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Abstract

Many practical appiications require the simul-
taneoys estimation of unknown dynamical parameters
and unknown initial means and covariances from an
ensemble of tests. A recursive algorithm which
asymptotically obtains the maximum Iikelihood esti-
mate of both sets of unknown parameters is present-
ed. The computational requirements of the algorithm
are greatly reduced by partitioning the parameter
vector into initial and dynamical parameters and
making use of a sufficient statistic as an inter-
mediate variable for the estimation of initial condi-
tion parameters. This partitioning leads to a two-
tier filter for calculating some of the required
parameter sensitivities. The results are illustrated
by an application to a simplified robotic system.

1. Introduction

The majority of work on system identification
has been concerned with system parameter identifica-
tion from single sample longitudinal data. Goodrich
and Caines [1] point out that many identification
problems require system parameters to be jdentified
from cross-sectional non-stationary data. For
example, in areas as diverse as robotics and inertial
navigation it is often necessary to estimate both
initial condition and dynamical parameters. The
point is that it is frequently impossible to directly
measure the complete initial state. Since dynamical
parameters are unknown it is impossible to use
standard state estimation techniques to obtain the
initial conditions, Furthermore, if the same instru-
mentation is used to test an ensemble of systems,
then troublesome correlations can arise between tests
due to common instrumentation errors.

An obvious way to compute the parameter esti-
mates from cross-sectional non-stationary data is via
maximum 1ikelihood or, more generally, some other
prediction-error scheme [2]. Such schemes reguire
batch processing of the data. A recursive approach
offers many well known advantages relative to batch.
An advantage particularly important for cross-
sectional analysis is the ability to change the test-
ing procedure and the system design in response to
results from previous tests and then continue testing
without having to reprocess the previous tests.

For many problems with realistic state sizes the
computational burden of batch processing is so large
that batch processing is impractical. One reason for
this is that it is often necessary to estimate
initial covariances as well as inftial means and
variances. Straightforward batch maximum 1ikelfihood
methods [2] require differentiating a Kaiman filter
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for every parasmater being estimated. The result is
an impractically large computational burden.

The main result in this paper is a recursive
algorithm motivated by [7] that processes each data
point exactly once and converges, as the number of
data points goes to infinity, to the maximum likeli-
hood estimates of both the dynamical parameters and
the initial mean and covariance. The computational
requirements of the algorithm are greatly reduced by
partitioning the parameter vector into initial conai-
tion and dynamical parameters and making use of a
sufficient statistic as an intermediate variable for
the estimation of the initial-condition parameters.
See {3,4] for earlier uses of a special case of this
idea., This partitioning leads to a two-tier filter,
as in the treatment of bias in recursive estimation
[(5,6], for calculating some of the required parameter
sensitivities, which further reduces computation.

The paper is organized as follows. The system
model is described in Section 2. Section 3 describes
an algoritim which is recursive from test to test tut
which requires a batch computation for each test. Ir
Section 4, this batch computation is replaced by a
partitioned recursion within each test that greatly
reduces the necessary computations. Section 5 con-
tains a numerical example that is a simplified
version of an appiication to manipulators. Finally,
Section 6 gives some conclusions and two suggestions
for further research.

2. System Model
Consider a system model of the form
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" (t) , ¥ (t) are “white* and dre independent
of each other and of x'(0) .

The subscript 8 indicates dependence on an
unknown vector of parameters 8ec.

The superscript i denotes the ith test,

The initial condition of the ith test, 51 (9),
has been decomposed into two components. One compo-
nent al' is assumed to have known (zero) mean and
known Covariance or a covariance which is a known
function of possibly unkn?un dynamical parameters so
that the statistics of a' will not be estimated
as separate parameters. ~Such a component in the per
test initi{al condition arises, for example, from
Markov processes which achieve steady state bef?re
the inception of the test. The component T.
is that part of the the inftial condition which is
not a known function of the system dynamical param-
eters, The matrix T; {is assumed known and is
included to allow for the possibility that the
initial-condition parameters of interest (upg,

E’be) need not enter each test in identical
ashion.

