TECHNICAL NOTE

A Comment on Fast Three-Axis
Attitude Determination

Malcoim D. Shuster'

Abstract

The solutions to the Wahba probiem for three-axis attitude determination. first posed in 1965.
are reviewed. A recent solution proposed by Tietze is examined in detail.

The Wahba Probiem and its Solutions

Recendy, Tietze {1] has proposed a new method for computing least-squares three-
axis attitude. This algorithm offers a supposedly faster method for computing the
solution to an optimal least-squares attitude estimation problem first proposed by
Wahba {2], namely, to find the special orthogonal matrix R which minimizes the
loss function

& .
LR) = X alW; = RV’ (1
where W, (i = 1,..., mand V, (i = 1,..., n) are sets of observation and reference
unit vectors, respectively, and g, (i = 1,..., n) are a set of positive weights, which

may be normalized to have unit sum.

The solution of this problem has a long (and continuing) history. The earliest pub-
lished solutions [3-8] solve this problem directly for the rotation matrix (taking the six
constraints dictated by orthogonality into explicit account) with the resuit

R = BA™ (2)
where
B=2aWV’ (3)
=}
and A is the symmetric positive definite solution to the equation
Al = BB (4)

A different approach was followed by Davenport [9], who avoided the need to compute
the matrix square root by solving instead for the Gibbs vector [10], which was uncon-
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strained. This approach ied to an iterative solution for the Gibbs vector which couid be
shown to converge provided that a unique solution existed for the attitude. A variation
of this algorithm was used in support of the Orbiting Astronomical Observatory [11].
Further refinements were developed by Fraiture [12] and by Davenport {13].

The most important advance was made by Davenport (as reported by Keat [ 14]), who
showed that the quatemion representation of the optimal attitude was the eigenvector
with maximum eigenvaiue of the 4 X 4 matrix

S—0ol 2
K=} e a (5)
v Al o
where
S=8+8T (6)
o=TrB (N
and
Z = (By — By,By - Bys,B: ~ By) (3)

The optimai quaternion could now be found by solving the eigenvalue equation
Kqom = Amax Qo 9

The “gq-algorithm™ was used in support of the High Energy Astromony Observatory
(HEAO) (15. 16] and was aiso part of the ground support software for the Solar
Maximum Mission (17].

The solution of the eigenvalue problem was much less burdensome computationaily
than the evaluation of the matrix square root or the iterative algorithms developed
earlier but still somewhat costly. A large share of the remaining computational burden
was eliminated by Shuster [18, 19}, who showed that. without ioss of usable accuracy.
the eigenvalue could be set equal to

Moo = 20, | (10)
For the Magsat mission, in fact, for which the sensor accuracies were on the order of
20 arc sec, this approximation was correct to eight significant figures. This substitution
converted the eigenvalue problem into a simple algebraic problem. and the Gibbs vector
(Y = q/qu) for the optimal rotation was given by ‘

Yo = [(Anao + o) = S]7'Z (1

to this same number of significant figures.

Equation (11) is nothing more than the solution of the first three rows of equation (9)
with Ay, replaced by Apg. As is pointed out in [19. 20], this scheme must fail if the
angle of rotation is close to w (because the Gibbs vector becomes infinite at that value).
When this situation occurs, one simply solves three different rows of equation (9). An
alternate procedure, which sidesteps the possibility of a singularity by avoiding the
computation of the Gibbs vector as an intermediate quantity, was aiso developed in
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(19]. This nonsingular implementation still becomes inaccurate when the angle of
rotation is close to 7 due to large cancellations which occur then. For that case, a very
simple transformation of the matrix B (the signs of two of the rows are changed) leads
to a numerically weli-behaved problem which yields the identical quaternion compo-
nents without loss of significance. This transformation is not needed very often,
however. For the Magsat mission, for example, if one were willing to accept a nu-
merical accuracy of 10™* arc sec, it was estimated that this transformation would have
to be applied once in 250 million arttitude computations.

The nonsingular implementation has the added advantage that the quantity [ — An,
is obtained as an intermediate resuit. This quantity has proved to be extremely useful
as a measure of the consistency of the data for fault isolation and also for system
identification. Because | — A,,, is calculated to lowest nonvanishing order. the com-
putation of the quaternion is more accurate as well.

Reference [20] repeated the derivations of {19] and extended this work by, providing
a complete covariance analysis of the algorithm. as well as showing its connection
to the deterministic triad algorithm. Reference {21] used this algorithm further as the
basis for developing efficient algorithms for the inflight estimation of attitude-sensor
accuracies and misalignments. The algorithm of {19] and {20] was incorporated in the
ground support software for the Magsat spacecraft (22]. In addition to extensive
prelaunch testing, the algorithm was exercised more than 80 million times during the
course of that mission. The algorithm has also been selected for impiementation in
the ground support systems of the Earth Radiation Budget Satellite (ERBS) [23] and
the Space Telescope {24].

