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Abstract

Simple models are exploited to examine the qualitative properties of spacecraft sensor alignment estima-

tion. A number of simple truths generally believed by workers are shown to be not quite correct.

Introduction

A number of incorrect beliefs are held about spacecraft sensor alignment estimation. These beliefs
have influenced a number of missions. In some cases the errors introduced have been corrected in later
processing. In many cases, however, their effect has gone unnoticed (because they are undetectable)
and better attitude accuracies have been reported than have really been the case.

There exists a good deal of false mythology associated with alignment estimation. For reasons
which remain unclear, there persists a misunderstanding about whether one should compute mis-
alignments for all the sensors taking advantage of the prelaunch alignments to remove the ambiguity
arising from an innate observability problem or whether one should estimate from the inflight data
alone only relative alignments to one sensor, whose alignment is presumed to be unaffected by launch
shock, and use this “alignment reference” to determine the full set of alignments. Clearly, the former
method must yield more accurate results because it uses more information, but given the uncertain-
ties surrounding launch shock it may not be clear how great the differences should be. A careful
analysis of this problem indicates that the alignment estimates are decidedly better if the prelaunch
calibration is incorporated in the inflight processing. This can be illustrated in a simple model.

Common belief has been that for sensors with narrow fields of view the misalignment about the
boresights are unobservable. Careful examination shows that belief to be not quite correct.

The effect of unobservable launch-shock errors on attitude errors has never been explored. It turns
out that these unobservable launch-shock errors lead to large, persistent, and unobservable attitude
errors. These are investigated within the framework of the QUEST algorithm1, which treats the
vector observations in a manner similar to the alignment estimation algorithms developed earlier.

Basic Results

In an earlier work2 we defined the alignment matrix Si according to

Ŵi,k = Si Ûi,k , (1)

where Ûi,k is the direction measured by sensor i, i = 1, . . . , n, at time tk, and Ŵi,k is the represen-
tation of the same unit vector in spacecraft body coordinates. Si is the alignment matrix for sensor
i and is necessarily proper orthogonal. We define further

Si =Mi S
o
i , (2)

513



514

where Soi is the alignment matrix obtained from the prelaunch alignment calibration, and Mi is the
misalignment matrix, a small rotation connecting Si and S

o
i , which we may write approximately as

Mi ' I +





0 θi3 −θi2
−θi3 0 θi1
θi2 −θi1 0



 , (3)

where θθθi ≡ [θi1, θi2, θi3]
T is the misalignment vector for sensor i. The inflight alignment calibration

determines θθθi, i = 1, . . . , n.

If we define an “uncalibrated” body-referenced observation vector, Ŵo
i,k , according to

Ŵo
i,k ≡ Soi Ûi,k , (4)

then
Ŵo

i,k =MT
i AkV̂i,k +∆Ŵo

i,k , (5)

where V̂i,k is the representation of the unit vector in the primary reference frame (i.e., the frame

to which the attitude is referred) and Ak is the attitude matrix. The measurement noise ∆Ŵo
i,k,

is assumed to be white and uncorrelated between sensors. We see immediately from Eq. (5) that
a common rotation in the misalignment matrices is indistinguishable from the opposite rotation in
the attitude matrix. Therefore, not all misalignments are observable from inflight data alone, a fact
which does not seem to have always been understood3.

A set of pseudo-measurements can be constructed which depend only on the misalignments and
not on the attitude according to

zij,k ≡ Ŵo
i,k ···Ŵo

j,k − V̂i,k ··· V̂j,k ,

' (Ŵo
i,k × Ŵo

j,k) ··· (θθθi − θθθj) + ∆zij,k , (6)

where terms which are higher order in the misalignments have been discarded. The measurement
noise is given to lowest order by

∆zij,k ' Ŵo
i,k ···∆Ŵo

j,k + Ŵo
j,k ···∆Ŵo

i,k . (7)

We note that there are n(n − 1)/2 pseudo-measurements zij,k with i < j although from the above
discussion there can be at most 2n− 3 attitude-independent measurements at each time tk.

