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ABSTRACT

Efficient and numerically weil-conditioned scor-
ing algorithms are presented for the maximum-likeli-
hood estimation of inftial means and covariances from
an ensemble of tests when the initial condition is not
observable per test. These algorithms take account
also of the possibiiity that the estimated inftial
covariance may be singuiar. A sufficient statistic is
used to reduce the computational burden and singular-
value-decomposition and square root techniques are
used to increase the numerical accuracy of the
algorithm.

INTRODUCTION

In previous reports [1,2] efficient maximumelike-
11ihood estimators were developed for the simultaneous
estimation of system dynamical parameters (time con-
stants and power spectral densities of process noise)
and unknown initial means and covariances. The maxi-
mum-iikel{hood estimate in that work was calculated by
means of a recursive approximation to scoring for
which the Fisher information matrix and the 1ikelihood
gradient myst be computed, The use of a sufficient
statistic (3,4] Ted to considerable savings in these
computations and the two-tier filter of Friedland [5]
and Bierman ([6] provided an efficient means for com-
puting the sufficient statistic.

That work assumed, however, that the initial con-
dition was observable in every test. In practical
cases, unfortunately, this assumption may not hold and
the inttial condition may not be observable in any
single test although the initial mean and covariance
(the initial-condition parameters) are observable
cumulatively over the entire ensemble of tests., It is
this more generai case which we treat in the present
report.

when the initial condition is not observable per-
test the Fisher information matrix for the sufficient

statistic, Pit(j) becomes singular and expressions
derived earlter [1,2] in terms of Py (i) are no

longer meaningful. Yn addition, in many practical
cases some components of the initial mean are not well
tdentified and this is usually accompanied by the
estimated initial covariance £ having negative eigen-
values or, if constrained, being singular,

To obtatin an expression for the Fisher informa-
tion matrix and likelihood gradient in these circum-
stances we must start with a i1ikelihood function which
is valid then and obtain expressions for these quanti-

ties which demand the inversion neither of PQ&(J)

nor of T , These expressions, though mathematically
correct, will be numerically poorly-conditioned due to
the loss of significance which accompanies operations

with singuiar matrices. The solution to this problem
is to work in a space of smalier dimension where ali
matrices have full rank. Such & reduced space is
provided by the singular-value decomposition (svD).
The SVD requires some care, however, since the
expressions for the Fisher information matrix for the
inftial-condition parameters contain derivatives and
the SVD ts not always differentfable. The direct
differentiation of the SVD can be avoided, fortun-
ately, and the SVD representation provides other

computational advantages which can be exploited to
bypass the need to compute P;t(j) altogether.

Section 2 of this report presents the model for
the initial condition and derives expressions for the
Fisher information matrix and the 1ikelihood gradient
for the situation where the initial condition may be
unobservable per-test and the estimated initial covar-
fance matrix may be singular. Section 3 uses these
results to obtain numerically well-behaved expressions
with the aid of the SVD. Section 4 presents a more
accurate means for computing the SVD quantities which

bypasses the computation of the singular Pgt(j) .
The conclusions are stated in Section 5.

ESTIMATION OF INITIAL-CONDITION PARAMETERS

As in Refs., 1 and 2 we assume the system to be
described by the standard Gaussian linear system model
with unknown dynamical parameters subject to'the
initial condittion

%03 = a(d) + ¢ p(H) (2-1)

where lo(j) is the initial state vector for test j ,

a{j) has vanishing mean and covariance a known func-
Tion of possiblysunknown dynamical parameters a , and
b{j) 1s sampled from a Gaussian distribution of un.
known mean By and covariance Ly o The matrix Cj

s assumed known. The two contributions a(j) and
b(j) are assumed to be uncorrelated. The initial
Tondition parameters to be estimated are by and Iy.

