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An efficient Kalman filter for spacecraft attitude has been developed for
the Star Tracker mission which makes special use of the presence of a CCD
star camera. This device is capable in its current configuration of measuring
the directions of five stars simultaneously. For such a device the prior-free
maximum-likelihood estimate of the attitude based on these simultane-
ous measurements provides a sufficient statistic which greatly reduces the
computational burden of the filter. On the basis of the outputs of this
sensor alone, the on-board attitude determination system will determine
both three-axis attitude and angular velocity using a dynamical model in
which the spacecraft torque is modeled as a Gaussian white noise. Initial
simulations of the attitude determination system performance show good
performance of the filter.

INTRODUCTION

The Star Tracker experiment will demonstrate near real-time, autonomous satellite attitude de-
termination, accurate to one arc second, using a state-of-the-art charge-coupled-device (CCD) star
camera. The experiment, sponsored by the U.S. Army Engineer Topographic Laboratories, will fly
on a NASA spacecraft which will be launched for a forty hour mission from the space shuttle and
later retrieved for return to Earth. The new camera and accompanying attitude software represent
a significant step toward spacecraft autonomy. Extensive simulation software and hardware have
been developed for testing the experiment in different configurations during the project!.

Because the Star Tracker spacecraft carries only a single precise attitude sensor, the CCD star
camera, from which both attitude and angular velocity must be determined, it is evident that a
Kalman filter? must be implemented. However, because the star camera furnishes simultaneous
sightings of as many as five different stars in its 7.2 deg by 9. deg field of view, it is also possible to
determine three-axis attitude at any sample time without the filter. Thus, it seemed advantageous
to design a Kalman filter which would take as its input the attitude computed from one frame
of data. The single-frame attitude thus becomes a sufficient statistic for the attitude and angular
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velocity which is used by the Kalman filter as an effective measurement. This approach has several
advantages. Firstly, very efficient algorithms exist for computing this single-frame attitude®; and,
secondly, the fact that attitude can be reliably calculated outside the filter provides a check on the
filter performance. In simulations the filter has performed very well.

We begin this report by presenting the state model and the prediction algorithms of the filter.
Since the spacecraft dynamics are not presented explicitly, the spacecraft torque is modeled simply as
a Gaussian white noise process. The results here are straightforward and follow closely the methods
developed in Ref. 2. Next we develop an effective measurement model based on the outputs of the
QUEST attitude determination algorithm3. Since the QUEST algorithm is a maximum likelihood
estimator and the Kalman filter is simply a sequential mechanization of the maximum likelihood
estimate when the measurement and process noise are Gaussian, it follows that using the QUEST
algorithm as a front end to the filter entails no approximation. A second innovation of the present
work is the manner in which the filter is initialized. Generally, when there is no a priori information,
the Kalman filter is initialized by using a very large initial covariance and any convenient initial
condition, it being hoped that the filter will eventually converge to the statistically correct behavior.
This brutal treatment is usually unnecessary since it is easy enough to determine a batch maximum
likelihood estimate and estimate error covariance from the first two frames of data. Thus, the filter
begins with the correct statistical parameters and can provide useful results immediately. The steps
needed for the initialization of the filter are described in detail.

A number of simulations have been carried out to demonstrate the filter performance.

DYNAMICAL MODEL AND THE FILTER PREDICTION
The State Equation and State Prediction

The dynamical model for the Star Tracker attitude determination system is simply

240 = 5 ) i) 1)

d
St =n) . (2)

Here §(t) is the attitude quaternion and w(t) is the body-referenced angular velocity. Q(w) is given
by

0 w3 —W9 (1)1
_|~ws O wp W
=% L 0wl (3)

~wy —wy —wsg 0

and n(t) is white Gaussian noise with power spectral density Q(t). The spacecraft state vector is
simply

_ [
x(t) = [w(t) . €))
Following Ref. 2 the attitude error state is defined by*
sx(t) = 2:((?)] )
where 1 AB(2)/2
i = \/1+|M(t)|2/4[ Viera | ©)

*Note that we use asterisks to denote estimates and carets to denote unit vectors. Often, for example, when the
subscript is kjk or kjk—1, the asterisk will be left off when no confusion can occur.
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w(t) =w"(t) + Mw(t) (7

and the predicted state vector, x*(t), satisfies

LT =5 )T ®)

di’t-u'(t) =0 9)

The operation indicated in equation (6) is quaternion composition. Note that §x(t) is six-dimensional
while x(t) is seven-dimensional.