Thus, only a subset of these n(n− 1)/2 pseudo-measurements can be statistically independent. A
suitable subset is given by2

Zk ≡ [z12,k, . . . , z1n.k, z23,k, . . . , z3n,k]
T , (8)

provided that Ŵo
1,k and Ŵ

o
2,k are not mutually parallel or parallel to any of the remaining unit-vector

measurements. Thus, we write,
Zk = HkΘΘΘ+∆Zk , (8)

where
ΘΘΘ ≡ [θθθT1 , . . . , θθθ

T
n ]
T , (9)

is the total alignment vector and has dimension 3n. Note that Hk cannot be full rank.
If ΘΘΘ∗(−) is the estimate of the total alignment vector based on the prelaunch calibration (hence,

000), and PΘΘ(−) is the associated estimate error covariance matrix, then the inflight a posteriori
maximum likelihood estimate and covariance matrix are given by2

P−1ΘΘ(+) ΘΘΘ∗(+) =
N
∑

k=1

HT
k P

−1
Zk

Zk , (10)
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P−1ΘΘ(+) = P−1ΘΘ(−) +
N
∑

k=1

HT
k P

−1
Zk

Hk . (11)

These relationships are the basis for the present study.
Note that three linear combinations of the components of ΘΘΘ∗(+) are given by the prelaunch values

(i.e., 0). For this reason one has often estimated instead the relative alignment vector defined by

ΘΘΘrel ≡ [θθθT2 − θθθ
T
1 , . . . , θθθ

T
n − θθθ

T
1 ]
T , (12)

a vector of dimension 3n− 3.

Relative versus Absolute Alignment Estimation

It is part of the mythology of alignment estimation that it is more accurate to estimate the relative
alignments (because they are completely observable from inflight data alone) than the absolute align-
ments. Some reports4 even bolster this claim by presenting simulation results which demonstrate
(quite correctly) that the variances of the relative alignments are smaller than those of the absolute
misalignments. Unfortunately, when we come to estimate the attitude, it is the absolute alignments
which we require in order to transform data from the sensor frame to the body frame. Thus, if only
the relative alignments are estimated, some assumption must be made about the value of the absolute
alignment of one of the sensors. It has been the practice in these cases to set θθθ ∗1 (+) ≡ 000, which makes
sense only if there is strong reason to believe a priori that the mislignment of sensor 1 relative to
the spacecraft payload will be much smaller than the misalignments of the other sensors. This is
not always the case. In addition, works which estimate relative alignments only have also tended to
discard the prelaunch alignment calibration information. Thus, users of this naive approach make
two serious approximations.

Any difference in the accuracies claimed for those two methods can result only from the addi-
tional approximations made in the former. However, unrealistically higher accuracies are sometimes
claimed4 for the “relative alignments” because the correct statistics of θθθ ∗1 are not taken into account
in the covariance analysis. We will examine the actual effect of these approximations in a simple but
realistic model and compare the results of this naive approach with the more correct and statistically
consistent maximum likelihood estimates.

The inflight data can be represented by a single effective measurement, Z , of the form

Z = HΘΘΘ+ v , (13)

with
v ∼ N (000, R) . (14)

The prior-free estimate of the relative misalignments, for example, is just such an effective measure-
ment. Such an effective measurement can always be generated from

Z =
N
∑

k=1

HT
k P

−1
Zk

Zk , (15)

for which

R−1 =
N
∑

k=1

HT
k P

−1
Zk

Hk . (16)

Z is a sufficient statistic5 for the misalignments. Note that for this choice of the sufficient statistic
both H and R are singular. This need not always be true for every sufficient statistic (however,
HTR−1H must be singular since the full set of misalignments cannot be determined from the inflight
data alone). One achieves a non-singular R simply by eliminating the three redundant components
of Z.
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Equations (15) and (16) entail no approximation. In terms of this sufficient statistic, the correctly
computed maximum likelihood estimate of the misalignments will, therefore, have a posteriori co-
variance

PΘΘ(+) =
[

P−1ΘΘ(−) +HTR−1H
]−1

. (17)

