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Maximum Likelihood Estimation of
Spacecraft Attitude

Malcolm D. Shuster!

Abstract

The Wahba problem, which has been the starting point for a number of attitude estimation
algorithms, most notably QUEST, is shown for an appropriate choice of weights and measure-
ment model to be equivalent to a maximum likelihood estimation problem for the attitude. The
measurement model for which this is arue tumns out to be the same as was used in earlier covari-
ance analyses of the QUEST algorithm. The QUEST covariance matrix now emerges in a natural
way as the inverse of the Fisher information matrix for the maximum likelihood estimator. The
3 X 3 autitude profile matrix of the QUEST algorithm is shown to be a useful representation for
both the attitude and the attitude covariance.

Introduction

A topic of continuing interest has been the computation of the least-squares attitude
matrix, A*, which minimizes the cost function

l . A A
L(A) = £l > a,|W, — AV, (1
k=|
where VAVk, k=1,...,n, is a set of unit vector observations in the spacecraft-fixed
reference frame, and V,, k = 1, ..., n, are the representations of the same unit vectors

with respect to the primary reference frame (the frame to which the attitude is referred).
The a, are a set of positive weights. Provided that at least two of the observation vec-
tors are not parallel (nor anti-paraliel) 2 unique minimizing attitude matrix will always
exist. This cost function was first proposed by G. Wahba [1] in 1965.

Since that time more than a dozen solutions have been offered for this problem.
Reviews of this work have appeared in Shuster [2] and Markley (3]). The most effi-
cient implementation to date is that of Shuster and Oh {4], which has been used in the
support of several NASA spacecraft.
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While complete covariance analyses have been carried out for this algorithm [3,4]
based on assumed error models for the spacecraft sensors, no attempt has been made
to regard the Wahba problem as anvthing more than a naive weighted-least-squares
probiem. It tumns out, in fact, for a particular choice of the a,, namely, the choice
suggested by weighted-least-squares arguments, that the Wahba attitude may be
shown to be the maximum-likelihood estimate of the attitude given the same mea-
surement model as has been used in covariance analyses of the algorithm.

The next section of this report presents the error model for unit-vector measure-
ments which was used in earlier covariance analyses of the Wahba probiem as weli as
other studies. Following this, it is shown that the Wahba attitude is indeed the maxi-
mum likelihood estimate of the attitude given this measurement model. The QUEST
batch algorithm for computing the Wahba attitude, which forms the computationai
background of the present study, is then reviewed and the connection of the QUEST
covariance matrix to the Fisher information matrix of maximum likelihood estimation
is demonstrated.

The Measurement Model

Line-of-sight measurement sensors most often measure the direction of a celestial
body by measuring the angle of that body from the sensor boresight in two mutually
orthogonal planes. Thus, if we choose the z-axis of the sensor coordinate system to be
directed outward along the boresight, then the measured quantities are effectively

!ana=‘Av..x, tan =!'—y, 2
W-12 W-4%

and the reconstructed unit vector in sensor coordinates is

tan «

tan 8 |. 3
1

Fixed-head star trackers and vector sun sensors work in this way.

We could, if we wished, base our maximum likelihood estimation scheme upon the
measurements described in equation (2). This would certainly be the most rigorous
approach. However, it does not lead directly to the most efficient estimator. Instead
we take the point of view that W, in body coordinates is the measurement provided by
sensor k and take the unit-vector measurement to have a probability density given by

1

W =
V1 + tan‘a + tan‘B

A l A A
P, (Wi A) = N, cxp{—io—glwi - AV.I’}, 4)
k
which is defined over the unit sphere,

Wil =1. (S)

W{ is the realization of the random variable W,, which also satisfies equation (5). {’k
is not the realization of a random variable in the present formulation and. hence. need

not be distinguished by a prime. N, is chosen so that the total probability wiii be
unity. Thus,
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2w ” l
Nit = f f cxp{—-—z(l — cos 0)} sin 6d0dd , (6)
o Yo Ty
which leads to
. = [27003(1 - e'y"i)]". N

The exponential term in equation (7) is negligible. For o, even 1 degree, e ¥ =
3.9 x 107382,

The above distribution makes sense intuitively. Since nearly all the probability is
concentrated on a very small area about the direction AV,, we may approximate the
sphere near that point by a tangent plane given by

w,, = AO* + Aw,,. Aw,, ¢ Ao,, =0. (8)
The sensor error AW, is approximately Gaussian and satisfies
E{AW, AW]} = o/ - aV)@V)'], (10)

where the superscript T denotes the matrix transpose. This approximate but very accu-
rate model for the mean and covariance matrix of the sensor error was the basis for
the covariance analyses of the QUEST and TRIAD aigorithms in [4].

