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Several different approaches are reviewed which are applicable to
the inflight estimation of attitude sensor alignments. These in-
clude: batch alignment estimation, which uses an attitude-inde-
pendent derived measurement but which requires that data from
different sensors be simultaneous within a given frame; sequential
alignment estimation using the Kalman filter, which does not have
this requirement but is much more sensitive to the inherent non-
linear dependence of the measurement on the attitude; and batch
methods in which the derived measurements are generated using a
Kalman filter and which have the best properties of both of the pre-
vious methods with a smaller computational burden. These three
approaches are presented in a common context without numerical
examples.

INTRODUCTION

Alignment estimation forms an important part of many missions since the alignment
estimation accuracy directly effects the accuracy with which the payload attitude can be
determined. Although the estimation of spacecraft attitude has reached a very high level of
development, the estimation of misalignments (i.e., the “difference” between the prelaunch
and postlaunch alignments) and other calibration parameters is often carried out in a much
less rigorous fashion. Not so long ago, inflight alignment estimation was largely neglected.
The well-known book of Wertz,1 for example, which summarizes the technology of attitude
determination up to early 1978, does not discuss this topic.
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Earliest efforts to re-estimate spacecraft alignments inflight relied on simple least-squares
procedures which did not take account of the sensor statistics and sometimes made very
strong assumptions about the misalignment of one of the sensors relative to the space-
craft payload.2−4 These efforts have avoided the need to consider attitude dynamics, firstly,
by examining only frames of simultaneous sensor data, and, secondly, by using derived
attitude-independent measurements3−4 (essentially the cosine of the angle included be-
tween supposed body-referenced measurements) rather than the measurements themselves.
Generally, to skirt a fundamental lack of observability, they have also chosen arbitrarily
one set of postlaunch sensor misalignments to vanish, an approximation which can lead
to significant errors. Because of the lack of observability, it is often impossible to test the
correctness of the inflight estimates. In one case where the project scientist has been able to
perform an absolute inflight alignment calibration based on the scientific data,5 the errors
in the naive least-square approach turned out to be large.

The earliest improvement6 to this procedure came first from an attempt to treat the mea-
surement noise but not the dynamics of the system. However, the measurement noise was
treated only approximately. The variances of the derived attitude-independent measure-
ments were calculated correctly but the correlations between these derived measurements
was neglected. In addition, the derived measurements were redundant for more than three
sensors, making that approach unusable without some additional machinery except in the
very restricted case of a spacecraft with three or fewer attitude sensors. For the application
of that approach to the Solar Maximum Mission (SMM), where only three sensors were
considered at a time, the algorithm was workable although flawed. Nonetheless, the algo-
rithm has been popular and successful in applications to spacecraft supported by NASA
Goddard Space Flight Center and continues to be used, although one should treat the con-
fidence bounds on the misalignments calculated using that algorithm with some suspicion.
It is, perhaps, worth noting that that work also attempted to take account of the prelaunch
calibration results in the on-orbit calibration, although the proper way to do this was not
correctly understood at that time. A recent application of that algorithm has been carried
out by Snow et al.7 for the UARS spacecraft.

The drawbacks of that method were removed in later work,8−9 which treated the sta-
tistics properly and made no approximations other than the small-angle approximation for
the misalignments and the sensor measurement noise. That work included also the esti-
mation of launch-shock parameters from inflight data, which now made the batch attitude-
independent approach both statistically complete and rigorous. This methodology has been
used also to explore some general questions of misalignment estimation, such as the correct-
ness of estimating only coalignments, the dependence of the inflight alignment calibration
accuracies on the sensor field of view, and the effect of unobservable alignment errors on the
attitude. This work has been extended recently10 to determine the temperature dependence
of the attitude sensor alignments for the Solar Maximum Mission, with interesting results.
Lerner11 has extended this work to estimate other parameters besides alignments.

The batch attitude-independent approach discussed above is not useful if the data in each
frame is not simultaneous. If some reliable method of determining spacecraft attitude rates is
available, say from three-axis gyros or from fitted attitude solutions, the data can, of course,
be made simultaneous, at least approximately. Such an approach has been used for attitude
estimation when the data is not truly simultaneous2,12; hence, it would seem reasonable to
use this altered data in estimating misalignments. However, for missions with very high
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attitude accuracy requirements, where gyro errors must be balanced against attitude sensor
errors in a Kalman filter, such a method will no longer be adequate. Thus, it is necessary
in this case to treat the attitude sensor alignments together with the attitude within the
Kalman filter. An early application of Kalman filtering to attitude and alignment estimation
was carried out by Murrell,13 who applied this technique to the multimission spacecraft
typified by Landsat and the Solar Maximum Mission. The Kalman filter approach has been
presented recently within the context of a particular measurement model,14 although the
method of treating the alignments is, in fact, quite general. A more extensive application has
been carried out by Deutschmann and Bar-Itzhack15 using Bar-Itzhack’s implementation
of the Kalman filter.16

If the attitude sensor measurements were truly linear functions of the attitude (or at-
titude increment) without constraint, the Kalman filter approaches above, in which the
sensor alignments along with the attitude were part of the state vector, would be ade-
quate. However, the attitude sensor measurements generally depend non-linearly on the
unconstrained attitude variables†. It is this non-linear dependence which is the cause of the
attitude Kalman filter’s sometimes poor convergence. When the filter converges, i. e., when
the estimated attitude becomes so close to truth that the attitude sensor measurements
can be truly approximated as linear inhomogeneous functions of the attitude errors, the
Kalman filter becomes an accurate attitude estimator, or an accurate estimator of attitude
and sensor alignments. This convergence, however, may be slow, requiring hundreds of
measurement samples before convergence is attained. If data segments are shorter than
this, it would not be possible to estimate attitude and misalignments accurately. Thus,
it would be helpful to have a method which is less sensitive to the non-linearities of the
measurements.