The naive intuitive approach to relative misalignment estimation sets

θθθ ∗ naive1 (+) ≡ 000 , (18)

and estimates ΘΘΘ′ ≡ [θθθT2 , . . . , θθθ
T
n ]
T by minimizing

J rel ≡ 1

2

(

Z−H ′ΘΘΘ′
)T
R−1

(

Z−H ′ΘΘΘ′
)

, (19)

where
H ≡ [h1 |H ′ ] . (20)

Thus, this relative misalignment estimate is equivalent to the prior-free relative misalignment estimate
but wrongly interpreted as being the absolute misalignment vector. The naive estimate of ΘΘΘ′ is,
therefore,

ΘΘΘ′ ∗ naive =
(

H ′TR−1H ′
)−1

H ′TR−1Z , (21)

supplemented by Eq. (18).
From Eqs. (13), (18), and (21) it follows for the complete misalignment vector that

ΘΘΘ ∗ naive(+) = ΘΘΘ+Gθ1 θθθ1 +Gv v , (22)

where

Gθ1 =

[ −I3×3
(

H ′TR−1H ′
)−1 (

H ′TR−1h1
)

]

, (23)

Gv =

[

03×3
(

H ′TR−1H ′
)−1

H ′TR−1

]

. (24)

The naive relative alignment estimates are seen to be biased by terms linear in the true value of θθθ1,
which is not surprising.

The true covariance matrix of the naive relative alignment estimates is thus

P naive
ΘΘ = Gθ1 Pθ1θ1(−)G

T
θ1 +Gv R GTv , (25)

while the covariance which is incorrectly claimed by the practitioners of this naive method is

“P naive
Θ′Θ′ (+)” =

(

H ′TR−1H ′
)−1

. (26)

The quotation marks remind us that the covariance is based on incorrect statistical assumptions.
We can evaluate all three expressions in a common model. We assume for the sake of simplicity

that
R = σ2 I3n×3n , (27)

and

H = I3n×3n −
1

n
L3n×3n , (28)
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where

L3m×3n ≡









I I · · · I
I I · · · I
...

...
. . .

...
I I · · · I









, (29)

and L3m×3n has 3m rows and 3n columns. This is the simplest model for Z which is a function of
the relative alignments alone as required by Eq. (6). (Note that this Z has only (3n− 3) statistically
independent components, as required.) Using this model and taking the a priori inflight covariance
matrix to be given by

PΘΘ(−) = σ2o I3n×3n (30)

leads to

PΘΘ(+) =
(

σ−2 + σ−2o
)−1

(

I3n×3n −
1

n
L3n×3n

)

+ σ2o
1

n
L3n×3n , (31)

“P naive
ΘΘ (+)” =

[

03×3 0

0 σ2(I3(n−1)×3(n−1) + L3(n−1)×3(n−1))

]

, (32)

and

P naive
ΘΘ = “P naive

ΘΘ (+)” + σ2o L3n×3n . (33)

Equation (33) states that the true covariance for the naive relative alignment estimation procedure
is equal to the one claimed for that method based on its incorrect statistical assumptions plus a
correction term. Note that the correction term is linear in σ2o , which is large due to large launch-
shock errors.

We can compare the three covariances by computing the average variances in each case (defined
as 1/(3n) times the trace of the covariance matrix). The result for the true average variance of the
correctly computed maximum likelihood estimate (from Eq. (31)) is

〈σ2true〉 = (1/n)σ2o + (1− (1/n))
(

(σ−2 + σ−2o
)−1

. (34)

The average variance claimed by the naive relative alignment estimation based on its own false
statistical assumptions is

〈“σ2naive”〉 = 2 (1− (1/n))σ2 . (35)

Finally, the true typical variance for the naive relative estimates is

〈σ2naive〉 = σ2o + 2 (1− (1/n))σ2 . (36)

Since the a priori covariance is the largest contributor to each of these expressions, the naive relative
estimates clearly are the poorer result (by a factor n), although based on the incorrect statistical
assumptions on which the naive estimators are based, they would seem (without closer scrutiny) to
be the best.