There are several points that should be
emphasized in connect}on with the model. First, the
time dependence of _I_\e(t) can be the result of a
feedback control system, possibly including a Kalman
filter, being applied to the basic dynamical system,
S‘nce one might change the feedback control gains as
a result of earlier tests, Ag(t) can vary with
(as denoted by the superscript g. Simtlarly, we
zan allow the conditions of the ith test to change
based on information from previous tests. Of course,
the unknown parameters do nat change. Although more
jeneral results are possible, we will assume that all
of the dependence on previous tests {s known and
l1inear, For example, correlated tests can be
described this way. This preserves the Gaussian
distribution of the complete set of data. Second,
the unknown u,, and Iy guarantee the need for

muitiple tests.

3. Test-to-Test Recursive Alqorithm

The basic problem is to find dw , the maxi-
mun Tikelihood estimate of 8 , given thc data
I(t) for t = 1] 1....."1 ‘nd =] 2..0.." .
y definition,

By = arg min L(8,Y) (3)

where L(8,Y) denotes the negative jog iikelihood
and Y denotes the collection of y'(t) for

t= 1?29...;"1 and {t =1 2....." . 0' course,
under the assumptions we have made Y is Gaussian
distributed with some mean and variance which depend
on 8 . Becausc of our assumption that the details
of the ith test can depend on the results of previ-
cus tests, the individual tests are not independent.
Thus, some labor is required in order to obtain a
recursive calculation of 8w .

The fl rst step is to concatenate the data
vectors * (t for the ith test to f?rm a vector

y() =« T, yl@7 ..., L’(n{)

Then

2(1) = H xT0) ¢ () 1w L2e (4)
where Hi is computed from the Al(t) and E_;(t) .
¥(i) - N(Q,Rf) , and Rl is computed from Al(t) ,

i
clee) . yi(e) , ana Ni(t) .
If the tests were all independent we could now

rewrite Eq. (3) in the more convenient form

8
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Even though the tests are not independent we can
obtain essentially the same form for 8w as is given
in €g. (5). The idea, explained in detail in (2], i
to write L in terms of conditional probabilities.
In detail, let Y; denote the data set consisting
of all Ll(t) such that t = 1,2,...,ny and
{ =1,2,000yd « HWa can then rewrite Eq. (3) as

M
- 1 -~
By = 2rg m_;.n = {Zl £(8,x(1)) (9)
where
i(e,y(1))

e | - . T
gz tr (3 (D) - XU ) - 2y )

+ .;; log det :.5; (10)
and
Y = By ) (11)
33 = cov (x(1) - gy, 0 (12)

Because of our assumptions that the conditions of the
{th test depend linearly on the results of previous
tests and that this dependence is known, all of the
terms in £qs. (9-12) can be computed explicitly.

Note that all of the expectations and covariances in
Eqs. (7), (8), (l1) and (12) are evaluated as func-



tions of & , as if & was known. Thus, the actual
calculation of 8w via Eq. (3) or (5) or (9) is
still fundamentally a batch calculatwn. However,
Eqs. (9) through (12) express 6y in terms of the
so-calied prediction error and Tjung (7] has given a
technique for converting a batch prediction error
estimator to a recursive estimator whose estimate
converges to the batch estimate as the amount of data
goes to infinity.

Ljung's procedure amounts to writing

B =iy s v Ry [ - & J (13)
9 la(i-1),g(1)
L
R = R(i-1) + v(1) = J
0% [8(1-1),5(1)

+ 81 - R(1=1)} (14)
where
§(1) is the estimate of 8 based on data Y,
v(i) = 1/1 although more general forms are

possible

£(1) = y(1) - EQu1)]|Y;_;. B(1-1)) (15)

s is a small positive number that is large
enough to ensure R(i) > 0 for all i

and
1(8,£(1)) -%tr [;3 c(i) AHER log det §} (16)

Ljung [7] proves, under some assumptions we will

discuss below, that &(1) converges w.p.l either to
the set

d
c=le| V@ =0l (17)

where, it can be shown that
P(e) = 1im L(s,Y,,) (18)
- Now =M

or to the boundary of the model set as {+» ., Actu-
ally convergence is proved for a class of positive
semi~definite approximations to

dt

@l
Furthermore, among isolated points of D., only
local minima of V(8) are possibie convergence
points. Note that™ 8(i) really converges to a local
minimum of the negatTve log likelihood or to a value

on the boundary of the admissible parameter set.
However, this is all any batch algorithm achieves.