The state-error vector satisfies

d

< 88(t) = [[w"(1)]] A8() + Aw(t) (10)
d
3 Aw(t) =n(t) (11)
where
0 U3 —v9
(vii= [—va 0 v ] : (12)
Vo -v1 0

On the basis of these equations, the state prediction equations become in standard Kalman filter
notation

Qele—1 = M1 Qe-aje—1 (13)
Welk—1 = We-1]k-1 > (14)
where
Mi_y = cos(Pr—1/2) Iaxa + sin(dr—1/2) U De-1) , (15)
with the angle of rotation given by
Br~1 = Wiy [(Be — te-1) (16)
and the axis of rotation by
Aoy Swi_ ot /Wi e-t] - (17)

Note that the estimated angular velocity is constant between filter updates as a result of the state
equation and not a further approximation.

Covariance Prediction

The state error covariance matrix is defined as
P(t) = E{6x(t) 6x"(t)} |, (18)
and the covariance prediction equation takes on the usual form
Piky = ey Pecqppo1 BT + Qer (19)
To construct the state-error transition matrix we note that the state error vector satisfies
%(éx(t)) = F(t) 6x(t) + G(t)n(t) , (20)
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where the state-error sensitivity matrices are

F(t)z[[[w‘(t)]] sta] , (21)

O3x3  Oaxs

and
G(t) = [03*3] . (22)
13x3
Then the state-error transition matrix satisfies
%<I>(t, tY=F@)®(, t") (23)
with
¢(t’, t’) = lexe - (24)
From Ref. 2 it follows that
-1 Yi-
Cr_y = B(Ly, te—1) = [%k ! Ik 1] , (25)
3x3 3x3
with
Op—1 = A(te) AT (te1) (26)
tx
Ve, = / A(t) AT(t’) a’ (27)
thay

and A(t) is the attitude matrix. Since w*(t) is constant over the interval (tx_1, t}), it follows that

O—1 = Iaxz +sin(@r—1) [[Be—1]] + (1 = cos(pe~1)) [Be—1 ]}* , (28)
and
W1 = akog faxa + bk—1 (B ]| + cor (Bt ], (29)
with
gy =t —tp-1 (30a)
by = L:%S;M(tk - tk-—l) , (30b)
k-1
Cka1 = (1 - im—‘if—fl-—ll) (te —te-1) . (30b)
The process noise covariance is given by
Qry = /“ ®(te, t') G(t') Q(2) GT(tl) <I>T(tk, t')dt' (31)
_ ™ [Lea() QW) LT (t) Lea(t) Q)T
-/ vy vy o #2)

142



where
Li—y = ax1(t) Isxa + be—1 () [[Be=1 )] + cemr (8) [[Be=a ]2, (33)

with ag_1(2), be—1(t), and cx—1(¢) defined analogously to ax_1, br—1, and ce—1 but with ¢ — ¢,
replaced by t; — t. (Note that this change must be made in ¢;_, as well.)

THE MEASUREMENT MODEL AND THE FILTER UPDATE

The vector measurement model we consider is that of the QUEST model?, which is

Wi =4, Vie + AW, (34)
where A; is the attitude matrix at time ¢, W.-'g is the observed star direction, V.-,,, is the refer-
ence star direction, and AW ; is the measurement noise, assumed to be Gaussian and white with
covariance matrix, Ry, ,, given by

Ry, =%%,, [I - (Akvi.k)(Akvi.k)T] : (35)

Here, k is the temporal index while i labels the sensor. The model of equations (34) and (35) has
received frequent use.