This problem affects not just misalignments but parameter estimation in general. There
exist more powerful techniques which have been developed for estimating the parameters of
stochastic systems, which are based on maximum-likelihood estimation. These depend on
using the Kalman filter not to estimate the parameters themselves but to generate derived
measurements whose statistical properties are superior to those of the original measure-
ments. The new derived measurements are then used in a batch estimator to estimate the
misalignments. Since the entire data segment is analyzed with a single value of the sensor
alignments, the alignment estimates are much less sensitive to the convergence properties
of the filter. These methods are based on techniques originally proposed by Gupta and
Mehra.17 When combined with the two-tier filter technique of Friedland,18 that method
leads to very powerful estimation techniques, which have been extended to treat a wide
range of parameter types.19 A recent application to attitude and alignment estimation (as
well as orbit determination) has been carried out recently by Maute and Defonte,20 who
applied these techniques to autonomous navigation of geosynchronous spacecraft.

In the present report we examine several approaches in a common framework. By care-
fully defining the alignments and other quantities and taking advantage of the algebraic and
geometric properties of the attitude and alignments, a great reduction of the computational

†Thus, three-axis magnetometer measurements may be a linear (but inhomogeneous) function of the
attitude matrix (which is subject to six constraints) but a very non-linear function of the Euler angles, the
rotation vector, the vector components of the quaternion, the Gibbs vector, or any other unconstrained
(three-parameter) representation of the attitude.
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burden is possible. The goal of this work is not to make numerical comparisons but to com-
pare the complexities of the different approaches. Our attention is directed largely toward
the filter-based algorithms since the static algorithm has been described in great detail.8−9

However, for the sake of comparison and because it offers a convenient context for reviewing
the geometrical character of alignment estimation, that work is reviewed briefly.

BASIC DEFINITIONS

Sensor Referenced Measurements

A spacecraft line-of-sight sensor such as a vector Sun sensor or star tracker measures
a direction, Ûi,k , in sensor coordinates, defined to be directed outward from the sensor,
which is describable statistically as

Ûi,k = Ûtrue
i,k +∆Ûi,k , (1)

where Ûtrue
i,k is the true value of the direction and ∆Ûi,k is the measurement noise. Here i

is the sensor index, i = 1, . . . , n, and k is the temporal index, k = 1, . . . , N . We assume
that ∆Ûi,k is Gaussian, zero-mean, and white, with covariance R 
Ui,k

. In more compact

notation
∆Ûi,k ∼ N (0, R 
Ui,k

) . (2)

We assume more generally, in fact, that the measurements from different sensors are statis-
tically independent, thus

E{∆Ûi,k∆Û
T
i′k′} = δii′ δkk′ R 
Ui,k

. (3)

Here, E{ ··· } denotes the expectation operator.

Because the observations are constrained to be unit vectors, R 
Ui,k
must be singular. In

particular,
R 
Ui,k

Ûtrue
i,k = 0 . (4)

Clearly, Eqs. (2) through (4) can be true only to lowest order in R. Since R is generally quite
small, this level of approximation will be adequate for the purpose of alignment estimation.

That the covariance matrix R 
Ui,k
is singular is indicative of the fact that the sensor-

referenced unit vectors are derived quantities and not measured directly by the sensors.
Instead one actually observes rather complicated functions of the Ûi,k from which the Ûi,k

are then computed. The unit vector, however, if somewhat artificial, is the most universal
and convenient quantity for describing the sensor.

Body-Referenced Vectors and Alignments

If Ŵi,k denotes the measured direction in the spacecraft body frame, then the alignment
matrix, Si , is the proper orthogonal matrix defined by

Ŵi,k = Si Ûi,k , (5)
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and, therefore,

Ŵi,k = Si Û
true
i,k + Si∆Ûi,k , (6)

≡ Ŵtrue
i,k +∆Ŵi,k . (7)

Thus, the body-referenced observations have an error model given by

∆Ŵi,k ∼ N (0, R 
Wi,k
) , (8)

with
R 
Wi,k

= Si R 
Ui,k
STi , (9)

and
R 
Wi,k

Ŵtrue
i,k = 0 . (10)

Misalignments

In general, the alignment matrix Si is not known exactly. Instead, what is known is Soi ,
the alignment matrix determined by the prelaunch alignment calibration. Thus, we are led
to define the misalignment matrix, Mi , according to

Si =Mi S
o
i . (11)

Mi is necessarily orthogonal. Therefore, we define the misalignment vectors, θi , according
to

Mi ≡ e[[θi ]] ,

= I +

(

sin |θi|
|θi|

)

[[θi ]] +

(

1− cos |θi|
|θi|2

)

[[θi ]]
2 , (12)

where e{ ··· } denotes matrix exponentiation, and [[θ ]] denotes the usual antisymmetric ma-
trix,

[[θ ]] ≡





0 θ3 −θ2
−θ3 0 θ1
θ2 −θ1 0



 . (13)

Equation (12) is just Euler’s formula for the rotation matrix recast as a function of the
rotation vector. The angles θ1, θ2, θ3 are the misalignment angles or simply the misalign-
ments†. Since the misalignment matrix is generally a very small rotation, the misalignments
will be small and we can write

Mi = I + [[θi ]] +O(|θi|
2) , (14)

†Do not confuse the subscripts on θ, which label components, with those on θ, which label sensors. To
be more consistent, we should write θi = [ θi1, θi2, θi3 ]T . Whenever possible, however, we will avoid such
a cumbersome notation, which invites confusion of the component index with the temporal index.
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As a rule, we will keep only first-order terms. The measurement equation now becomes
finally

Ûi,k = So Ti MT
i Ŵ

true
i,k +∆Ûi,k . (15)

Dependence of the Measurements on the Attitude

If V̂i,k denotes the reference vector, i. e., the representation of the measured vector in
the primary reference system (for example, geocentric inertial), then the attitude matrix
Ak is defined according to