Markley {3] has shown for any probability density for W, (defined on the unit
sphere) which is axially symmetric about AV, that

E{Awk} = _piTkAok ) (1)
E{AW, AW]} = plll ~ (3 - 2r,) (aV,) 4V, (12)
where
1 A o
Pi = ;E{Iwk X AV, (13a)
T = le{l - W, AV}, (13b)
P
For the particular probability density of equation (4), the respective values are
pi = of = of + O(e7¥), (142)
7= + O(e > . (14b)

1 - a?

For error leveis of 1 degree (=.017 rad), o = 3 X 107*, so that from a practical
standpoint, the probability density on the sphere is indistinguishabie from the corre-
sponding density on the tangent plane. Both models, in fact, differ less from each
other than does each from a more realistic parameterization of the measurement
probability based on equation (2), though, of course, it is always possible to find a
probability density function for tan a and tan 8 which is identically equivalent to the
density given by equation (4).
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The Maximum Likelihood Estimator

Given the measurement model described by equation (4), the maximum likelihood
estimation of the attitude is straightforward. If Z;, k = i,...,n, is a sequence of
measurements and p,,  , (Z},...,Z,;X) is the joint probability distribution of the
measurements as a function of a parameter vector x, then the maximum likelihood es-
timate [5, 6] of x is given by

xq = argmaxp, . ,(Z;,...,Z,;X), (15)

that is, the value of x at which p, . (Z],...,Z,;x) achieves its maximum.’ The
maximum likelihood estimate, x};;, is a function of the values of the measurements,
Z,,...,Z,. We reserve the notation x,; without the prime for the maximum likeli-
hood estimator. a random variable, which depends on the measurement random vari-
ables, Z,,...,Z,, in the same way as the maximum likelihood estimate depends on
the values (realizations) of the measurements.

For the model given by equation (4)

o -IWi=AY: |1/2=ri, (16)
=1 2WO LS

where
fis -t an

is the “truncation defect” representing the additional normalization due to the finite
area of the unit sphere.
Defining now

J(x) = -logp,, . . (Z)....Z;X), (18)
the negative-log-likelihood function, it follows that

N l A A

Jay =73 {E;M; - AV, + log o} + log 27 + log f.} (19)
k= I 4

will be a minimuim at the maximum likelihood estimate of the attitude. If the

identification

ay = — 20)

is now made, and it is noted that only the first term in the brace (the data-dependent
part of the negative-log-likelihood function) above depends on the attitude, then the
negative-log-likelihood function for this measurement model is equivalent to the cost
function of Wahba. Thus, the Wahba attitude is the maximum likelihood estimate of
the attitude corresponding to the measurement error model give by equation (4). As a
consequence of this, the covariance matrix of the Wahba attitude should be calculable
directly from the Fisher information matrix {5, 6]. This, as we shall see, is true.

Note that an asterisk is used to designate the estimate or estimator so as not to be confused with. ths caret
used to designate a unit vector.



Maximum Likelihood Estimation ot Spacecraft Attitude 83

The same negative-log-likelihood function, apart from the negligible term log f;, is
obtained also from the “planar” probability distribution described by equations (9)-
(11). This, in fact., was the distribution used by the author in earlier derivations {7] of
the Wahba problem as a maximum likelihood problem.

The Quest Algorithm®

To solve equation (1) for the optimal attitude, we note with Davenport [8] that the
Wahba cost function, which we have seen is the same as the data-dependent part of
the negative-log-likelihood function, can be rewritten as

L(A) = A2, - g(4), @n
where,
G|
A =X =, gA) = wABD), (22)
k=1 T
and
i 1 A A
B=3 W,V (23)
ret T

Here tr() denotes the trace of a matrix. Thus, B, the attitude profile matrix‘. contains
all the information on the attitude deriving from the measurements.

The function g(A) is the “gain” function, which is a maximum when L(A) is a mini-
mum. The gain function is more easily expressed in terms of the quaternion q,

q = (91,9295, qa]T = [q] , 249
s
which satisfies
A(q) = (q5 — q- q) + 2qq + 24.[q], (25)
where
0 ¢ —q
ldi=|-g 0 a |. (26)
@& —q 0

The double-bracket notation, [q], denotes the antisymmetric matrix of equation (26) as
a function of its components. Defining the quantities

S=8+8T, s=1t8, [z} = B - B, 2N

*The presentation here closely follows [4] (which included a modification of Davenport's derivation) ex-
cept that the weights have not been normalized to have unit sum.