This convergence result is based on three
assumptions:

Al: V(8) = m E(L(8,Yy)) (19)

A2: 9“'11-1) is computed via equations of the form

2(1+41) = F(8) o(1) + F(8) y(1) (20)

JOHX40)) = H(8) (1) + H(8) o (21

F(8) has all its eigenvaiues strictly inside
the unit circle and F(8) , G(8) and H(8)
are twice differentiable for all 6 in the
compact set of possibie parameter values. Note
that the second term on the right hand side of
Eq. (21) is not included in Ljung's version.
The extra term is needed to handle unknown
initial conditions. The proof of convergence
is straightforward.

A3: The test procedure that actually generates the
data is "exponentially stable”. That is, the
influence of any test on future tests decreases
exponentially.
0f course, it is not obvious that Ljung's result

can be appiied to the present probiem. Thus, we must

show that assumptions Al-A3 hold true here.

Assumption (Al) is proven by expanding (19) to

M
Vo) = 1m 1 T Efi(e,e(i))} (22)
Ma M iai

where expectation is with respect to the true 8 and
e(1) is calculated using some other 6 . So,

M

1 of efy=l oi \
V(o) = 1im log det S. + tr [(S P'(8
(@) e &1 (109 det 5, [(sg)™" P (0)].
(23)
where Pe (8) = true covariance of ¢(i) . [n order

for the limit on the right-hand side of the above
equation to exist we have to impose some condition
on the way tests can vary. A sufficient condition
is for the change in conditions from test to test to
go to zero as js= , [f this condition {s satisfied
then

V(s) = log det ol

tr (550 P (@) (24)

N

It is trivial to show that the remaining assump-
tions are satisfieqd when the tests are independent
F(8) = 0, H(8) = ﬁl‘l' 5(8) = 0) . When the tests
are coupled via some dependence of test conditions
on previous tests then the assumptions impose condi-
tions on the form of coupiing. The key is Egs. (20)
and (21).

Note that Ljung's result also can he used to
show that
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= lim [Fisher information matrix at truth} (25)

e
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4, Calculation of Quantities for Individual Tests

In general, even for independent tests, the
measurements within a test will be highly corre-
lated. Hence, the computation of

(8,E(1))  ang o SR(2.£01))
de de?

is potentially very burdensome. The balance of this
section describes, in four steps, the reduction of
the computational requirements to a reasonable level.

Step 1: There are two well known simplifications.
irst, write ¢ in terms of the innovations process
within a single test, That is

i(8,e(1)) (25)
LTI 87N ) v k) + Tog det 8100}
kel % T 09 det Byl
where
2i(e) (21)

A G I A O S T DI C TR B

and
sl = g (ud0 oM (28)
Then, the calculation of % is straightforward

and gives (suppressing the test index 1{ and the
dependence on @ )

L (8,e(1))
38

- n vT -1 v
ké [y (k) B™ (k) 3—6; (k)

T

J1ly -1,y 3B(k) q-1
F& (k) B (k) .-_“m B7 (k) w(k)

L1 =1y 38(k)
3 tr [B7(k) "a?;'” (29)

. ¢4
Second, approximate - by

dg

3% . ’i (L er Lg-l(k) 3B(k) E'l(") I8 k)J
aemaen ksl 2 aem aen
+ e (871(k) 2K M” (30)
- a8 _ 2

The fact that the expectation of the right hand side
of (30) is exactly the per-test Fisher information
matrix is sufficient to guarantee that the results of
the previous section are unaffected by the
approximation.

Note that the calculations required in Eq. (29)
and (30) require that one construct and run a Kalman
filter to give B(k) and v(k) . Then, these equa-
tions must be di¥ferentiated with respect to 8 to
give difference equations which must be sequentially
solved to give

3B(K)  ang dv(k)
30 aem

for each m

The computational burden of these operations can be
considerable.

Step 2: A major reduction in camputations is
achieved by avoiding differentiation of Kaiman
filters with respect to the elements of u,_. and

L « We demonstrate this for the case where the
?Rgts are independent. Ffor convenience of presenta-
tion, it is assumed here that the parameters to be
estimated are the elements of ug *> u and Ipg =

L along with the parameters in A*a(?) Sl
E‘a(t) . Ri(t) and i . The L,z parameters are
contained in the vector ¢ and the remaining param-
eters are denoted by a so 8 = (87, af1l.