Ŵtrue
i,k = Ak V̂

true
i,k , (16)

whence,
Ŵi,k = AkV̂i,k +∆Ŵi,k −Ak∆V̂i,k , (17)

where ∆V̂i,k is the uncertainty in the reference vector, which we assume to be Gaussian,
zero-mean, and white. Hence,

E{∆V̂i,k∆V̂
T
i′k′} = δii′ δkk′ R 
Vi,k

. (18)

From this it follows that the actual sensor measurements are related to the reference vectors
by

Ûi,k = STi AkV̂i,k +∆Ûi,k − STi Ak∆V̂i,k . (19)

We note immediately from Eq. (19) that the values of the measurement vectors are un-
changed by the simultaneous transformations

Si → T Si , i = 1, . . . , n , (20a)

Ak → T Ak , k = 1, . . . , N , (20b)

where T is an arbitrary proper orthogonal matrix. Thus, it is impossible from inflight sen-
sor measurements to distinguish a common misalignment of the sensors from a change in
the attitude. It is, therefore, impossible to estimate the sensor alignments and the attitude
unambiguously from the spacecraft sensor measurements alone, and some additional mea-
surement, e. g., the prelaunch alignment calibration, is needed in order to obtain separate
estimates of these quantities. In terms of the misalignments, Eq. (19) becomes

Ûi,k = So Ti MT
i AkV̂i,k +∆Ûi,k − So Ti MT

i Ak∆V̂i,k . (21)

This is the point of departure of the alignment estimation algorithms which we will now
consider.

MAXIMUM LIKELIHOOD ESTIMATION

Given a measurement model, i. e., a probability density function of the measurement
which also depends on the vector x which we wish to estimate, the maximum likelihood
estimation of x is straightforward. If Z′k, k = 1, . . . , N , is a sequence of measurements
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and p
Z1,... ,ZN

(Z′1, . . . ,Z
′
N ;x) is the joint probability distribution of the measurements as a

function of a parameter vector x, then the maximum likelihood estimate21−22 of x is given
by

x∗′ML = arg max
x

p
Z1,... ,ZN

(Z′1, . . . ,Z
′
N ;x) , (22)

that is, the value of x at which p
Z1,... ,ZN

(Z′1, . . . ,Z
′
N ;x) achieves its maximum.† The

maximum likelihood estimate, x∗′ML, is a function of the values of the measurements,
Z′1, . . . ,Z

′
N . Generally, we reserve the notation x∗ML without the prime for the maxi-

mum likelihood estimator, a random variable, which depends on the measurement random
variables, Z1, . . . ,ZN , in the same way as the maximum likelihood estimate depends on
the values (realizations) of the measurements. The prime will often be discarded in the
remaining sections when no confusion will result in order to achieve a less cumbersome
notation.

Defining now
J(x) = − log p

Z1,... ,ZN
(Z′1, . . . ,Z

′
N ;x) , (23)

the negative-log-likelihood function, it follows that the likelihood function is a maximum
when the negative-log-likelihood function is a minimum. If J(x) is a differentiable function
whose minimum does not lie on the boundary of its domain, then we have also that

∂J

∂x
(x∗ ′ML) = 0 . (24)

A sequence of approximations to x∗ ′ML may be obtained by straightforward application of
the Newton-Raphson method to yield

x(i+ 1) = x(i)−
[

∂2J

∂x∂xT
(x(i))

]−1
∂J

∂x
(x(i)) , (25)

and under not very restrictive conditions

lim
i→∞

x(i) = x∗ ′ML . (26)

Asymptotically, i. e., as the amount of data increases without bound we may replace the
Hessian matrix in Eq. (25) with the Fisher information matrix defined as

Fxx ≡ E
{

∂2J

∂x∂xT

}

. (27)

In this same limit the covariance matrix of the estimate error of x∗ ′ML is given by

Pxx = F−1xx . (28)

Generally, the Fisher information matrix can be calculated in closed form.

†Note that an asterisk is used to designate the estimate or estimator so as not to be confused with the
caret used to designate a unit vector.
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The above treatment is completely general. The application of maximum likelihood
methods to attitude and alignment estimation occupies the remainder of this report.

BATCH ATTITUDE-INDEPENDENT ALIGNMENT ESTIMATION

Attitude-Independent Alignment Measurements

Equation (21) is the starting point for processing the inflight data. We begin by defining

an “uncalibrated” body-referenced observation vector, Ŵo
i,k , according to

Ŵo
i,k ≡ Soi Ûi,k =MT

i Ŵi,k , (29)

so that
Ŵo

i,k =MT
i Ŵtrue

i,k +∆Ŵo
i,k , (30)

with
∆Ŵo

i,k ∼ N (0, R 
Wo
i,k
) , (31)

and
R 
Wo

i,k
= Soi R 
Ui,k

So Ti +MT
i AkR 
Vi,k

ATkMi , (32)

If we now expand Mi to first order in θi , we obtain

Ŵo
i,k ' (I − [[θi ]])Ŵ

true
i,k +∆Ŵo

i,k ,

= Ŵtrue
i,k + [[Ŵtrue

i,k ]]θi +∆Ŵo
i,k . (33)

The uncalibrated body-referenced observation, Ŵo
i,k , as a function of the misalignments

depends even to lowest order on the attitude through Ŵtrue
i,k . We would prefer not to solve

for 3N attitude parameters. For N = 1000, a not unreasonable amount of data, this leads
to a problem of very high dimension. To process this number of parameters in a batch
framework would be quite overwhelming computationally. Thus, we look for a means of
removing the attitude dependence of the measurements. To accomplish this we note that
to first order in θi , θj , and the measurement noise terms

Ŵo
i,k ···Ŵo

j,k = V̂i,k ··· V̂j,k + (Ŵo
i,k × Ŵo

j,k) ··· (θi − θj)

+ Ŵtrue
i,k ···∆Ŵo

j,k + Ŵtrue
j,k ···∆Ŵo

i,k , (34)

which is independent of the attitude. Thus, we define for i 6= j

zij,k ≡ Ŵo
i,k ···Ŵo

j,k − V̂i,k ··· V̂j,k , (35)

whence,
zij,k = (Ŵo

i,k × Ŵo
j,k) ··· (θi − θj) + ∆zij,k , (36)
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with
∆zij,k ' Ŵo

i,k ···∆Ŵo
j,k + Ŵo

j,k ···∆Ŵo
i,k . (37)

In Eq. (37) we have replaced Ŵtrue
i,k by Ŵo

i,k since this leads to no errors to lowest order
in the covariance. The derived measurements, which are the observed cosine errors, are
independent of the attitude to first order in the misalignments. The covariance of the
∆zij,k can be calculated easily8 from Eqs. (37) and (32).