‘Note that B in equation (23) is defined as a random variable since that equation is meaningful in terms of
cither W, or W,. In general. when an expression is defined in terms of the (unprimed) random variables.
it holds aiso for the realizations. When the equation is defined only for the realizations. the primes will be
written explicitly.
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the gain function may be rewritten in terms of the quaternion

8(9) = g(A(7)) = 7Kg, (28)

S—sl Z
K=[ 2z s]. (29)

where

The maximization of this gain function, subject to the constraint that the quaternion
have unit norm, leads to an eigenvalue equation for the optimal quaternion, which is

KE;L = )‘muE:lL' (30)

where A, is the largest eigenvalue of K. In terms of the Gibbs vector (Y = q/q,)
the optimal attitude may be written

Y*=[(A\p + ) — ST'Z. 31

The optimal quaternion is then reconstructed as

— 1 *
* = ——————
TV \Y‘P[ 1 ] o

Equations (30) and (31) are Davenport’s results. A very good first approximation of the
optimal attitude (accurate to O(c'})) may be obtained by substituting A%, for A, since

Ao = Kf;).(l + 0(0':)) . 33
Very efficient algorithms for computing A, to arbitrary accuracy are presented in (4].
The Quest Covariance From The Standpoint of Maximum Likelihood
Estimation

The Fisher information matrix for the parameter vector x is given by

al
Fa= { e axrj(x)},'_' 34)

where the expectation is with respect to the same probability from which J(x) was
derived. We use the convention that the derivative of a scalar with respect to a coi-
umn vector is a column vector. Asymptotically, i.e., as the amount of data becomes
infinite, the Fisher information matrix tends to the inverse of the estimate error co-
variance [5, 6).

lim F, = Pg 35)

If the measurements are linear in the parameter vector and Gaussian, then equation (35)
is true even for finite n. The Fisher information is not well defined in terms of the
quaternion since the components of the quaternion are not independent. Therefore, the
Fisher information for the attitude is expressed rather in terms of incremental error
angies, 6, defined according to

A=c¥ (36)
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so that 8,, 8,, and 8, are the angles of the small rotation which carries A,,, into A. The
quantity |@*| is small with probability very close to unity and by definition

0,.=0. (37
Then
J(8) = X2, — w(e!4,, B7). (38)

Substituting this expression into equation (34), expanding the exponential function in a
Taylor series, and noting that only the second-order term in {6] can contribute, leads to

¢ 1 r
= WA Bl ) = ApueBl... (40)
Noting equation (23), the above expression may be rewritten as
n 1 A A
Fo=23 —;(I - (W.)W(WD,..> , @D
=1 T
where
(Wl = A Vi, 42)

which is, indeed, the inverse of the covariance used in [4]. Note that in the context of
this study, as in [4], the attitude matrix is not a random matrix but a totally determin-
istic quantity.

The Attitude Profile Matrix as Attitude Representation

The maximum likelihood estimate of the attitude will converge to the true attitude
provided that the measurements are unbiased (assumed true) and that the Fisher infor-
mation matrix is positive definite (true if there are at least two nonparaliel measure-
ments). It follows that the Fisher information matrix evaluated at the maximum
likelihood estimate will also tend asymptotically to the inverse of the estimate error
covariance matrix. In practice, one can evaluate the Fisher information matrix only at
the maximum likelihood estimate of the attitude (because in practice the true value
remains forever unknown to us). Thus, to lowest nonvanishing order in o,, we write

Foo=t(A}/B') — A%IB", (43)
which is symmetric {2] and readily solved for B’ to yield

|
B' = l:? w(Fo)l — F,.]A,'.',,'_. (44)

Thus, B’ is readily caiculated from F,, and A}y and vice versa. We may also reinter-
pret equation (44) in terms of random B and A*. (We would not wish to reinterpret
equation (43) in terms of random variables, however, since this would mean equating
a non-random quantity with an expression containing random variabies.)
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From the above discussion it is clear that the attitude profile matrix as given by
equation (44) at best provides only an approximate representation of the spacecraft at-
titude covariance. However, it is accurate to lowest order in o7}, which is usually a
very small quantity, as observed earlier. Can it still be an exact representation of the
spacecraft attitude?