In general, b(j) will not contribute to every
component of 50(j7 so that cj will have some rows

which vanish. Define

) =M 8@ (2-2)

where M. 1is obtained by deleting the vanishing rows
from cj . If Y(j) denotes the stacked vector of
measurements for test Jj then we may write



(3) = H(I) x,08) + 1) , (2-3)

where y(j) has vanishing mean and covariance TI(J) .
From eqs. (2-1) through (2-3) this may be rewritten as

Y(3) = R (3) x5(3) + H(]) a(d) + x(d)

R R (2-8)

where H'(j) 1{s formed from H(j) by deleting appro-
priate columns and y'(j) has vanishing mean and
covartiance TI'‘(J) .

Following a program similar to that of Levy et
al, [3,4] we obtain an expression for the cumulative
negative-log-likelihood function when Iy is singular

and 5(1) is not completely observabie, namely,
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terms independent of ¥y and Iy

where
(e (T = w7 et e (2-6)
and &‘m(j) a solution of
[P ()07 X3 (3)
< (@) (e x) (2-7)

From eq. (2-5) it is Slear that Ex(',m_(j) is a
sufficient statistic for. By and Iy and from eqs.
(2-4), (2~6) and (2-7) 5('”«_(1) is the maximume
1ikel1hood estimate of fo(” . Note that i{f 5(',(1)
is not observable then [P"«_(J),'j'1 will be singular
and iém_(.j) will not be unigue. eq:ation (2-5),
however, holds for any solution for _:_(43"'_(1) . Typt-
cally, one chooses the minimume-length solution for
definiteness.

Equation (2-5) may be transformed to
J --}} {(By () - )T [T + Pom () £,77F

* Pow () (B (3) = )
+ log det [I + Pbit(i) 551} (2-8)

+ terms independent of by and zb ,

where
Pom (3) = n} (g (407! J (2-9)
and by, (1) s a solution of
Pk () By () = ML W ()T (0 (0)7h) (2110

Clearly §ML(J') also 1s a sufficient statistic for

Yy and T,
The estimation of . = and L, is straight-
forward. As before [1, 2], we assume that H'(J)

does not depend on unknown dynamical parameters. For
many systems of interest (e.g., inertial navigation,
orbit determination) this is often the case. With
this assumption, the Fisher information matrix has the
simple form

F ' 0 ' 0
"b"b ] '
! '
F = 0 5 Ftb:b E Ffba (2-11)
O 1 Fay ) fa
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F = ) Dpeld) , (2-12)
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where
1/2 ms=n
Con = 2-15
m % 1 man ( )
and from eq. (2-8)
-1, 5 S
D(5) = [T + Pry (3) 2,077 Prg (3) (2-16)

The submatrix F“ must be calculated separately from
the other submatrices using the methods of [1,2].
the special case when P;:L(j) is invertible eq.
(2-16) reduces to

For

D(3) = [z, + Pypy ()17 (2-17)
which appeared in the previous work. [t might seem
that eq. (2-16) can be obtained by a simpie matrix
operation from eq. (2-17). This, however, is not the

case stnce eq. (2-17) does not hold under the present

circumstances.

The 1ikelihood gradient with respect to initial-
condition parameters has the form



i = -5 0(J) (b . i) - . (2-18)
-b % ) (-"L( ) !b)
J -
':T... - O [ 00 G ) - )
- (B (3) = )7 O(3) - ()], - (2-19)

Note that the likelihood gradients above have a unique
value even though ENL(J) may not be unique.

The expression for D(j) given by eq. (2-16)
while simple in appearance may be poorly conditioned.
while 0(j) 1s necessarily symmetric the first matrix
factor in eq. (2-16) is not and may be the inverse of
a nearly singular matrix. Therefore, we must seek 2
numerically superior method of calculating the Fisher
information matrix and likelihood gradients.