The above derived measurements zij,k are necessarily redundant for n > 3 since there
are n(n− 1)/2 pairs of sensors but only 2n− 3 independent attitude-independent measure-
ments. Thus, only a subset of these n(n − 1)/2 pseudo -measurements can be statistically
independent. A suitable subset is given by

Zk ≡ [z12,k, . . . , z1n.k, z23,k, . . . , z2n,k]
T , (38)

provided that Ŵo
1,k and Ŵo

2,k are not mutually parallel or parallel to any of the remaining
unit-vector measurements. A superior method for constructing Zk, based on the singular
value decomposition,23 is given in Ref. 10. Thus, we write,

Zk = HkΘΘΘ+∆Zk , (39)

where
ΘΘΘ ≡ [θT1 , . . . , θ

T
n ]
T , (40)

is the total alignment vector and has dimension 3n.

Thus, ∆Zk is a white Gaussian sequence with covariance matrix PZk . The matrices

Hk and PZk are obtained directly from Eqs. (36) and (37). The a posteriori inflight esti-
mate of the misalignments, ΘΘΘ∗(+) , together with the a posteriori estimate error covari-
ance, PΘΘ(+) , may be obtained straightforwardly by maximum likelihood estimation. The
prelaunch (i. e., a priori) estimate of the misalignments ΘΘΘ∗(−) has by definition the value 0.
We denote the prelaunch estimate error covariance corrected for launch shock by PΘΘ(−).
Then the negative-log-likelihood function†, which in maximum likelihood estimation serves
as a cost function, is given by

JΘ(ΘΘΘ) = 1
2

[

(ΘΘΘ∗(−)−ΘΘΘ)TP−1ΘΘ(−) (ΘΘΘ
∗(−)−ΘΘΘ) + log det PΘΘ(−) + 3n log 2π

]

+ 1
2

N
∑

k=1

[

(Zk −HkΘΘΘ)T P−1Zk
(Zk −HkΘΘΘ)

+ log detPZk + (2nk − 3) log 2π
]

(41)

where 2nk − 3 is the dimension of Zk if there are fewer than the full complement of sensors
active at a given time tk. Minimizing JΘ(ΘΘΘ) leads to the usual normal equations:

P−1ΘΘ(+) ΘΘΘ∗(+) =
N
∑

k=1

HT
k P

−1
Zk

Zk , (42)

†This particular form of maximum likelihood estimation is frequently termed maximum a posteriori
(MAP) estimation
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P−1ΘΘ(+) = P−1ΘΘ(−) +
N
∑

k=1

HT
k P

−1
Zk

Hk . (43)

The solution of these equations leads to the batch estimate of the postlaunch alignments.

Note that three linear combinations of the components of ΘΘΘ∗(+) must be given by the
prelaunch values (i. e., 0). For this reason one has often estimated instead the relative
alignment vector defined by

ΘΘΘrel ≡ [θT2 − θ
T
1 , . . . , θ

T
n − θ

T
1 ]
T , (44)

a vector of dimension 3n− 3. The estimate of this quantity, sometimes called the coalign-
ment vector, with the additional condition θ1 = 0 has often been used in place of the full
alignments. This approach is justified only if it is known that the postlaunch alignment
of sensor 1 relative to the payload should not differ appreciably from the prelaunch value.
This, however, is sometimes true, as seems to be the case for the Solar Maximum Mission,10

but was not true in the case of Magsat.5

The prior-free estimate of the relative misalignments, i. e., the estimate of ΘΘΘrel which
minimizes the summation term of Eq. (41), is important for determining launch shock.
Obviously, from Eq. (36), a prior-free estimate of the absolute misalignments does not
exist, and it is for this reason that most early works have been content to estimate only
prior-free relative alignments.

ESTIMATION OF ALIGNMENTS AS KALMAN-FILTER STATE VARIABLES

Since the Kalman filter can be formulated as a maximum likelihood estimator,24 the
Kalman filter estimate of the alignments is also a maximum likelihood estimate, the one
which takes account of the spacecraft dynamical degrees of freedom.

Assume again that the spacecraft is equipped with n vector sensors for which we wish
to estimate alignments using the Kalman filter. The complete state vector, X(t), in the
context of combined attitude and alignment estimation is

X(t) =
[

q̄T (t) , εT (t) , q̄T1 (t) , . . . , q̄
T
n (t)

]T
, (45)

where q̄(t) is the attitude quaternion, q̄i(t), i = 1, . . . , n, are the alignment quaternia, which
have the same relation to the respective alignment matrices as the attitude quaternion has
to the attitude matrix, and ε(t) is the gyro bias vector. The inclusion of additional degrees
of freedom in the state vector is straightforward but needlessly complicates the present
discussion.

The state equations for the attitude and the gyro biases are usually modeled as13,25

d

dt
q̄(t) =

1

2
Ω(g(t)− ε(t)− η1(t)) q̄(t) , (46a)

d

dt
ε(t) = η2(t) , (46b)
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where g(t) is the gyro reading, and η1(t) and η2(t) are white Gaussian processes with power
spectral density matrices Q1(t) and Q2(t), respectively. Ω(ω) is the 4× 4 matrix

Ω(ω) ≡







0 ω3 −ω2 ω1
−ω3 0 ω1 ω2
ω2 −ω1 0 ω3
−ω1 −ω2 −ω3 0





 . (47)

The gyro-referenced attitude, q̄ref(t) satisfies

d

dt
q̄ref(t) =

1

2
Ω(g(t)− ε(0)) q̄(t) , (48)

and the complete state vector based on the gyro-referenced attitude and the prelaunch
alignments is, in obvious notation,

Xref(t) ≡
[

q̄Tref(t) , ε
T (0) , q̄o T1 (t) , . . . , q̄o Tn (t)

]T
, (49)

where for uniformity we have written time arguments for the alignment quaternia.