Physically what is happening is that by setting θθθ ∗1 (+) ≡ 000 in the naive approach, the entire
prelaunch uncertainty is forced into that quantity, and each of the other misalignment vectors is
shifted in the opposite sense by the same amount. The more consistent maximum likelihood estimate,
which does not prejudice the estimation against one misalignment, spreads this uncertainty over all
the misalignments and effectively reduces their effect by a factor 1/

√
n. An eigenvalue analysis of the

two covariances (calculated with realistic statistics) show that both have (3n−3) of their eigenvalues
equal roughly to σ2, as we would expect intuitively, since (3n−3) misalignments should be determined
accurately by the inflight data no matter almost what crimes are committed in constructing the
estimators. For the consistent maximum likelihood approach the remaining three eigenvalues are σ2o ,
while for the naive approach they are approximately nσ2o , which is considerably larger.
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Alignment Estimation Accuracies for Narrow Fields of View

When the field of view of the sensor is small it becomes difficult to distinguish misalignments
about the sensor boresights from those about the other sensor axes. Common usage has been to
simply restrict allowable misalignments to the axes normal to the boresight. We will investigate the
necessity and wisdom of such a procedure within a simple but realistic model.

Suppose that the spacecraft is equipped with three vector sensors, each with a limited field of view
and with boresights nominally along the three spacecraft body axes. We will assume that each frame
contains measurements for all three sensors and that the distribution of these measurements about
each sensor boresight is axially symmetric with a root-mean-square angular radius of

√
2α (i.e., the

root-mean-square spread of each of the components of Ŵi,k about the boresight is α). Thus, we may
write the measurement equation as

Zk =





z23,k
z31,k
z12,k



 = HkΘΘΘ+∆Zk , (37)

where the reordering of the components and sign changes will serve to give the measurement vector
a cyclic symmetry and simplify later calculations. The sensitivity matrix, Hk, is given now by

Hk =









000T (Ŵo
2,k × Ŵo

3,k)
T −(Ŵo

2,k × Ŵo
3,k)

T

−(Ŵo
3,k × Ŵo

1,k)
T 000T (Ŵo

3,k × Ŵo
1,k)

T

(Ŵo
1,k × Ŵo

2,k)
T −(Ŵo

1,k × Ŵo
2,k)

T 000T









. (38)

We will assume that
∆Zk ∼ N (000, PZk) , (39)

with
PZk = σ2 I3×3 . (40)

Note from Eq. (38) that due to the narrow fields of view

Zk '







ê1 ··· (θθθ2 − θθθ3)
ê2 ··· (θθθ3 − θθθ1)
ê3 ··· (θθθ1 − θθθ2)





+∆Zk , (41)

so that only θ2x − θ3x , θ3y − θ1y , and θ1z − θ2z will be determined with high accuracy. Three
combinations of the misalignments will be determined not at all by the inflight data, and the remaining
three will be determined poorly. For general n (and not very undesirable geometry) we note that
Eq. (41) will have (2n − 3) statistically independent components. Thus, we expect that (2n − 3)
combinations will be determined well from the inflight data, n combinations relatively poorly, and
3 combinations not at all. The loss in alignment estimation accuracy might seem, therefore, to be
close to our naive expectations.

To appreciate the magnitudes involved let us compute the estimate error covariance matrix in
some detail. From Eq. (40) the Fisher information matrix for the inflight data is

P−1ΘΘ(inflight) =
N
∑

k=1

HT
k P

−1
Zk

Hk

= σ−2
N
∑

k=1

HT
k Hk , (42)

and for N very large,
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P−1ΘΘ(inflight) = N σ−2
〈

HT
k Hk

〉

, (43)

where 〈 ··· 〉 denotes an average over the orientation of the observation within the field of view. Eval-
uating this average leads to

P−1ΘΘ(inflight) = N σ−2×


























2β 0 0 −β 0 0 −β 0 0
0 1 + β 0 0 −β 0 0 −1 0
0 0 1 + β 0 0 −1 0 0 −β
−β 0 0 1 + β 0 0 −1 0 0
0 −β 0 0 2β 0 0 −β 0
0 0 −1 0 0 1 + β 0 0 −β
−β 0 0 −1 0 0 1 + β 0 0
0 −1 0 0 −β 0 0 1 + β 0
0 0 −β 0 0 −β 0 0 2β



