An efficient algorithm, namely QUEST?, exists for computing the maximum-likelihood estimate
(MLE) of the attitude given the set of measurements {W; ,i = 1, ..., ng}. QUEST furnishes an
MLE quaternion, p; and an estimate error covariance (defined in terms of A8, as above), which we
may write as

=00 ®@q , (36)

with 1 /2
e [] s
Vi+ivelP/a L1 (37)

Assuming that the individual star measurements are uncorrelated, v; is a discrete white Gaussian
process with covariance matrix R; given by the QUEST algorithm as

Rp' = 2 ;i—k [1 = AV (asVin)™] (38)
During the update step we define the state error 6§ according to
Gk = 63k ® Qepe—1 - (39)
If we define the derived measurement as

B =25 © (@ee-1)”" (40)

then the vector components of this quantity satisfy simply

Zy = AO + v, (41)
= Hpbxp +vi (42)

where
Hy = (Iaxs Osxs3] (43)
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and

_ 1 Af /2
6""‘,/—1+TM,,|2/‘4[ 1 ] ’ “

which may now be implemented directly into the update step of the Kalman filter.

The Kalman filter update equations? are

By = Hy Popey HT + Re (45)

= (Pog)kjk-1 + Ri (46)

Ke = Pyp HY BFY (47)
v =Zp — Hp 6Xepe—y

=z (48)

6x,,|,, = 6x,,|,,_1 + Kkllk

= Kk Zg y (49)

Py = (I = KeHg) Py (50)

= (I = KiHe) Pojpey (I — Ke He)T + Ki Ry Kf . (51)

Here, v; is the innovation, B is the innovation covariance, and K} is the Kalman gain matrix.
The matrix Py is the submatrix of the state-error covariance matrix between angle components.
Ry is given by equation (38). Note that by definition the @ priori state increment in equation (49)
vanishes because it is measured from the predicted estimate. Once §xg; is computed g and wy,
are computed using

Jele = 6Qk)e ® Tepe-1 (52)

and
Weik TWik-1 + Mg . (53)

INITIALIZATION

In general, no a priort initialization scheme is available for the filter since we do not know the
statistical parameters of the distribution from which the initial condition is sampled. Thus, the
initialization of the filter must be prior-free. Common practice in these cases has been to select
an arbitrary initial condition with monstrously large initial covariance. This brutal methodology
is dangerous and can result in poor convergence and large numerical errors if the system is poorly
conditioned. Poor convergence properties would be particularly problematic in the Star Tracker
mission, in which the attitude system will be reinitialized frequently. We wish to avoid the imple-
mentation of a square-root information filter, which would be a reliable, if more costly, alternative
to the covariance filter presented here. Qur approach instead is to compute the correct covariance
given the filter model.

The QUEST algorithm provides complete attitudes at every time. Thus, it is sufficient to know
these estimates at times ¢; and ¢, to estimate x; and x3 unambiguously. Let us represent the two
QUEST attitudes by the attitude matrices, C} and C3, rather than by the quaternion, p} and p3.
This will simplify the derivation because we are more accustomed to matrix multiplication than
quaternion composition. Then,

Ccp =elvilyg, | (54)
C; =ellvall 4, | (55)
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where the v; are the same as defined earlier. These measurements have realizations C}’ and C3’,
the specific values given by QUEST*. The dynamical equations provide uncertain constraints on A,,
As, wy, and w2, namely

Ay = el a0 gllw (ta=t0)J 4 (56)
Wy =w + Awy (57)

and Ad
[ A..f,] ~NOQ1) . (58)

(Note that the calculation of Q; requires that we know w,j;, which must itself come from the
initialization. This turns out not to be a problem since the calculation of w); (actually of the
smoothed estimate w,,) in the initialization step can be carried out before that of Q,.)

If we solve equations (56) and (57) for A; and w; and substitute these in equations (54) and (55),
we will obtain two very non-linear stochastic equations for A and wy, namely,

Cr = ellvill ~llwr-sun 18t (801 4, (59)
Cs =ellvall 4, (60)
Where we have written At for t3 — t,. Substituting equation (60) into equation (59) yields

C: C;T = ellvill g~[lwa—twn JlAt ~[[20:]] ,—[[va]] , (61)

which depends only on w3, while equation (60) depends only on A;. We now define 8, which has
units of angular velocity, by

cy C;'T = (llBllat , (62)

If we reparameterize the state now in terms of Ap, and A7, defined by
Ay = elleelicy (63)
wy=f+An (64)

then we obtain in terms of new measurement matrices, Z, and Z, ,

Z =G CyT

= ellvall Jllagal) (65)
Z,=GC'Cy'Ter T
= (llBNAt (1)) ~((B+Ars~tun ]lat ~[[a0:)) ~[[va]] (66)

Note that we have defined Z, and Z; so that each has realization (Z] and Z}) Isxs.