A recent solution to the Wahba problem has also been offered by Bar-Itzhack and
Reiner {25], who compute the attitude matrix directly in an extended Kalman filter,
without the orthogonality constraint. The orthogonality is then restored post hoc using
an efficient iterative process {26, 27]. (There exists also an optimal algorithm {28] for
orthogonalizing an approximate attitude matrix. which rests to some degree on the
solution of the Wahba problem.) The computational burden of calculating the attitude
matrix in this manner is necessarily large but still workabie if the attitude data rates can
be accommodated. Bar-Itzhack and Oshman {29] implement the extended Kalman
filter to estimate the quaternion directly with greater efficiency than is possible for the
direct estimation of the attitude magrix.

Tietze’s Solution

The development of Tietze’s algorithm [1] foliows extremely closely the develop-
ment of [19] and [20]. In fact, of the twenty-five equations in {1], the first twenty-two
simply repeat virtually identical equations in [20] (not cited by Tietze), with only slightly
different notation and conventions. The sole innovation of {1] is the suggestion that the
optimal quaternion be computed from equation (9) using the inverse-iteration method
(30]. This procedure, Tietze contrasts with standard procedures for solving the com-
plete eigenvector-cigenvalue problem for a symmetric system, namely “to transform
the matrix to tridiagonal form, and then to find the eigenvalues and eigenvectors.
Finally, the resuiting exgenvecm are back-transformed to the original coordinates.”
The implication of this statement is that this is the method followed in the earlier work
to which Tietze refers.
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This, however, is not the case. Reference [19] (the report cited by Tietze) showed
that it was not necessary to solve an eigenvalue problem at all, no matter how stringent
the accuracy requirements of the mission. If the measurements have a typical error, &,
then equations (10) and (11) will be correct to within terms of order £°. There is clearly
no need to construct an algorithm which is capable of solving this probiem with greater
accuracy. The implementation now in use in NASA mission software, however, be-
cause it also computes | — An,, to lowest nonvanishing order, is correct to within terms
of order £*. It is difficuit to imagine a situation for which this level of accuracy is not
adequate.

Tietze would repiace this simple one-step algorithm, which requires no more than
one inversion of a well-behaved 3 X 3 matrix, with an iterative procedure which
requires at each iteration the solution of four ill-conditioned equations. This he carries
out by Gaussian elimination. Apart from the final renormalization of the quaternion.
his procedure requires 16 floating-point muitiplications (or divisions) to set up the
Gaussian elimination. 13 floating-point muitiplications for the first iteration, and 16 for
each succeeding iteration. Thus. the three iterations of Tietze's exampies require
61 floating-point multiplications. This shouid be compared with only 5! floating-point
multiplications for the supposedly siower nonsingular method of {19] and [20]. The
computational burden of Tietze’s approach is seen to be even greater if it is noted that
this accounting does not include the computation of the eigenvaiue, which requires an
additional four floating-point muitiplications, bringing the total number of floating-
point multiplications for Tietze's implementation to 65. If only a single iteration is
necessary and the value of 1 ~ A,,, is not computed. then Tietze's implementation
requires 29 muitiplications compared to only 16 multipiicatioas for the method of [19]
and [20] if equation (11) is evaluated by Gaussian elimination. Thus, Tietze's sup-
posedly fast algorithm requires roughly from 30 to 80 percent more floating-point
multiplications than the method currently in use.

A word should be said about the problem of singular cases. It has been pointed out
that the algorithm of [19] and [20] behaves poorly when the angie of rotation is close
to #r (or, equivalently, when the fourth component of the quaternion is very smail). A
similar situation aiso-occurs in Tietze's impiementation when the starting quarternion
is nearly orthogonal to the desired solution (or, equivalently, when the component of
the quarternion along the starting vaiue is smail). The two situations occur with approxi-
mately equal frequency in the two respective approaches (and with a very low fre-
quency at that). The necessary repair in each case results in a doubling of the number
of computations. Thus, Tietze's impiementation does nor avoid the problem of bad
cases indicated in [19] and [20], nor does it treat them more efficiently.

Examining (1] in detail, we remark that equation (14) of that work gives the vector
Z, with the wroung sign. That equation is ideatical to an equation appearing in [20], but
Tietze has adopted a different convention for one of the symbols. However. that
expression does not seem to have been used in his calculations, since the values for Z
presented in his tables have the correct sign.

It may be remarked that, for the case where there are three mutually orthogonal
measurements with equal weights and equal accuracies (the case in Tietze's examples),
the loss function has a distribution which is given approximately by

l LI
LRy = 3% (12)
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where o° is the variance of the measurement error per axis and xj is a chi-square
variable with three degrees of freedom. For Gaussian measurement errors the statement
is exact. Equation (12) is consistent with the expression for the expected value of Amy,
given in {21], except that Tietze’s convention for the a; has been foilowed. From (1]

o = (0.017)}/3 (13)
L(Ry) =0.162 x 107 (14)

from which it follows that
x5 =337 (15)

The expected value of this variabie is 3 and the variance is 6. Thus, Tietze's numerical
exampie is statisticaily very typical. Since the convergence properties of the aigorithm
are determined by L(R.), this means that the number of iterations required by Tietze
is also typical.
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