2. Because these par-
ticular three eigenmisalignments contribute to the actual mis-
alignments with equal coefficients, the standard deviations of
the actual misalignment estimates will be roughly the same and
the most important correlations will be on the order of 1//%.
For the present example, in fact, had we chosen the three sen-
sor boresights to be mutually orthogonal, we would have found
nine of the correlations to be very nearly unity.

DISCUSSION AND CONCLUSIONS

We have presented a complete end-to-end methodology for
estimating spacecraft sensor misalignments from prelaunch and
inflight data which takes correct account of the prelaunch align-
ment calibration and treats the statistics of the inflight data
correctly. As a necessary part of this program, we have de-
veloped a realistic representation of the prelaunch alignment
estimate-error covariance and the errors due to launch shock
and given a way to estimate the launch-shock error levels from
the inflight data. The algorithms presented are fairly simple,
owing this simplicity to the manner in which the misalignments
have been defined. The performance of these algorithms has
been illustrated with realistically simulated data. The method-
ology presented here represents a significant advance over one
previously developed [10].

The estimate is not optimal over all 2n sensor measurements
since effectively three of the measurements have been removed
in order to achieve attitude independence. Thus, the results
of this algorithm will differ somewhat from the results that
would obtain, say, from a complete Kalman filter treating both
the attitude and the alignments. If we assume that the only
systematic error source for the attitude is the misalignments
themselves, then those combinations of misalignments to which
the set of derived measurements are sensitive will clearly not
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be very sensitive to the random attitude errors once sufficient
data has been processed since these will tend to cancel one an-
other. Likewise, those combinations of misalignments to which
the derived measurements are not sensitive will be determined
largely by the prelaunch calibration anyway. Thus, we expect
little accuracy to belost in our approximation compared to the
Kalman filter. If the data are not simultaneous, however, or
cannot be made simultaneous, then the methodology developed
here will not be applicable and Kalman filter techniques will
then need to be used [11].

There are two approaches to minimizing the effect of these
unobservable errors. One approach is to mount one attitude
sensor on a rigid plate on which the satellite payload is also
mounted. In this way differences in geometrical distortion be-
tween that sensor and the payload are minimized. One then
estimates only the relative misalignments with respect to the
sensor collocated with the payload. This was the approach used
for the Solar Maximum Mission (SMM), where the alignment
cube for the fine pointing Sun sensor (FPSS) served also as the
primary reference cube. However, the apparent misalignment
of the sensor (and the payload) is not due to geometric distor-
tion alone so that significant errors may exist in the supposed
attitude of the payload. The contribution of the prelaunch
alignment calibration, as degraded by launch-shock, can then
be discarded without loss of accuracy.

A second approach is to use the fact that the payload itself
is sensitive to the attitude. This was the situation on Magsat
where the fine vector magnetometer, which was the principal
scientific payload, was sensitive to the attitude in the same way
as the attitude sensors. Thus, when estimating the harmonic
expansion coefficients of the geomagnetic field the fine vector
magnetometer misalignments could be estimated as well [12].
A detailed discussion of the Magsat experience will be given in
14].

The methodology developed here has been extended and ap-
plied to the estimation of the temperature dependence of the
alignments for the Solar Maximum Mission [13].
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