The incremental attitude quaternion is given by

δq̄(t) = q̄(t)⊗ (q̄ref(t))
−1 . (50)

In general, δq̄(t) will be the quaternion of an infinitesimal rotation, which we may write as

δq̄(t) =

[

ξ(t)/2

1

]

+O(| ξ(t)|2) . (51)

Defining the gyro-bias increment vector by

∆ ε(t) = ε(t)− ε(0) (52)

leads to the incremental equations

d

dt
ξ(t) = −

(

g(t)− ε(0)
)

× ξ(t)−∆ε(t)− η1(t) , (53a)

d

dt
∆ε(t) = η2(t) . (53b)

Likewise, we assume that the spacecraft is rigid and the misalignments satisfy

d

dt
θi(t) = 0 , i = 1, . . . , n . (53c)

Thus, we define the incremental state vector as

x(t) ≡
[

ξT (t) , ∆εT (t) , θT1 (t) , . . . , θ
T
n (t)

]T

. (54)
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Hence, the complete state vector has dimension 4(n + 1) + 3, while the incremental state
vector has dimension 3(n + 1) + 3. Note the the composition of the reference complete
state vector with the incremental state vector is not simple addition. Note also that in the
above formulation of the Kalman filter, the gyro measurements have replaced the dynamical
model and the gyro measurement noise has become state process noise.

The discretised incremental state vector satisfies a state equation of the form

xk+1 = Φk xk +wk , (55)

where wk is a discrete white noise process calculated from η1(t) and η2(t) and with covari-
ance matrix Qk. Φk and wk must be such that

θi,k+1 = θi,k , i = 1, . . . , n . (56)

The state covariance is defined in terms of the incremental state vector

Pk = E{xk xTk } − E{xk }E{xTk } . (57)

and the Kalman filter is mechanized in terms of xk. The prediction equations are†

xk|k−1 = Φk−1 xk−1|k−1 , (58a)

Pk|k−1 = Φ′k−1 Pk−1|k−1 Φ
′T
k−1 +Qk−1 . (58b)

The prediction of the misalignments as given by Eq. (58a) is necessarily

θi, k|k−1 = θi, k−1|k−1 . (59)

The primes on the transition matrices in Eq. (58b) are a result of the basic non-linearity of
the combined attitude-gyro-bias dynamics, which leads to different transition matrices for
the incremental state vectors and the incremental state errors.25 Note that ξk is related to
the attitude matrix according to

Ak = e[[ξk ]]Aref
k , (60)

which is similar to the equivalent relation for the misalignment vectors,

Si,k = e[[θi,k ]] Soi . (61)

Thus, we may write the measurement equation as

Ûi,k = STi,k Ak V̂i,k +∆Ûi,k − STi,k Ak∆V̂i,k

= So Ti e−[[θi,k ]] e[[ξk ]]Aref
k V̂i,k +∆Ûi,k − STi,k Ak∆V̂i,k

' So Ti
(

I + [[ ξk − θi,k ]]
)

Aref
k V̂i,k +∆Ûi,k − So Ti Aref

k ∆V̂i,k

= Ûref
i,k + So Ti [[ ξk − θi,k ]]Ŵref

i,k +∆Ûi,k − So Ti Aref
k ∆V̂i,k

= Ûref
i,k − So Ti [[Ŵref

i,k ]] (ξk − θi,k) + ∆Ûi,k − So Ti Aref
k ∆V̂i,k

= Ûref
i,k + Cξi,k ξk + Cθi,k θi,k +∆Ûi,k − So Ti Aref

k ∆V̂i,k . (62)

†To simplify the notation, we do not write an asterisk to denote the estimate or estimator when the
subscript makes this identification clear.
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where

Ûref
i,k ≡ So Ti Ŵref

i,k , (63)

Ŵref
i,k ≡ Aref

k V̂i,k , (64)

are the sensor-referenced and body-referenced measurements for the reference trajectory,

Cθi,k = −Cξi,k = So Ti [[Ŵref
i,k ]] . (65)

are the measurement sensitivity matrices, and

Ûi,k = Ûref
i,k + Ci,k xk +∆Ûi,k − So Ti Aref

k ∆V̂i,k , (66)

where the submatrices of Ci,k vanish except for those which multiply to ξ and θi.

In general, the measurements are not the Ûi,k themselves but scalar functions of the

Ûi,k, which we denote by fi,k(Ûi,k). Thus, we define the equivalent scalar measurements
as

zk = fi,k(Ûi,k)− fi,k(Ûref
i,k) , (67)

' Hk xk + vk , (68)

where, we have expanded Eq. (68) in a Taylor series about Ûref
i,k to obtain†

Hk =

(

∂fk
∂Ûi,k

(Ûref
i,k)

)T

Ci,k , (69)

vk =

(

∂fk
∂Ûi,k

(Ûref
i,k)

)T
(

∆Ûi,k − So Ti Aref
k ∆V̂i,k

)

. (70)

The measurement equation is now in a form familiar to us. In principal, we can neglect
the index i in labeling the measurements, as we have done in Eqs. (67) through (70) if
we choose the temporal index so that each scalar measurement corresponds to a different
value of k (the order of truly simultaneous measurements is unimportant). Thus, ideally
we should write ik in place of i and be aware that tk will sometimes assume the same value
for successive values of k. In predicting between equal times the transition matrices will be
identity matrices and no process noise will be accumulated.