The u,l derivatives are avoided by expressing
the likelihooa in terms of the per-test maximum-
Tikelihood estimate of b! denoted by b7 . This
can be done because b!, T = 1,...,8 is 7 sufficient
statistic for 8 as shown below through an argument
relying on and generalizing the results in [3,4].

Since B! 1s a suffictent statistic for bi ,
the factorization criterion [8] provides that

p(x(1){8]) = n,(g(1)) n(d! 8] (3n)

where hy is a functjon only of the data msitiply-
ing the density of b' to get the )ike]ihood func-
tion relative to bi~, namely p(y(i)|b!) . Now
multiplying by the den?ity of bl given u ,
and integrating out b' gives the likelihood
relative to 8 as

PlL(1)) |wek) = hnguiii 203 L) (32)

3u:2 h; can be determ::-¢ .o s ol =0
and from (32)



pLy(1) [u,Z) = PR =9 e (39)

(b|b = 0)

Now substituting the respective densities for 811
and 2 (b? = 0) and using the Kaiman filter repr

sentation for the density of y(i) gives within
additive constants

- log p(y(1)|w.2)

. .;. [1og det (£ + P(1))
s -t @erne - w

T 3
- log det P(1) - b' P(1)7! b!

" i LU LS
A 0g det El(k) + 1{ (k) EI (k) :I(k))] (34)

x=]

where P(i) is the estimate error covariance of

I subscript on the Kalman filter quanti-
ties s‘efers to tho fact that the filter is ignorant
of b ?Mco bl = 0 . Note that the filter in (26)
modeTs bi- N(u,T) and consequently may have a much
higher state dimension. Equation (34), If summed
over the tests, proves sufficiency of b’ ,
isl,eeesM 4 fOr u Further, (34& is a replace-
ment of (26) for g,c(‘l)) where » P(1)
vi(k) , and Bi(k) are functions of a .~ Thus,

z(a e(1)) 1s an explicit function of u,Z that can
be dTfferentiated without differentiating Kalman
filters.

Step 3:

The maxjmum-1ikelihood estimate of the initial
condition b' can be eg from the residuals of
the Kalman Tilter in which b! has been arbitarily
set to zero (ignorant filter) [5,6], again assuming
independence. Note that

v =1 e+ v (35)

where T, 1is a transformation relating the trve b}
to ignoridnt filter residuals and vi,(k) is the
filter residual that wo\cld have been obtained if b!
had truly been zero. is easily expressed as a
simple recursion using transition matrices and Kaiman
gains from the ignorant filter. Further, (k) fis
3 white sequence with c?nriance given exacHy by
8}(k). Consequently, B! , P({) can be computed by
treating (35) as a measurement on bl and performing
numerjcally efficient and well-conditioned estimation
of b1 based on stacking the measurements over time,

Now the derivatives of 1(0.5(1)) with respect
to u,I,a are stqaightfonvar? to compute from (34)
recognizing that . P(1), v}(k) and B}(k) are

all functions of a . The derivatives of the
ignorant filter quantities plus b! and P(f) are in
turn obtained as recursions by diTferentiating the
ignorant filter recursions.

[f there are many u,. parameters “hen the
above provides an enormous computational savings
relative to equation (29). The Fisher information
relative to u,l can be used as an approximation to
the Hessian of (8,¢(1))

a%2(8,e(1)) - +£(”)-l (36)
u W

2%(8,6(1)) . o
aUJ atmn

for all j, m, n (37)

322(0,¢e(1))
ol al

m pq
+ -1 + -1
Com Cpq (L(Z + BN L@+ 2N Y,
e 20) g T+ PO yg) (38)

1
where Cm is 3 for m=n and 1 for m=n .,

The approximate Hessian relative to a is still pro-
vided by equation (30), which requires a standard
Kalman filter and its derivatives relative to a .

If the cross terms in the Hessian between u,I “and
a are approximated by zero, then the convergence of
8(1) follows from the results given in Section 3.
Thus, the algorithm given in step 2 up to this point
is a compietely recursive algorithm guaranteed asymp-
totically to perform as well as batch maximum 1ikel:-
hood. Further, derivatives of the Kalman fi{lter with
respect to u,I have been completely eliminated.