SVD FORMULATION

The problem of lost significance in computing the
Fisher information matrix and the 1ikelihood gradients
can be greatly reduced through the use of a singular-
value decomposition (SvD) (7]. Thus, one may write

O T S Uy o+ (1)

where UJ is orthagonal and A(J)'1 is diagonal and
positive deftnite, (We express all quantities
initially in terms of (p' (1))} because it is this
quantity rather than Pb"L(j) which is supplied by
the Kalman Filter 1, 5, §]. If UJ is partitioned

as

where U, has the same rank as A-I(J) , then it ts

simple to show by a transformation of variables in eg.
(2-8) that .

- . T o iy - - .
E"L(J) - UIJ MJ E"L(J) H VJ E"L(J) (3-3)
is a sufficient statistic for By and Ly -« By

appropriately transforming the results of Section 2,
we arrive at identical expressions for the submatrices
of the Fisher information matrix in terms of the

matrix D(j) where now
D(d) = VIOV, 5y V] + a1, = 9] ah) vy (3-0)
and the likelihood gradient takes the form
- ! VI d(D) (G ld) = Vyup) . (395)
Erenh RS S U CCHCAO RN
(B (3)-Y; )T 4D = dDI Vihpy (5.5

The vector EuL(J) is unique since vJ annihilates

the ambiquous component of éML(J) .

a requires special care
b
since the factors of the SVD of a matrix are not
necessarily separately differentiable. However, as a
consequence of the model we note that every null

vector of [P"I(J)] is also a null vector of

The computation of Fr

ML(J)]'1 . Therefore, we can write

a

. mu) Y PR

(3-7)

where

8;14) = vl bz O URE1 e AT € &' )

The matrix 'I(J) ts symmetric but otherwise has no

special propert1es. Note that & l(J) is not a
component of the singular value decompos1t1on of

3 [Py L(J)]

positive definite, Evaluation of the derivative
appearing in eq. (2-14) yields directly

and need not be etfther dtagonal or

3o 00 = V] 600) (0) 471(0) 8(3) 9 ¥y - (3-9)

Except for vj and its transpose only symmetric

non singular matrices now appear in the computation of
the Fisher information matrix and the 1ikelihood
gradients.

COMPUTATION OF SVD QUANTITIES

The matrices Uj . A(j)-% and Al(j)'lmay be
computed more efficiently by avoiding the cemputation
of [P'.I(J)] altogether. [n actual practice

{e! L(J)] is computed from the output of a bias-free

Kaiman filter (1,5,6]. Assume without loss of
generality that the measurements are scalar and define

-1/2

Skg 7 B g Ty o Keloeeeon

j ’ (4'1)
{s the measurement sensitivity matrix,
»
H K, ; j is the sensitivity of the bias-free resid-
12 »
uals to X (j) and Blk j is the bias-free restdual
12
variance. The number of (scalar) measurements in test

j is nj .

where Hk

Then

Ly = nyoT T
[Piy (017 = kéjl G j G,y =66 - (82

_ a7 T T
with GJ H [Gl.j , Gz'
GJ ts simply

T
. . VD of
goooeee Gn'J ] The SVD o



6 = v,y Sel) vy : (4-3)
where YIJ and 'rJ are orthogonal and
-s -
1
82 Q
Sg * . (4-8)
, L : |
It follows directly that
Ui = 'FJ ’ ("5)
SO .
cecscacscccccas - SG(J) SG(J) ’ (4-6)
0 L ¢

and the singular values of [P;'L(j)]'1 are sf .

isl,e..,n . Further, if in analogy to eq. (3-8) we

define
Sldat) = v, ’[372-1- Gl . (D)
then
A;I(J) ' o : _ . (4-8)
---- smodeeeoal = Sa(dhe) S(3) + S5(3) SgldLe).

Since the singular values of SG(J) are the square
roots of the singular values of [P';L(J)]'1 ., there

is far less loss of significance in dealing with these
quantities.

CONCLUSIONS

Algorithms have been developed for the maximum-
likelihood estimation of initial means and covariances
when :~e initial condition is not observable per test
and wrn the estimated initial covariance may be
singular. These algorithms are both computationally
efficient and well-conditioned numerically,
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