Thus, we may write the Kalman filter equations for the update step as

Bk = Hk Pk|k−1H
T
k +Rk , (71)

Kk = Pk|k−1H
T
k B

−1
k , (72)

νk = zk −Hk xk|k−1 , (73)

xk|k = xk|k−1 +Kk νk , (74)

Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)
T +Kk RkK

T
k , (75)

†We use throughout the convention that the matrix of partial derivatives of a scalar with respect to a
column vector is again a column vector; hence, the superscript T in Eqs. (69) and (70).
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and Rk is the variance of vk. The a posteriori estimate of the misalignment vector and its
covariance are given by

ΘΘΘ∗(+) = ΘΘΘN |N , PΘΘ(+) =
(

PN |N

)

ΘΘ
. (76)

A word should said about the initialization of the Kalman filter. Single sensor mea-
surements, particularly if they are processed as scalars, are not sufficient to determine the
attitude. When the Kalman filter is started at an arbitrary attitude and simply allowed to
converge, the lack of observability often leads the state errors to persist at large values for
significant times before the state vector finally wanders into the linear region and quadratic
convergence is observed. When additional alignment degrees of freedom are available for
the peregrinations of the state vector, the rate of convergence will be worse still if the filter
is not started off intelligently. For the attitude filter, this convergence problem can often
be avoided completely by initializing the attitude and the attitude covariance using some
less optimal batch method which is more robust than the Kalman filter. While it is com-
forting to know that the filter equations are sufficiently robust to converge from any initial
condition, this should not be interpreted as the best implementation of the filter in actual
data processing.

The initialization of the attitude Kalman filter is complicated by the fact that the refer-
ence trajectory must also be determined from the measurements, although once determined
it becomes a deterministic trajectory whose stochastic origins are dismissed. Thus, some
batch method should used to obtain good initial values for the attitude. Since the measure-
ments are almost always equivalent to unit vectors, several reliable methods26 are available
for this. The gyro measurements are then used to determine the reference trajectory from
this initial attitude (no longer regarded as an estimate). In this case the initial value of all
components of xo|o are then zero. Batch algorithms can also be used to obtain (Pξξ)o|o,
and the manufacturer’s specifications provide at least a bound on the initial covariance for
the gyro-bias vector.

A complication to this prescription occurs when we consider the initialization of the
alignment covariance, since this depends on launch-shock corrections,8 which must be com-
puted from the inflight alignment estimates themselves. If one of the sensors is mounted to
the same optical bench as the spacecraft payload (as was the case for the Solar Maximum
Mission) and it is not expected that inflight degradation of the sensor will be important
(this is less likely to be true), then it is justifiable to neglect the misalignment of that sensor
relative to the payload and simply determine the relative alignments of other sensors with
respect to it. Since the estimation of relative alignments will generally be dominated by
the inflight data, the computation of launch-shock error levels would not be important. For
Magsat,2 however, this was not the case, and the value of the launch-shock error levels
would have significantly affected the estimates of the absolute alignments, had these tech-
niques been available to apply to that spacecraft. However, the launch-shock error levels
are inconvenient to calculate except from the prior-free estimates of the relative alignments8

and the computation of prior-free estimates with a Kalman filter is tantamount to using
infinite initial covariances, which contribute to the convergence problems and loss of numer-
ical significance. We suggest for the calculation of launch-shock error levels only that
the filter be initialized with large initial covariances for the misalignments (say, 20 or 50
times the anticipated covariances from inflight data) but not with numbers so fantastically
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large that they result in a tremendous loss of numerical significance in the filter. This sets
limits of five or two per cent, respectively, for the accuracy with which the launch-shock
error levels can be estimated. It would be very unlikely, however, that these error levels
would ever be (or need to be) determined with greater accuracy.

KALMAN-FILTER BASED BATCH ESTIMATION OF
SPACECRAFT SENSOR ALIGNMENTS

Even if the measurement and process noise are small, the Kalman filter for the attitude
and alignments may converge slowly because of the non-linear dependence of the measure-
ments on the attitude. Also, the filter will be very sensitive to outliers at the beginning
of a data segment. Batch algorithms, which process all of the data at once, are less sen-
sitive to outliers and to the non-linear dependence of the negative-log-likelihood function
on the parameters being estimated. However, from Eq. (68) we see that all of the mea-
surements are correlated with one another through the correlations in xk. Thus, not only
will the parameter set in a batch estimation procedure be very large because of the large
number of attitudes to be computed, but the measurement covariance matrix, if all of the
measurements were stacked into one large measurement vector, would be very large and
non-diagonal, hence, very difficult to invert.

A method of removing this difficulty was developed by Gupta and Mehra.17 These authors
noted that although the measurements, zk, are correlated, the innovations, νk computed
by the Kalman filter are always a white sequence. Hence, instead of finding the value
of ΘΘΘ which minimizes J(z1, . . . , zN ; ΘΘΘ) it is sufficient to find the value which minimizes
J(ν1, . . . , νN ; ΘΘΘ). Gupta and Mehra noted also that the Jacobian determinant of the (very
high-dimensional) transformation matrix which transforms the column vector containing all
the zk into the column vector containing the corresponding νk will be unity. Hence, the
two negative-log-likelihood functions will yield the same Fisher information matrix. Thus,
we are led to estimate ΘΘΘ by minimizing the a posteriori negative-log-likelihood function,

J(ν1, . . . , νN ;ΘΘΘ) =
1

2
ΘΘΘTP−1ΘΘ(−) ΘΘΘ

+
1

2

N
∑

k=1

{

νTk (ΘΘΘ)Bk(ΘΘΘ) νk(ΘΘΘ) + log det Bk(ΘΘΘ) + log 2π
}

,
(77)

instead of the negative-log-likelihood function given directly in terms of the zk, although
the two are formally equivalent.