, (44)

with
β ≡ α2 . (45)

This matrix can be simplified by defining a new total misalignment vector, ΦΦΦ , by

ΦΦΦ ≡ [ Θ1, Θ4, Θ7, Θ5, Θ8, Θ2, Θ9, Θ3, Θ6, ]
T

≡ T ΘΘΘ . (46)

Since ΦΦΦ is simply a reordering of the components of ΘΘΘ, it follows that T is orthogonal. In terms of ΦΦΦ

P−1ΦΦ(inflight) = T P−1ΘΘ(inflight)T
T = N σ2





M O3×3 O3×3
O3×3 M O3×3
O3×3 O3×3 M



 , (47)

with

M =





2β −β −β
−β 1 + β −1
−β −1 1 + β



 . (48)

Thus, the eigenvalues of P−1ΦΦ(inflight) (and, therefore, of P−1ΘΘ(inflight)) each have a three-fold de-
generacy. The eigenvalues ofM are simply

λ1 = 0 , λ2 = 3β , λ3 = 2 + β . (49)

The vanishing of one of the eigenvalues ofM is required by our earlier discussion.
If we assume as before that the a priori covariance matrix for the misalignments to be

P−1ΘΘ(−) = σ2o I9×9 , (50)

then the three eigenvalues of P−1ΘΘ(+) are

σ21 = σ2o , (51a)

σ22 =

(

1

σ2o
+

3Nα2

σ2

)−1

, (51b)

σ23 =

(

1

σ2o
+
N(2 + α2)

σ2

)−1

. (51c)
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Choosing values

σo = 1. arc min , σ = 10. arc sec , α = 5. deg , N = 100 , (52)

the three standard deviations become roughly

σ1 = 1. arc min , σ2 = 13. arc sec , σ3 = 0.7 arc sec . (53)

The restricted field of view is seen to be not a serious impediment to estimating alignments accu-
rately although the differences in alignment accuracies are substantial. The most serious deficiency,
of course, is the complete lack of observability from inflight data of three combinations of the mis-
alignments.

Note, however, that the three misalignment vectors which are poorly determined inflight, i.e., the
three eigenvectors of P−1ΘΘ(inflight) with eigenvalue 3β, are given by

1√
6



























2
0
0
−1
0
0
−1
0
0



























,
1√
6



























0
−1
0
0
2
0
0
−1
0



























,
1√
6



























0
0
−1
0
0
−1
0
0
2



























.

These are not the three boresight vectors. The loss in alignment estimation accuracy due to restricted
fields of view is, therefore, somewhat different from not being able to estimate well the alignments
about the n sensor boresights.

Influence of Misalignment Accuracy on Attitude Accuracy

The error in the misalignment estimates necessarily translates into attitude error. To determine
the degree to which this occurs we suppose that attitude will be determined using the QUEST
algorithm1. Thus, we assume that the attitude algorithm will only use the estimates of the final
inflight alignment calibration to correct the assumed alignments but not try to work the detailed
covariance matrix of the inflight alignment estimates into the attitude estimator (except perhaps for
adjusting the values of the variances which are intrinsic to the QUEST algorithm). This is probably
a reasonable, if suboptimal, approach.

Let ∆θθθi , as usual, denote the misalignment vector estimate error for sensor i, and let ξξξ θk be the
additional attitude error arising from the misalignment errors. In the absence of misalignment errors,
the optimal QUEST attitude matrix, A∗k , minimizes1

Jk ≡
1

2

n
∑

i=1

1

σ2i,k
|Ŵi,k −Ak V̂i,k|2 . (54)

In the presence of alignment errors, the correction, ξξξ θk , to the QUEST attitude (without correcting
the weights for these alignment errors) minimizes