The result of Sectfon 3 relfating R(i) to the
Fisher information does not follow because of the
approximation for the cross terms in the Hessian.
However, in many practical probiems, such as inertial
navigation or orbit determination, a core set of
dynamics known from physical principies is driven by
random biases b and measured through known
dynamics. In such a situation the Hi of (4) is not
a function of 6 . Based solely on this fact the
cross Fisher information between u,I and a can be
obtained after some manipulation and the cross-
Hessian terms can be approximated by the Fisher
information giving

2-
at(e,y(i)) =0 forall J and m (39°
auj aam

322(9' (1)) 3 -1
Tl - g e 2 Ty )

The resylts of Section 3 relating R(i) to the
Fisher information are unaffected by the above
approximation to the Hessian.

Step 4: The above steps still require the computa-~
tion of standard Kalman filter residual covariances
and derivatives of the residuals and residual covari.
ances with respect to a . However, the standard
Kalman filter can be expressed as a two-tier combina-
tion of the ignorant Kalman filter already being used



and a bias-restoring filter using the results of [5],
[6). Further, the filter derivatives can be similar-
ly expressed in terms of the existing ignorant filter
derivatives and derivatives of the bias-restoring
filter. Thus, the standard filter and its deriva-
tives can be eliminated entirely with the addition of
a bias-restoring filter and its derivatives., Note
that the bias-restoring filter described here differs
from the estimator giving bl in that the bias-
restoring filter must operate recursively and model
b~ N(u,Z) to provide quantities for (30). As a
final comment, even further computational advantages
can be realized by making the ignorant filter
ignorant also of bias states of known a priori mean
and covariance where a reduction in state dimension
occurs., All the guantities needed for parameter
estimation can be obtained by agatn using the i{deas
in [5] and [6]0

5. Numerical Example

Typical robot manipulators have dynamics of the
form

i(t) = £(x(t), x(t)) + G (x(t), x(t)) u(t) (41)

where

x(t) is a vector of generalized position
coordinates

u(t) is the control

6(x,x) 1s an invertible matrix for all x, x
A possible control scheme for this system is to let

u(t) = = 671 (x(t) () [f(x(t),x(t))
+ G(x(t),x(t)) Aft)] (42)

where
x(t) is a nominal path
A(t) is a new control to be described below.

Under the extremely optimistic assumption that both
of the equations above are exactly satisfied

() = A(t) (43)

It Al(t) is chosen to be a very tignt l;near feed-
back control (based on observations of x!(t)) then,
we can regard the errors which cause our system to
deviate from Eq. (43) approximately as “nofse”.
Since the sole purpose of our model is to e?cble us
to design a good feedback controller for x'(t) ,
such a simple model may well be adequate. ~

Note that our example is a discretely sampled
continuous time system rather than discrete. Hence
the continuous time dynamics must be first written as
equivalent discrete dynamics in order for the above
results to be appiied without modification (although
these modifications are trivial),

The problem is then to implement the above cone
trol scheme on a manipulator, measure the performance
of the manipulator in a given task and use this data
to specify the unknown paranreters of the model

{thereby specifying the manipuiator accuracy). The
instrumentation that is normally used for these tests
measures x(t) but not X(t) .

A simple example of the system is shown in
Figure 1. The second order system is shown inside
the dashed block. In addition to the control signail
A the system is driven also by zero-mean colored
noise which has been modeled as a first-order Markov

process, x4
xie) = - Lo e wly (44)

which is a?sumed to be in steady state, hence,

wi(t) - zero mean and white with power
spectral density g (45)

and
x3(0) - N(0,q7/2) (46)

The state vector is x = [x1 » X5 13]T .

The control signal is computed in our example by a
Kalman filter which determines 1\ from noisy
measurements z of X . Thus,

2 = o 2o e v ke Lzeeiny (a7)

where

clk) = £1,0,01, vi(k) - w0, .0025)  (48)

Measurements of the control signal are taken simul-
taneously with the measurements 2z ., Hence, there is
no need to specify the control law for the present

example.