We wish to linearize these two effective measurements by combining the exponents, taking the
matrix logarithms, and extracting the arguments of the antisymmetric matrices. This operation
cannot take place yet because B is not infinitesimal. However, it is true that

(llBNAL Jivi]] -[BNAL _ JMTova]l (67)

where

Ts = ellsliat (68)

*In the remainder of this report, primed quantities will indicate realizations and unprimed quantities the random
variables.
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which follows immediately from the transformation properties of orthogonal matrices, and

ellp+ara—ow ot _ llapllae (iplJae (69)
where
AB = DY(BAL) (AT, — Awy) (70)
2 — BAt cot ((BAL)/2)

[(BAL]? (T1)

DPALt) = I - %[[ﬂAt]] + 3 (GAL)?

and 8 is the magnitude of 8. (This formula is derived in the Appendix.) Using these expressions
in equation (66), all of the exponents become infinitesimal with the equivalent vectorial linearized
result

G=8pp vy, (72)
(y= —D-l(ﬂAt) (AT — M)At + T vy — vy — AO, . (73)

Since (, and {, have realization 0, it follows immediately that the maxirnum likelihood estimates of
Ay, and A7, vanish. Hence, the initialization of the state vector in the Kalman filter at ¢, is

A2|2 =C; (74)
wo2 =8 (75)

The covariance of these estimates is Py2, which is readily calculated as the covariance of

~ . _ V2
O%g)z = 0Xz = 0xgp = [—Aul — (At)~! D(BAL) (Tj vy — va — Ml)] (76)

using equations (38) and (58). Smoothed values of the state variables, Ay, and w2, can be obtained
by predicting the estimates at t; backwards in time. However, it is easily seen in the present case
that
A1|2 = Cl. ) (77)
wyy =wy = . (78)
Strickly speaking, the computation of Q) requires that we know w,|;. However, the estimate wy),,

will be a sufficiently close approximation for calculating Q,.

As an approximation we note that neglecting the terms in the initial covariance in Q;, which
should be smaller than those in R; and R if any benefit is to be derived from the Kalman filter,
and the change in the attitude from t; to t3, the updated covariance at t3 becomes approximately

~| R (1/At) R
Pz'z—[(llAtz)Rz (1/(At)’~')(RliR,)] ! (79)

whose implementation in much simpler.

SIMULATION RESULTS

The filter has been tested using a dynamical model in which the attitude is given by the Gibbs
vector®

g(t) = ga(t) o ga(t) (80)
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Fig. 1 Star Tracker Pointing Errors

The solid line gives the filter result. The dashed line is the single-frame
estimate using QUEST. The angles are given in arc sec.

where “o” denotes Gibbs-vector composition and
g1(t) = % tan(w,t/2) (81)

with w, = .001sec™! is just one rotation per orbit motion of the spacecraft and

ga(t) = x tan(a, sin A\1t) + y tan(a; cos Aqt) + Z tan(azsin Aat) (82)

with
ay=2.deg , a;=1l.deg , az=3.deg |, (83a)
A = .02sec™! , Ay =.025sec™! ,and A3=.0l5sec”! |, (83b)

an arbitrary high-frequency component of the attitude motion which is roughly at the limits of
angular velocity and acceleration expected for the normal operation of the Star Tracker mission.
We assume conservatively that the star tracker has an accuracy of 10 arc sec per axis and that the
instrument is sampled at one-second intervals for 40 seconds. The model power spectral density was
chosen to be a multiple of the identity matrix with the constant of proportionality adjusted so that

trace QAt = trace (&d(i)&dT(t)) , (84)
where < - > denotes a time average and

d(t) Sw(t + At) —w(t) ~ 2%2(L)At . (85)

Figures 1 and 2 show plots of the attitude estimate errors as a function of time. The pointing
error is defined as the angle (defined to be positive) between the true and the estimated bore-sight
directions. The roll error is the magnitude of the error in the angle of rotation about the bore sight.
In these curves the solid line gives the filter result and the dashed line gives the single-frame result
from QUEST. Figure 3 shows the estimate errors for the three components of the angular velocity.
There is a large improvement in the roll error using the filter since the process noise covariance is
small compared with that of the single frame roll errors. The improvement in the pointing error
is less noticeable because the process noise covariance is large compared with that of the pointing
error.
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Fig. 2 Star Tracker Roll Errors

The solid line gives the filter result. The dashed line is the single-frame
estimate using QUEST. The angles are given in arc sec.