In the present instance the total alignment vector, ΘΘΘ, is no longer a state variable but
a constant parameter of the system. The state vector, therefore, is now much reduced in
dimension and simply

Xk =

[

q̄k

εk

]

, (78)

and the incremental state vector

xk =

[

ξk

∆ εk

]

, (79)
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Thus, in implementing Eq. (25), the gradient of the a posteriori negative-log-likelihood
function in terms of the innovations process and the residual covariance Bk is17

∂J

∂Θm
=
(

P−1ΘΘ(−)ΘΘΘ
)

m
+

N
∑

k=1

{

∂νTk (ΘΘΘ)

∂Θm
B−1k (ΘΘΘ) νk(ΘΘΘ)

− 1

2
νTk (ΘΘΘ)B−1k (ΘΘΘ)

∂Bk(ΘΘΘ)

∂Θm
B−1k (ΘΘΘ) νk(ΘΘΘ) +

1

2
tr

[

B−1k (ΘΘΘ)
∂Bk(ΘΘΘ)

∂Θm

]}

,
(80)

and the corresponding Fisher information matrix is given by†

F`m =
(

P−1ΘΘ(−)
)

`m
+

N
∑

k=1

{

1

2
tr

[

B−1k (ΘΘΘ)
∂Bk(ΘΘΘ)

∂Θ`
B−1k (ΘΘΘ)

∂Bk(ΘΘΘ)

∂Θm

]

+ E

{[

∂νTk (ΘΘΘ)

∂Θ`
B−1k (ΘΘΘ)

∂νk(ΘΘΘ)

∂Θm

]}}

. (81)

The mechanization of the filter now proceeds as before but without the components related
to the misalignments, which are now simply constant parameters in the measurements.
Equation (61) is now replaced by

Si =Mi S
o
i = e[[θi ]] Soi , (82)

which is the same as in the batch estimator presented earlier. Equations (67) and (68) now
become

zk = fi,k(Ûi,k)− fi,k(Ûref
i,k) , (83)

' HI
k xk + CkΘΘΘ+ vk , (84)

where

HI
k =

(

∂fk
∂Ûi,k

(Ûref
i,k)

)T
[

Cξi,k
... O3×3

]

, (85)

Ck =

(

∂fk
∂Ûi,k

(Ûref
i,k)

)T

[O3×3 · · · Cθi,k · · · O3×3 ] , (86)

with Cθi,k and Cξi,k given still by Eq. (65), and the non-zero entries in Ck occur in the
submatrix which multiplies θi. The superscript I, distinguishes the measurement sensitivity
matrix in Eq. (84) from the related quantity in Eq. (68) et seq. and denotes that it represents
that component of the measurement which is insensitive to the alignments.

†Note that Gupta and Mehra make an error in their derivation of Eq. (81) leading them to include an
extraneous term.
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To calculate the dependence of νk on ΘΘΘ we note that because the Kalman filter consists
only of linear operations on the state variables we may write

xk|k−1 = xIk|k−1 − Tk|k−1ΘΘΘ , (87a)

xk|k = xIk|k − Tk|kΘΘΘ , (87b)

where xIk|k−1 and xIk|k are independent of ΘΘΘ. To determine these alignment-independent

state estimates and the alignment sensitivity matrices Tk|k−1 and Tk|k we substitute these
expressions into the Kalman filter equations to obtain new filter equations of the form

xIk|k−1 = ΦIk−1 x
I
k−1|k−1 , (88)

P Ik|k−1 = Φ′ Ik−1 P
I
k−1|k−1 (Φ

′ I
k−1)

T +QIk−1 , (89)

BIk = HI
k P

I
k|k−1 (H

I
k)
T +Rk , (90)

KI
k = P Ik|k−1 (H

I
k)
T
(

BIk
)−1

, (91)

νIk = zk −HI
k x

I
k|k−1 , (92)

xIk|k = xIk|k−1 +KI
k ν

I
k , (93)

P Ik|k = (I −KI
kH

I
k)P

I
k|k−1 (I −K

I
kH

I
k)
T +KI

k Rk (K
I
k)
T , (94)

and the superscript I on Φk and Qk denote again that these quantities have been likewise
truncated. The alignment sensitivity matrices are given by the recursion relations

To|o = 0 , (95a)

Tk|k−1 = ΦIk−1 Tk−1|k−1 , (95b)

Tk|k = (I −KI
kH

I
k)Tk|k−1 −KI

kCk . (95c)

The innovation is thus given by

νk = zk −HI
kxk|k−1 − CkΘΘΘ , (96)

= νIk − FkΘΘΘ , (97)

where
Fk = HI

k Tk|k−1 + Ck . (98)

Thus, the prior-free negative-log-likelihood function for the misalignments is given by†

Jprior-free(ΘΘΘ) =
1

2

N
∑

k=1

{

(

νIk − FkΘΘΘ
)T

(BIk)
−1 (νIk − FkΘΘΘ

)

+ log det BIk + log 2π
}

. (99)

†For clarity we write Eq. (99) in matrix form even though the three factors are each scalars.
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From this negative-log-likelihood function we may estimate the prior-free relative alignments
and the launch-shock error levels as in Ref. 9. The a posteriori estimates of the alignments
taking into account both the a priori estimate and Eq. (99) is then given by the usual
normal equations

P−1ΘΘ(+)ΘΘΘ∗(+) =
N
∑

k=1

FTk
(

BIk
)−1

νIk , (100a)

P−1ΘΘ(+) = P−1ΘΘ(−) +
N
∑

k=1

FTk (BIk)
−1Fk , (100b)

which are equivalent to Eqs. (80) and (81) if we note that Bk is independent of ΘΘΘ. The
values of ΘΘΘ∗(+) and P−1ΘΘ(+) from Eqs. (100) correspond exactly to ΘΘΘN |N and (PN |N )ΘΘ

which would have been obtained using the larger Kalman filter presented in the previous
section.