““ . f;. : f (3 U f » [3 \d 2

Fig. 1 Syster Block Otagram

It 1s assumed for our example that the tests are
independent and that Xy and x, are inftially
uncorrelated, The fnttial cond%tions of the system
as given by Eqs. (1) and (2) above are

L

L, = Diag (0,0, qr/2) , (f9)



Ebe = Diag (’:11.:22) , (50)
1 0
0 0

The initial-condition and dynamic para?eter vectors

are, therefore 8 = [uy, Uy, £ Sy L
a -’[q.r]T . Thi'neasa;emsnt *3aelz;nd measurement
error variance are assumed to be known.

Twenty tests were performed each containing 200
measurements taken at intervals of 1 sec. The esti-
mates are compared with the true values of the param-
eters used in simulating the data in Table 1., The
estimation errors (¢ one standard deviation) given
in the table are computed as the square roots of the
diagonail elements of the inverse of the Fisher
information matrix, as given by Eqs. (36) and (38)
for initial-condition parameters, or by the approxi-
mation of the Fisher information matrix given by Eq.
(30) for the dynamical parameters. The batch esti-
mate processed all twenty tests recursively iterating
the scoring algorithm until convergence was reached.
The recursive aigorithm was begun by processing five
tests in batch. The agreement is observed to be very
satisfactory. Four of the six parameters fall within
the predicted lsc error levels as expected. The devi-
ation of ¢ from the true value might seem large.
Half of this error, in fact, is due to the particular
realization of the initial condition, which is known
since the data is simulated. The sampled variance of
the actual initial conditions on xy was found to be

0.38.

Parameter|{True {Stating Batch Recursive
Value{ Value Estimate Estimate
uy 1.0 0. 1,27 ¢ .20 J1.35 ¢ .18
In 1.0 0.5 J7 = 26| 84 .19
o 5 0. A4+ 16 ] 50 = .l4
Log «25 0.5 A3 =+ 15 49 ¢+ .11
1/t .05 .08 | 054 .z ,005{ .052 = ,00%
q 025 .04 | ,0252 « ,001| .0252 ¢ .001
Table 1

Parameter Estimates for Twenty Tests

Figures 2 and 3 show the detailed behavior of the
estimates of u, and In (with their one standard
deviation error bars) as a function of the numbers

of tests. The first point in each case is obtained
by batch ML estimation of the initial mean and vari-
ance using the first five tests, The succeeding
points show the result of using Ljung's recursive
algorithm, Eqs. (13) and (14) for tests 6 through

20. The large point on the far right is the result
for the batch ML estimation using all twenty tests.
The solid line shows the true sampled mean and vari-
ance of the actual reaiizations of the initial condi-
tions. The estimated vaiues are seen to follow the
true sampied values with remarkable fidelity,

Figures 4 shows similar results for 1/t . Again the

agreement is seen to be very satisfactory with the
recursive estimate marching systematically toward

the batch resuit. “he estimation errors for q were
50 small even for fve tests that these need not be
shown,

2.0 ¢
]
|
|
.0 P
[ ] :. i1} 2@
RN O TeATe
Fig. 2 Recursive and batch estimates of mean
with 1~ error bars and samie mean
LN X 4
s
.0 b
i q
[ X ]

L] 1o " ze
SRR OF TOSTE

Fig. 3 Recursive and batch estimates of vari-
ance with lo error bars and true sampie
variance

HHH”HHHH +

WYSRES THIS CORSTANT tees™')

[) " " 10
RN or TEETS

Fig. 4 Recursive and batch estimates of inverse
time constant with lo error bars



6. Conclusions

we have exhibited a partitioned recursive algo-
rithm for calculating the maximum 1ikelihood estimate
of the unknowns © . We have shown that the recur-
sion converges to the same estimates as the batch
maximum 1ikelihood approach when the number of tests
tends to = . Note that these resuits hoid when the
tests are of unequal length and are carried out under
different conditions. The partitioning of the param-
eters into initial condition and dynamic parameters
provides a crucial improvement in numerical
properties.

Two areas of further research are believed to be
important. First, many of the potential applications
of these ideas involve nonlinear systems. Since the
results presented here rely primarily on derivatives
of the log likelihood there {s hope that they could
be extended to apply to reasonable classes of none
linear systems. Second, it would be very useful to
have estimates of how the rate of convergence depends
on the scheme for finding R(1) .
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