We have also compared the three initialization methods. These are: (i) the statistically cor-
rect initialization scheme of Equations (74)—(76); (ii) the statistically and dynamically approximate
scheme of Equations (74), (75), and (79); and (iii) the more common approximate scheme in which

Pyyg is set to
2
Ts0 I3x3 Oax3
PIIO = [ 2 ] ’ (86)
Oaxa 020 Iaxa

where 099 and o, are large numbers. Here we have chosen 049 ~ 1000. deg, and &,0 =~ 1000.
deg/sec. Beyond the first frame of data the three methods turn out to be indistinguishable.

time/sec

Fig. 3 Angular Velocity Estimate Errors

The solid line gives the x-component, the dashed line the y-component,
and the dotted line the z-component. The rates are given in arc sec/sec.
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DISCUSSION AND CONCLUSIONS

An efficient Kalman filter has been developed for a spacecraft for which attitude information
is supplied solely by a true star camera, i.e., capable of sighting many stars simultaneously. The
Kalman filter uses the QUEST algorithm to compute a sufficient statistic which provides a means of
data compression within the filter. In addition, an algorithm is developed for initializing the filter
at the correct prior-free estimate and covariance, rather than relying on brute-force initialization
strategies and hoping that the filter will converge quickly enough. In the present example, however,
it turns out that the brute-force initialization strategy works very well. A great advantage of the
present method is that the sufficient statistic, being an attitude, can be compared with the filtered
attitude as a check on consistency. This methodology, then, provides a safety net for mission analysts
who have learned to be wary of Kalman filters in attitude applications.

The lack of an accurate dynamic model or attitude-rate sensors poses important restrictions on
the utility of the filter. If the uncertainty in the attitude due to the unmodeled dynamics is greater
than (QAt)/2, and in this case the unmodeled dynamics is the entire dynamics of the system, then
the Kalman filter will simply provide an attitude estimate which is close in accuracy to the single
frame result. Thus, the filter proposed here will have limited usefulness in situations where the
spacecraft is very agile. It is expected for the Star Tracker mission, however, that this limitation
will not be significant during normal operation.

The idea of using a least-squares estimator as a preprocessor for a Kalman filter is not new
and originated in earlier research on autonomous attitude determination systems®, which, in fact,
considered also the use of CCD star trackers. An implementation for a gravity-gradient stabilized
spacecraft of a two-step filter with a QUEST preprocessor and a dynamical model for attitude
prediction has been considered by Varotto’, whose treatment is similar in spirit to the present
work but very different in execution. It may be noted that the use of sufficient statistics as data
compressors for Kalman filters, of which the present work is an example, is not new. Extensive
references may be found in Ref. 8.

APPENDIX — ROTATION VECTOR ALGEBRA

The rotation vector is defined as

f=60n |, (A1)

where 6 is the angle of rotation and A is the axis of rotation. The rotation vector is related to the
attitude matrix by

A@0) = exp{[[0]]} , (A2)

where exp denotes matrix exponentiation and is defined by the Taylor series for the exponential
function. Evaluating the Taylor series leads to the usual expression

4O = T+ 2010y + L2 g (A3)

where 6 = |8]. The inverse relation is most easily obtained by solving for ¢ using
traced =14 2cosf (A4)

and

00 = (555) (A= 47) . (A9)

The kinematic equation for the rotation vector is

d
Eﬂ(t) = D(@)w(t) |, (A6)
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where
DO) = Inxs — 5 [10] + 222D o2 (A7)

Thus, if A# is the rotation vector for an infinitesimal rotation, we may define an addition operation
for the rotation vector when the second vector is infinitesimal, which is

00 AI=0+DO)AI . (A8)

The operation & is not commutative. In a similar fashion we may define the difference of two
rotation vectors #; and 8; when the difference is infinitesimal by insisting that

0,=0,0 0200,) , (A9)

which leads to
0:00, = D"'(0,)0, - 0,) . (A10)

As an example we may consider
0, = BAt , 0, = (ﬂ+ ATz—ANl)At , (All)

which leads to equation (70) above.
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