To prove that the answer to this question is affirmative, we note from the form of
the gain matrix as given by equation (22) that if A}, is the maximum likelihood esti-
mate of the attitude matrix given the attitude profile matrix B', and C, and C, are any
two proper orthogonal matrices, then C, A %/ C1 is the maximum likelihood estimate of
the attitude marrix given the attitude profile matrix C, B’C}. Consider now an approxi-
mate attitude profile matrix, B, constructed according to equation (44) from a positive
definite matrix F and a proper orthogonai matrix A. We must now show that the maxi-
mum likelihood estimate of the attitude matrix which derives from this attitude profile
matrix is exacrly A.

From the transformationai properties of B it is sufficient to show that the attitude
matrix constructed from B” = C,BC] with C, = / and C, = A is the identity
matrix. But the attitude profile matrix in this case is simply

B"=—;-tr(F)l-F, (45)

which is symmetric. Hence, Z" computed from B" and equation (27) must vanish.
Calculating also §” and s" and substituting these into equation (28) leads to the gain
function

8(q) =9'K7q
=-;—tr(F)—2qTFq, (46)

where q is the spatial part of the quaternion. Since F is positive definite, g(q) will be
a maximum when q = 0, comresponding to A = /. QED
Thus, B as given by

B = [—;— t(F) - F]A . 47

is an exact representation of the attitude and an approximate (but clearly very good)
representation of the attitude error covariance. Note also that the nine elements of
B constitute a minimum-dimensional representation of the spacecraft attitude (three
independent parameters) and the spacecraft attitude covariance (six independent
parameters).

Discussion and Conclusions

The Wahba probiem has been shown to be equivaient to a maximum likelihood
estimation problem for a simple but realistic probabilistic model for vector measure-
ments. This measurement model is. in fact, the one used in earlier covariance studies
of the QUEST algorithm. Thus, the Wahba probiem and its solution, the QUEST al-
gorithm, rather than being only an interesting (and practical) but arbitrarily posed
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optimization problem, now falls squarely within the reaim of maximum likelihood
estimation, so that it can be compared now with other estimators on a more fun-
damental level.

The restriction that the reference vectors, f’,, be non-random is not necessary to the
discussion, but it does simplify the exposition greatly. In missions which have flown
to date, such an approximation has been more than justified, since the reference vectors
have been known with far greater accuracy than the observations. For some currently
scheduled missions, however, where the accuracy of the attitude measurements ap-
proaches that of the reference vectors, some adjustment of the attitude estimation
methodology is necessary. The capacity to account for uncertainties in the reference
vectors was, in fact, already built into the QUEST algorithm [4].

If we allow V to be distributed about some value (V,),,,, with a Gaussian destribu-
tion given by

= (V) + AV, (48)

with
E{AV,} =0, (49)
E{AV, AVY} = o301 = (V) (VL. (50)

then we must also modify equations (8) through (10) to be
W, = AV + AW,,

= A (Ve + AW, (51)

with
E{AW,} = (52)
E{AW, AW]} = o,[I - (AV,),,,,(AV,) 1. (53)

With this somewhat more detailed model it turns out that the negative-log-likelihood
function remains unchanged except that we must now make the identification

ol = gl + ol (54)

This resuit, stated in different terms, is essentially at the bottom of the work pre-
sented in [4). Likewise, we can posit a probability density function of the form of
equation (4) with o} so defined. Thus, all the results of this work. from equation (15)
until the end, remain unchanged even when V, is allowed to be random.

The demonstration that the attitude profile matrix is an exact representation of the
attitude as well as an approximate (but very good) representation of the attitude co-
variance will have important consequences. The Wahba problem is static, i.e., the at-
titude has a single vaiue for all the measurements and is, therefore, independent of
time. However, the extension to dynamic but deterministic dynamical systems is
straightforward. In this context the QUEST algorithm becomes a filter, which can be
shown. in fact, to be a new mechanization of the Kalman filter for attitude. The de-
velopment of a QUEST filter which treats uncertain dynamic systems is also possible
but extremely cumbersome unless certain simplifying approximations are made. The



relationship between a sequentialized dynamic QUEST algorithm and the Kalman fil-
ter will be expiored in a future work (9].

Without entering further into the discussion of a filter implementation of the
QUEST algorithm here, we note that equation (44) provides the means for inciuding
an a priori estimate of the attitude in the QUEST algorithm. Namely, if A*'(—) is the
a priori maximum likelihood estimate of the attitude and P,(—) the corresponding
a priori attitude-estimate-error covariance, then the appropriate attitude profile matrix
taking both the a priori estimate and the current data into account is simply

B' = B (P (NI — P,'.'(—)]A*'(-) + 3 LW (55)

=) T

This resuit is of prime importance in the development of a QUEST filter {9].
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