J ′k ≡
1

2

n
∑

i=1

1

σ2i,k

∣

∣

∣ e[[ ∆θθθi ]]Ŵi,k − e[[ξ
ξξ θk ]]A∗k V̂i,k

∣

∣

∣

2
, (55)

=
1

2

n
∑

i=1

1

σ2i,k

∣

∣

∣Ŵi,k − e[[ξ
ξξ θk−∆θθθi ]]A∗k V̂i,k

∣

∣

∣

2
, (56)

=
1

2

n
∑

i=1

1

σ2i,k

∣

∣

∣Ŵi,k −A∗k V̂i,k + [[A∗k V̂i,k ]] (ξξξ
θ
k −∆θθθi)

∣

∣

∣

2
, (57)
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and the equalities are true to O(|ξξξ θk |+ |∆θθθi|). Minimizing J ′k over ξξξ θk leads to

ξξξ θ ∗k = F−1k

(

n
∑

i−1
Fi,k∆θθθi +

n
∑

i=1

1

σ2i,k
[[A∗k V̂i,k ]]Ŵi,k

)

, (58)

where

Fi,k =
1

σ2i,k

[

I3×3 −
(

A∗k V̂i,k

)(

A∗k V̂i,k

)T
]

, (59)

which is the Fisher information matrix5 for the attitude associated with the single measurement
Ŵi,k, and

Fk =
n
∑

i=1

Fi,k , (60)

which is the Fisher information matrix for the attitude arising from all the measurements at time tk.

By definition, ξξξ θk must vanish when the ∆θθθi all vanish. Therefore, the second term in Eq. (58)
must vanish to first order, leading finally to

ξξξθ ∗k = F−1k

n
∑

i−1
Fi,k∆θθθi . (61)

The misalignment errors, thus, lead to a random bias in the attitude. The attitude errors arising from
the random sensor noise have covariance F−1k . Thus, the total covariance of the QUEST attitude
solutions taking account of both sensor noise and misalignment estimate errors is

Pξkξk′ = δkk′ F
−1
k + F−1k





n
∑

i,j

Fi,k P
ij
θθ (+)Fj,k′



F−1k′ , (62)

where P ij
θθ (+) is the appropriate submatrix of the misalignement estimate error covariance matrix as

given by Eq. (11). Note that the attitudes are now autocorrelated due to the misalignment error.
How large are the two contributions to Eq. (62)? Consider the model of the last section, which

assumed that the measurements are always close to the spacecraft body axes. Let us further assume
that N , the number of frames of attitude data, is sufficiently large that the only important alignment
errors come from the components of the misalignments that are unobservable from inflight data.
Then

P ij
θθ =

1

3
σ2o I3×3 , (63)

and

F−1k =
1

2
σ2 I3×3 . (64)

Hence,

Pξkξk′ =

(

1

2
σ2 δkk′ +

1

3
σ2o

)

I3×3 . (65)

For the values assumed in the previous example the random sensor measurements contribute 7.
arc sec/axis to the attitude error, while the unobservable (i.e., from inflight data) misalignments
contribute 34. arc sec/axis. Thus, the unobservable misalignments can be the largest contributor to
the attitude errors.



522

Discussion and Conclusions

We have demonstrated a number of qualitative results on spacecraft sensor alignment estimation
which do not seem to be generally known. For a system of n vector sensors three linear combi-
nations of the misalignments are unobservable, and for sensors with narrow fields of view 2n − 3
misalignments will be estimated well and the remaining n somewhat less well. These n misalign-
ments, however, do not correspond exactly to the misalignments about the sensor boresights. Given
sufficient data, however, it is only the three unobservable combinations of the misalignments which
limit the accuracy of the inflight alignment estimation procedure. Since these three combinations are
just the average of the misalignment vectors, they corrupt all other misalignments equally. Thus,
if σo is the standard deviation of the post-launch alignments (i.e., corrupted by launch shock), the
effect of the inflight calibration is to reduce this standard deviation to σo/

√
n. This is reflected in

the examples. Additional accuracy is in general not possible unless the output of the payload also
provides equivalent attitude information or it is known that the misalignment of one sensor from the
payload is truly negligible. In many cases this is not the case.
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