Equivalently, we may instead interpret the truncated innovations, νIk , as effective mea-
surements of ΘΘΘ of the form

νIk = FkΘΘΘ+∆νIk , (101)

with
∆νIk ∼ N (0, BIk) , (102)

and estimate the a posteriori misalignments in a Kalman filter. Thus,

ΘΘΘo|o = 0 , (PΘΘ)o|o = PΘΘ(−) , (103)

ΘΘΘk|k−1 =ΘΘΘk−1|k−1 , (PΘΘ)k|k−1 = (PΘΘ)k−1|k−1 (104)

for the initialization and prediction steps, and

Bk = Fk (PΘΘ)k|k−1 F
T
k +BIk , (105)

Kk = (PΘΘ)k|k−1 F
T
k B−1k , (106)

νk = νIk − FkΘΘΘk|k−1 , (107)

ΘΘΘk|k =ΘΘΘk|k−1 +Kk νk , (108)

(PΘΘ)k|k = (I −KkFk) (PΘΘ)k|k−1 (I −KkFk)T +Kk BIk KTk , (109)

for the update step. Friedland18 has shown that the estimates of ΘΘΘ in this last filter
correspond at each step to the estimates that would have been obtained from the complete
filter (attitude plus misalignments) of the last section. Then, Eq. (76) is true also for these
estimates. In addition, the innovation process for the two filters, which we have labelled νk
in both instances, is, in fact, the same and

Bk = Bk , (110)
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and

xk|k−1 = xIk|k−1 + Tk|k−1ΘΘΘk|k−1 , (111a)

xk|k = xIk|k + Tk|kΘΘΘk|k , (111b)

Thus, the two-tier filter of Friedland permits us to decompose the
(

3(n+1)+3
)

-dimensional
filter for both attitude and alignments into a 6-dimensional filter for the attitude alone and
a 3n-dimensional filter for the alignments. The computationally intensive prediction step
takes place only in the much smaller filter, while the larger filter for the alignments is rather
simple in execution. However, to avoid sensitivity to outliers, it is, perhaps, preferable in
practice to use Eqs. (100) and recompute the attitudes with Θ∗(+) as a fixed parameter.
Note that Eqs. (87) and (111) correspond to different filters: the first in which ΘΘΘ is simply
a constant vector of parameters, and the second in which xk and ΘΘΘk together constitute a
larger filter state vector.

DISCUSSION

In the two Kalman filter approaches above we have restricted our attention to lineariza-
tions about a reference trajectory rather than the extended Kalman filter (EKF), which
is linearized about the most recent estimate. While there is certainly sufficient experience
that the extended Kalman filter yields reasonable estimates, the covariance simulation of
the extended Kalman filter does not necessarily yield the true estimate error covariance,
because part of the true estimate error is hidden in the linearization point. In addition, the
innovations of the extended Kalman filter are not necessarily white, making the connection
with the method of Gupta and Mehra less transparent. Nonetheless, the EKF will almost
always be a very practical approximation to the methodology presented here, the only dif-
ference in execution being the choice of the point of expansion for the prediction step and
the measurements. An example of an EKF implementation for the alignments is given in
Ref. 15.

Since the reference trajectory is determined by the initial attitude and the gyros alone, it
is necessary for these methods that the gyros be very accurate. The most important error
from the gyros will be random walk errors which grow (for a three-axis system) as

| ξ(t)|rms ≡ [trPξξ(t)]
1/2 , (112)

'
√
3α t1/2 , (113)

For the linearization to be correct within the limit of accuracy of interest, we must have for
the predicted attitude increment

| ξ(t)pred|2rms << σcrit , (114)

where σcrit is the critical accuracy required for the attitude or alignments. If Eq. (114) is
not true, then the quadratic terms neglected in the filter will be at least comparable to the
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level of accuracy desired, which is unacceptable. Comparing Eqs. (113) and (114) leads to
a condition on α

α <<

√

σcrit
3t

, (115)

and t is now the length of the data segment. Taking as typical values

t = 1. hr , σcrit = 1. arc sec , (116)

leads to the condition
α << 0.07 deg hr−1/2 , (117)

which is within the accuracy of modern gyros. For a recently reported example,27 α is
two orders of magnitude smaller than this value. The methodologies presented here are
therefore very applicable.

Much of the simplicity of the formulae which appear in this work is due to the definition
of the misalignments and attitude increment. It is this choice, for example, which leads to
the measurement sensitivity submatrices for these two quantities differing only by a sign.
Arbitrary definitions of these quantities lead to expressions of enormous and unnecessary
complexity.

Since the alignments do not appear in the state vector in the Gupta-Mehra method it
is a simple manner to compute prior-free estimates of the relative alignments. If the filter
is initialized with the attitude covariance being quite large but finite, then the prior-free
estimate of the misalignments calculated by the Gupta-Mehra method will exist and have
roughly this covariance, although in the limit that the initial attitude covariance is infinite,
and with infinite-precision arithmetic, this would not be so. Thus, caution must be exercised
lest our approximations or numerical round-off lead us to false conclusions.

The methods of Gupta and Mehra17 and Friedland18 can, of course, be applied to the
estimation of any bias, not simply misalignments. Thus, in estimating magnetometer biases,
we might write

Bk = (I + L)Btrue
k + b , (118)

where L is a matrix of scale-factor, misalignment, and nonorthogonality corrections and b is
a constant additive bias. The twelve parameters in L and b are then joined to the parameter
vector ΘΘΘ. Likewise, we might consider similar corrections to the gyro measurements,

gk(t) = (I +G)ωtrue
k (t) + ε(t) + η1(t) , (119a)

d

dt
ε(t) = η2(t) , (119b)

which, but for the matrix G, is identical to the equations used in the text. In the above case,
the paramters of the matrix G enter the prediction rather than the measurement equations
of the filter, a case also considered by Friedland. To treat this case we must modify Eq. (55)
to read

xk+1 = Φk xk +DkΘΘΘ+wk , (120)
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and Eq. (95b) becomes in turn

Tk|k−1 = Φk−1 Tk−1|k−1 +Dk−1 . (121)

The calculations then proceed as before.
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